JPS5924153A - Heat pump type refrigeration cycle - Google Patents

Heat pump type refrigeration cycle

Info

Publication number
JPS5924153A
JPS5924153A JP13393182A JP13393182A JPS5924153A JP S5924153 A JPS5924153 A JP S5924153A JP 13393182 A JP13393182 A JP 13393182A JP 13393182 A JP13393182 A JP 13393182A JP S5924153 A JPS5924153 A JP S5924153A
Authority
JP
Japan
Prior art keywords
solenoid valve
compressor
heat exchanger
flow path
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13393182A
Other languages
Japanese (ja)
Inventor
塩見 直正
乾 嘉雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP13393182A priority Critical patent/JPS5924153A/en
Publication of JPS5924153A publication Critical patent/JPS5924153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はヒートポンプ式冷凍サイクルに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump type refrigeration cycle.

従来のヒートポンプ式冷凍サイクルに於ては、第1図に
示す如く圧縮機1.四方弁2.室外側熱交換器3.膨張
装置4及び室内側熱交換器5を順次環状に接続し、冷房
運転時には実線矢印で示す如く圧縮機Iからの高温高圧
の冷媒カスを室外側熱交換器3に送り、ここで凝縮した
後膨張装置4を介して室内側熱交換器5で蒸発させ、暖
房運転時には破線矢印で示す如く圧縮機Iがらの高温高
圧の冷媒カスを逆循環させて暖房を行うものである。
In a conventional heat pump type refrigeration cycle, as shown in FIG. 1, a compressor 1. Four-way valve 2. Outdoor heat exchanger 3. The expansion device 4 and the indoor heat exchanger 5 are sequentially connected in an annular manner, and during cooling operation, the high temperature and high pressure refrigerant scum from the compressor I is sent to the outdoor heat exchanger 3 as shown by the solid line arrow, where it is condensed. It is evaporated in the indoor heat exchanger 5 via the expansion device 4, and during heating operation, the high-temperature, high-pressure refrigerant scum from the compressor I is reversely circulated as shown by the broken line arrow to perform heating.

一般にこの種の冷凍サイクルに於いて、圧haIか停止
するとサイクル内の冷媒は高圧側から低圧側へと流れ、
次第に圧力バランスするようになるが、通常このバラン
スには2〜3分の時間が必要である。また、圧縮機1の
再始動に関しては吐出側と吸入側の圧力差が大きければ
始動しにくく過電流が流れてしまうという特性がある。
Generally, in this type of refrigeration cycle, when the pressure haI is stopped, the refrigerant in the cycle flows from the high pressure side to the low pressure side.
Gradually the pressure will balance, but this balancing usually takes 2 to 3 minutes. Further, regarding the restart of the compressor 1, there is a characteristic that if the pressure difference between the discharge side and the suction side is large, it will be difficult to start the compressor 1 and an overcurrent will flow.

従って従来では安全のために3分遅延方式を採用してい
る。
Therefore, conventionally, a three-minute delay method has been adopted for safety.

しかし、このような冷凍サイクルに於いて3分遅延に入
れば負荷状態等により室温がサーモスタットの下限より
低下した場合でも3分以内であれば再始動せず、このた
め3分の遅延時間内に室温が設定温度より大きくはずれ
てしまうという欠点が有った。
However, in such a refrigeration cycle, if there is a 3-minute delay, even if the room temperature drops below the lower limit of the thermostat due to load conditions, it will not restart if it is within 3 minutes; There was a drawback that the room temperature deviated significantly from the set temperature.

また、他の問題点として圧縮機1か停止し圧力バランス
した状態から再始動する時、定常の圧力状態Gご復帰す
るまで一定の時間を要し、この間充分な能力か得られず
効率が低下するという欠点かあった。
Another problem is that when compressor 1 is stopped and restarted from a pressure-balanced state, it takes a certain amount of time to return to the steady pressure state, and during this time, sufficient capacity cannot be obtained and efficiency decreases. There was a drawback to that.

本発明は」二記欠点を除去することを目的としてなした
ものであり、圧縮機停止時における圧カッ・ランス時間
の短縮化、及び圧縮機の再始動時の立上り時間の短縮化
を図ったヒートポンプ式冷凍す□ イクルを提供するものである。
The present invention was made with the aim of eliminating the above two drawbacks, and aims to shorten the pressure lance time when the compressor is stopped, and shorten the rise time when the compressor is restarted. It provides a heat pump type refrigeration cycle.

以下、本発明の一実施例を図面に基いて説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.

第2図は本発明に係るヒートポンプ式冷凍サイクルの冷
媒回路図、第3図は同冷凍サイクルにおける圧縮機、及
び第1乃至第5電磁弁の冷房時の動作説明図、第4図は
同暖房時の動作説明図である。
Fig. 2 is a refrigerant circuit diagram of the heat pump refrigeration cycle according to the present invention, Fig. 3 is an explanatory diagram of the operation of the compressor and the first to fifth solenoid valves in the refrigeration cycle during cooling, and Fig. 4 is the heating FIG.

なお、実線矢印は冷房運転時の冷媒の流れを示し、太線
は圧縮機運転時、細線は圧縮機停止時を示す。また、破
線矢印は暖房運転時の冷媒の流れを示し、太線は圧縮機
運転時、細線は圧縮機停止時を示す。
Note that solid arrows indicate the flow of refrigerant during cooling operation, thick lines indicate when the compressor is operating, and thin lines indicate when the compressor is stopped. Moreover, the broken line arrow indicates the flow of refrigerant during heating operation, the thick line indicates when the compressor is operating, and the thin line indicates when the compressor is stopped.

第2図において、11は冷媒ガスを圧縮するための圧縮
機で、その一端開口部には第1の電磁弁101を介して
室外側熱交換器13の一端を接続し、該室外側熱交換器
13の他端には圧縮機11の運転停止時に閉成する第5
の電磁弁14及び膨張装置15を介して室内側熱交換器
16の一端を接続し、又該室内側熱交換器16の他端に
は第2の電磁弁201を介して圧縮機11の他端開口部
を接続している。
In FIG. 2, 11 is a compressor for compressing refrigerant gas, and one end of an outdoor heat exchanger 13 is connected to one end opening of the compressor 11 via a first electromagnetic valve 101. At the other end of the compressor 13 there is a fifth valve which is closed when the compressor 11 stops operating.
One end of the indoor heat exchanger 16 is connected to the other end of the indoor heat exchanger 16 through a second solenoid valve 14 and an expansion device 15, and the other end of the compressor 11 is connected to the other end of the indoor heat exchanger 16 through a second solenoid valve 201. Connecting end openings.

そして、前記圧縮機IIと第1の電磁弁+01間の流路
と前記室内側熱交換器16と第2の電磁弁201間の流
路との間を連通ずる第1のバイパス流路!8を設けると
共に、この第1のバイパス流路18に第3の電磁弁10
2を介在させ、また前記第1の電磁弁+01と室外側熱
交換器13間の流路と前記第2の電磁弁201と圧縮機
11間の流路間とを連通ずる第2のバイパス流路19を
設けると共にこの第2のバイパス流路j9には第4の電
磁弁202を介在させている。
And a first bypass flow path that communicates between the flow path between the compressor II and the first solenoid valve +01 and the flow path between the indoor heat exchanger 16 and the second solenoid valve 201! 8, and a third solenoid valve 10 is provided in this first bypass flow path 18.
2, and also communicates the flow path between the first solenoid valve +01 and the outdoor heat exchanger 13 and the flow path between the second solenoid valve 201 and the compressor 11. A passage 19 is provided, and a fourth electromagnetic valve 202 is interposed in this second bypass passage j9.

第3図及び第4図は上記ヒートポンプ式冷凍サイクルに
おける前記圧縮機11.第1の電磁弁−I 01 、第
2の電磁弁201.第3の電磁弁102゜第4の電磁弁
202.及び第5の電磁弁14の冷房運転及び暖房運転
時の動作状態を示したものであり、圧縮機11の運転停
止及び運転再開に際して各電磁弁はこの第3図及び第4
図の如く動作する。すなわち、冷房運転時圧縮機11が
停止する際には第3図に示す如く先ず第5の電磁弁14
が閉成し、これに少し遅延して圧縮機11が停止し、さ
らに遅:一シて第1の電磁弁lotが閉成すると共に第
3の電磁弁102か開成する。また、圧縮機11の運転
再開に際しては先ず圧縮機11か運転を開始すると共、
に第3の電磁弁102か閉成し、少し遅延して第1の電
磁弁101が開成し、さらに遅延して第5の電磁弁14
が開成する。なお、この冷房運転時には第2の電磁弁2
01は開成状態を維持し、また第4の電磁弁202は閉
成状態を維持する。
3 and 4 show the compressor 11 in the heat pump type refrigeration cycle. First solenoid valve-I 01 , second solenoid valve 201 . Third solenoid valve 102. Fourth solenoid valve 202. and the operating state of the fifth solenoid valve 14 during cooling operation and heating operation, and when the compressor 11 is stopped and restarted, each solenoid valve is
It works as shown in the figure. That is, when the compressor 11 is stopped during cooling operation, the fifth solenoid valve 14 is first turned off as shown in FIG.
is closed, the compressor 11 is stopped with a slight delay, and even later, the first solenoid valve LO is closed and the third solenoid valve 102 is opened. In addition, when restarting the operation of the compressor 11, first the compressor 11 starts operation, and
, the third solenoid valve 102 closes, the first solenoid valve 101 opens with a slight delay, and the fifth solenoid valve 14 opens with a further delay.
will be developed. Note that during this cooling operation, the second solenoid valve 2
01 remains open, and the fourth electromagnetic valve 202 remains closed.

暖房運転時圧縮機11が停止する際には第4図に示す如
く、先ず、第5の電磁弁14か閉成し、これに少し遅延
して圧縮機11が停止し、さらに遅延して第3の電磁弁
102が閉成すると共に第1の電磁弁101が開成する
。また、圧縮機11の運転再開に際しては先ず圧縮機1
1か運転を開始すると共に第1の電磁弁lotが閉成し
、これに少し遅延して第3の電磁弁102か開成し、さ
らに遅延して第5の電磁弁14か開成する。なお、この
暖房運転時には第2の電磁弁201は閉成状態を維持し
、第4の電磁弁202は開成状態を維持する。
When the compressor 11 stops during heating operation, as shown in FIG. When the third solenoid valve 102 closes, the first solenoid valve 101 opens. In addition, when restarting the operation of the compressor 11, first the compressor 1
1, the first solenoid valve 102 closes as soon as operation starts, the third solenoid valve 102 opens with a slight delay, and the fifth solenoid valve 14 opens with a further delay. Note that during this heating operation, the second solenoid valve 201 maintains a closed state, and the fourth solenoid valve 202 maintains an open state.

次に、上記冷凍サイクルの動作を説明する。Next, the operation of the refrigeration cycle will be explained.

先ず、最初冷房運転に際し、電磁弁+01,14゜20
1を開成して圧縮機11を駆動すると該圧縮機11で圧
縮された高温 高圧の冷媒ガスは第1の電磁弁lotを
介して窯外側熱交換器13に流れここで凝縮された後、
電磁弁14及び膨張装置15を介して室内側熱交換器1
6内に送られる。
First, during the initial cooling operation, the solenoid valve +01,14°20
1 is opened to drive the compressor 11, the high temperature and high pressure refrigerant gas compressed by the compressor 11 flows through the first solenoid valve lot to the outside heat exchanger 13, where it is condensed.
Indoor heat exchanger 1 via solenoid valve 14 and expansion device 15
Sent within 6.

而して該室内側熱交換器16に送られた液状の冷媒は室
内側熱交換器I6内で蒸発しこの時周囲より気化熱を奪
う。然る後室内側熱交換器16て気化した冷媒カスは第
2の電磁弁20+を通して圧縮機11に帰還される。こ
の動作の繰返しにより室内は上記室内側熱交換器16に
より所定の湿度に冷却される。
The liquid refrigerant sent to the indoor heat exchanger 16 evaporates within the indoor heat exchanger I6, and at this time takes vaporization heat from the surroundings. After that, the refrigerant residue vaporized in the indoor heat exchanger 16 is returned to the compressor 11 through the second electromagnetic valve 20+. By repeating this operation, the room is cooled to a predetermined humidity by the indoor heat exchanger 16.

面して室内温度が所定の温度に達するとサーモスタット
(図示せず)が動作して先ず電磁弁I4を閉成し、その
後遅延して圧縮機IIの運転を停止し、更に遅延して第
1の電磁弁+01か閉成す流路18を通して圧縮機11
の低圧側に瞬時に流れ圧縮機11の吐出側と吸入側の圧
力はバランスする。即ち何時でも圧縮機11の再始動可
能な状態となり、従来のような3分遅延再始動の必要は
なくなる。
When the indoor temperature reaches a predetermined temperature, a thermostat (not shown) operates to first close the solenoid valve I4, then delay to stop the operation of the compressor II, and further delay to close the first solenoid valve I4. The compressor 11 is connected to the compressor 11 through the flow path 18 which is closed by the solenoid valve +01.
The pressure instantly flows to the low pressure side of the compressor 11, and the pressures on the discharge side and suction side of the compressor 11 are balanced. That is, the compressor 11 can be restarted at any time, and there is no need to restart the compressor 11 with a 3-minute delay as in the prior art.

従って、室温の細かいコントロールが可能となる。Therefore, detailed control of room temperature is possible.

このとき、圧縮機11の停止前に第1の電磁弁+01を
閉成すれば、高圧冷媒側が過圧縮になる危険性があるた
め、圧縮機11の停止後に第1の電磁弁+01を閉成す
る必要があり、このように制御すれば高圧冷媒を通常運
転時に近い状態で第5の電磁弁14と第1の電磁弁+0
1との間に保持させるこ七ができる。
At this time, if the first solenoid valve +01 is closed before the compressor 11 is stopped, there is a risk that the high-pressure refrigerant side will be overcompressed, so the first solenoid valve +01 is closed after the compressor 11 is stopped. If controlled in this way, the fifth solenoid valve 14 and the first solenoid valve
1 and 7 are held between them.

然る後、室温が上昇し、これをサーモスタットが検知す
ると圧縮機11は再始動するが、冷房負荷の大小によっ
て再始動するまでの時間が異なる。
Thereafter, when the room temperature rises and the thermostat detects this, the compressor 11 is restarted, but the time required for restart differs depending on the magnitude of the cooling load.

このため、第1の電磁弁IQ+と第5の電磁弁14との
間に保持される高圧冷媒の保持圧力状態も異なる(i4
’<1.こなり、停止時間(第3図においてtcで示す
時間)が長ければ保持圧力は低く、また停止時間tcが
短かければ保持圧力は高く保持されることになるから、
第1の電磁弁+01と第5の電磁弁14の弁開閉タイミ
ング(第3図においてtel及びj(5で示す時間)を
常に一定にすれば、短時間停止であれば過圧縮という不
都合も生し・再始動時効率が悪い状態て運転することに
なる。
Therefore, the holding pressure state of the high-pressure refrigerant held between the first solenoid valve IQ+ and the fifth solenoid valve 14 also differs (i4
'<1. Therefore, if the stop time (time indicated by tc in FIG. 3) is long, the holding pressure will be low, and if the stop time tc is short, the holding pressure will be held high.
If the valve opening/closing timings of the first solenoid valve +01 and the fifth solenoid valve 14 (tel and j (time indicated by 5 in Fig. 3) are always kept constant, there may be the problem of overcompression if the stop is stopped for a short time. - The engine will operate in a less efficient state when restarting.

そこで本発明は停止時間【Cを積算することにより弁開
閉タイミングtel及びtc5を時間的に制御し、これ
によって常に効率のよい状態で再始動運転を行なうもの
である。
Therefore, the present invention temporally controls the valve opening/closing timings tel and tc5 by integrating the stop time [C, thereby constantly performing restart operation in an efficient state.

つまり、圧縮機11の停止時間tcによ−って第1の電
磁弁101及び第5の電磁弁I4の開成タイミングte
l及びtc5を決定し、圧縮機11の再始動後tc1時
間経過時に第1の電磁弁101までの管路か所定圧力に
達して第1の電磁弁101か開成するよう制御すると共
に、圧縮機11の再始動後tc5時間経過時第5の電磁
弁14までの管路の圧力が所定圧力に達して第5の電磁
弁14か開成す西、f々1制御して通常運転に入るもの
である。
In other words, the opening timing te of the first solenoid valve 101 and the fifth solenoid valve I4 depends on the stop time tc of the compressor 11.
l and tc5 are determined, and when tc1 time elapses after the restart of the compressor 11, the conduit to the first solenoid valve 101 reaches a predetermined pressure and the first solenoid valve 101 is opened, and the compressor When tc5 hours have elapsed after the restart of No. 11, the pressure in the pipeline up to the fifth solenoid valve 14 reaches a predetermined pressure, and the fifth solenoid valve 14 is opened. be.

次に、暖房運転について説明する。暖房運転に際しては
第3の電磁弁+02及び第4の電磁弁202を開成し、
第1.第3の電磁弁101,201は閉成して圧縮機1
1を駆動すれば良く、このようにすることにより圧縮機
11からの冷媒ガスは第3の電磁弁102.第1のバイ
パス流路18を通って室内側熱交換器16に流れここで
凝縮された後膨張装置15及び第5の電磁弁14を通し
て室外側熱交換器13に給送される。即ち室内側熱交換
器16は凝縮器として作用する。そして室外側熱交換器
13は蒸発器として作用する。そして室外側熱交換器1
3で蒸発した冷媒ガスは第2のバイパス流路I9及び第
4の電磁弁202を通して圧縮機11に帰還される。
Next, heating operation will be explained. During heating operation, the third solenoid valve +02 and the fourth solenoid valve 202 are opened,
1st. The third solenoid valve 101, 201 is closed and the compressor 1
In this way, the refrigerant gas from the compressor 11 is transferred to the third solenoid valve 102. It flows through the first bypass passage 18 to the indoor heat exchanger 16 , where it is condensed, and then fed to the outdoor heat exchanger 13 through the expansion device 15 and the fifth electromagnetic valve 14 . That is, the indoor heat exchanger 16 acts as a condenser. The outdoor heat exchanger 13 then acts as an evaporator. and outdoor heat exchanger 1
The refrigerant gas evaporated in step 3 is returned to the compressor 11 through the second bypass passage I9 and the fourth solenoid valve 202.

然る後室内温度が室内側熱交換器I6の作用によって所
定湿度に達するとサーモスタットが動作して先ず第5の
電磁弁14が停止し、その後遅延して圧縮機11の運転
が停止し、更に遅延して第3の電磁弁102が閉成する
。この時、第1の電磁弁IQ+が開成するように切替わ
り上述冷房運転の時と同様にして圧縮機11の高圧冷媒
ガスは第1の電磁弁101及び第2バイパス流路19を
介して低圧側に流れ圧力バランスすると共に室内側熱交
換器16の高圧冷媒はそのまま保持される。
After that, when the indoor temperature reaches a predetermined humidity due to the action of the indoor heat exchanger I6, the thermostat is activated and first the fifth solenoid valve 14 is stopped, and then the operation of the compressor 11 is stopped with a delay, and then the operation of the compressor 11 is stopped. The third solenoid valve 102 closes with a delay. At this time, the first solenoid valve IQ+ is switched to open, and the high-pressure refrigerant gas in the compressor 11 is passed through the first solenoid valve 101 and the second bypass passage 19 to a low pressure in the same way as in the cooling operation described above. The high-pressure refrigerant in the indoor heat exchanger 16 is maintained as it is while the pressure is balanced.

即ち圧縮機11の吐出、吸入圧力は第1の電磁弁101
の動作により瞬時にバランスするため何時でも再始動可
能な状態となっている。
That is, the discharge and suction pressures of the compressor 11 are controlled by the first solenoid valve 101.
This action instantly balances the engine, allowing it to be restarted at any time.

再始動時には冷房時と同様の動作にて先ず圧縮機11が
始動し、第1の電磁弁+01が同時(若生遅延してもよ
い)に切替わる。その後、圧縮機11の停止時間thの
積算結果に基いて圧縮機11が再始動してから、th3
時間経過した時に第3の電磁弁102が切替わり、th
s時間経過した時に第5の電磁弁14が切替わって通常
の暖房運転に入る。
When restarting, the compressor 11 is first started in the same manner as during cooling, and the first solenoid valve +01 is switched at the same time (may be delayed). Thereafter, after the compressor 11 is restarted based on the cumulative result of the stop time th of the compressor 11, th3
When the time elapses, the third solenoid valve 102 switches, and
When time s has elapsed, the fifth solenoid valve 14 is switched to enter normal heating operation.

なお、この時室内ファンは停止あるいは微風状態にして
室内温度との熱交換による高圧圧力の低下を抑制するも
のとする。このようにしても室内温度は従来の如く急激
に下ることはない。
In addition, at this time, the indoor fan shall be stopped or brought into a light breeze state to suppress the drop in high pressure due to heat exchange with the indoor temperature. Even if this is done, the indoor temperature will not drop suddenly like in the conventional case.

上記のようにして暖房運転時においても効率のよい運転
ができる。
As described above, efficient operation can be achieved even during heating operation.

一般に暖房運転の場合には暖房負荷か大きくこのため圧
縮機11が停止してから遅延時間である3分間の間に室
内温度が大きく低下してしまい室温の変動範囲が広くな
り不快感を感じるが本発明のように構成することにより
確実にサーモスタットのコントロール範囲内で室温を調
節することかでき、快適性を損うことはない。
Generally, in the case of heating operation, the heating load is large, so the indoor temperature drops significantly during the 3 minute delay time after the compressor 11 stops, and the room temperature fluctuation range becomes wide, causing discomfort. With the configuration of the present invention, the room temperature can be reliably adjusted within the control range of the thermostat without compromising comfort.

なお、第5の電磁弁14は膨張装置15と室内側熱交換
器16の間に挿入しても同様の効果が得られる。
Note that the same effect can be obtained even if the fifth solenoid valve 14 is inserted between the expansion device 15 and the indoor heat exchanger 16.

本発明によれは゛、確実にサーモスタットのコントロー
ルの範囲内で室内温度を調節することかでき快適性を損
うことがないと共に、圧縮機の再始動時の立上り時間を
大巾に短縮できる。また、圧縮機の再始動時、圧縮機停
止時間を積算することによって電磁弁の弁開閉タイミン
グを制御しているので、常に効率のよい状態で再始動運
転が行な第1図は従来のヒートポンプ式冷凍サイクルの
冷媒回路図、第2図は本発明に係るヒートポンプ。
According to the present invention, the indoor temperature can be reliably adjusted within the range of thermostat control without sacrificing comfort, and the start-up time when restarting the compressor can be greatly shortened. In addition, when restarting the compressor, the valve opening/closing timing of the solenoid valve is controlled by integrating the compressor stop time, so restart operation is always performed in an efficient state.Figure 1 shows a conventional heat pump. A refrigerant circuit diagram of a type refrigeration cycle, FIG. 2 is a heat pump according to the present invention.

式冷凍サイクルの冷媒回路図、第3図G才[用冷項!サ
イクルにおける圧縮機及び第1乃至第5電磁弁の冷房時
の動作説明図、第4図は同暖房鋒与のtl+(乍説明図
である。
Refrigerant circuit diagram of a type refrigeration cycle, Figure 3 FIG. 4 is an explanatory diagram of the operation of the compressor and the first to fifth electromagnetic valves during cooling during the cycle, and FIG.

11:圧縮機、13:室外側熱交換器、14:第5の電
磁弁、15:膨張装置、16:室内(1111蒙〜交換
器、18:第1の7・イ、<ス流路、19:第2のバイ
パス流路、巨1:第1の電磁弁、+02:第3の電磁弁
、201°第2の電磁4ト、202、第4の電磁弁。
11: Compressor, 13: Outdoor heat exchanger, 14: Fifth electromagnetic valve, 15: Expansion device, 16: Indoor (1111 exchanger, 18: First 7.a, <S flow path, 19: second bypass flow path, giant 1: first solenoid valve, +02: third solenoid valve, 201° second solenoid 4 to, 202, fourth solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 1 圧縮機、第1の電磁弁、室外側熱交換器、膨張装置
、室内側熱交換器、第2の電磁弁を順次環状に接続し、
前記圧縮機と第1の電磁弁間の流路と室外側熱交換器と
第2の電磁弁間の流路とを連通する第1のバイパス流路
を設けると共に、前記第1の電磁弁と室外側熱交換器間
の流路と第2の電磁弁と圧縮機間の流路とを連通ずる第
2のバイパス流路を設け、第1のバイパス流路に第3の
電磁弁を設けると共に第2のバイパス流路に第4の電磁
弁を設け、且つ前記室外側熱交換器と室内側熱交換器の
間に第5の電磁弁を設けたヒートポンプ式冷凍サイクル
において、サーモスタンド等による圧縮機の停止時、圧
縮機停止時間を積算し、この結果に基いて電磁弁の開閉
タイミングを制御することを特徴としたヒートポンプ式
冷凍サイクル。
1. A compressor, a first solenoid valve, an outdoor heat exchanger, an expansion device, an indoor heat exchanger, and a second solenoid valve are sequentially connected in an annular manner,
A first bypass flow path is provided that communicates a flow path between the compressor and the first solenoid valve and a flow path between the outdoor heat exchanger and the second solenoid valve; A second bypass flow path is provided that communicates the flow path between the outdoor heat exchanger and the flow path between the second solenoid valve and the compressor, and a third solenoid valve is provided in the first bypass flow path; In a heat pump refrigeration cycle in which a fourth solenoid valve is provided in the second bypass flow path and a fifth solenoid valve is provided between the outdoor heat exchanger and the indoor heat exchanger, compression is performed using a thermostand or the like. A heat pump type refrigeration cycle characterized by integrating the compressor stop time when the machine is stopped and controlling the opening/closing timing of the solenoid valve based on this result.
JP13393182A 1982-07-30 1982-07-30 Heat pump type refrigeration cycle Pending JPS5924153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13393182A JPS5924153A (en) 1982-07-30 1982-07-30 Heat pump type refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13393182A JPS5924153A (en) 1982-07-30 1982-07-30 Heat pump type refrigeration cycle

Publications (1)

Publication Number Publication Date
JPS5924153A true JPS5924153A (en) 1984-02-07

Family

ID=15116416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13393182A Pending JPS5924153A (en) 1982-07-30 1982-07-30 Heat pump type refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS5924153A (en)

Similar Documents

Publication Publication Date Title
KR20040045094A (en) a linear expansion valve&#39;s control method for a heat pump system
JPS60175976A (en) Defroster for air conditioner
JPS5924153A (en) Heat pump type refrigeration cycle
JP3082560B2 (en) Dual cooling system
JPH0673667U (en) Pressure equalizer in multi-room air conditioning type heat pump system
JPS5921955A (en) Heat pump type refrigeration cycle
JPS58193058A (en) Heat pump type refrigeration cycle
JP3237206B2 (en) Air conditioner
JPS59183255A (en) Air conditioner
JPS591963A (en) Heat pump type refrigeration cycle
JPS58102067A (en) Air conditioner
JP3291886B2 (en) Air conditioner and control method thereof
JPS58224276A (en) Heat pump type refrigeration cycle
JPH0120709B2 (en)
JPH089573Y2 (en) Refrigeration equipment
JPS5971960A (en) Heat pump type refrigeration cycle
JP2023157567A (en) air conditioner
JPS5899655A (en) Refrigerator
JPS6129657A (en) Refrigerator
JPS5914678Y2 (en) air conditioner
JPS58150754A (en) Refrigeration cycle device
JPS60111851A (en) Heat pump type refrigerator
JPS632859Y2 (en)
JPH11351681A (en) Method for controlling air conditioner
JPS60228860A (en) Multi-chamber air conditioner