JPS5923970Y2 - Triple tube heat exchange unit - Google Patents

Triple tube heat exchange unit

Info

Publication number
JPS5923970Y2
JPS5923970Y2 JP5977880U JP5977880U JPS5923970Y2 JP S5923970 Y2 JPS5923970 Y2 JP S5923970Y2 JP 5977880 U JP5977880 U JP 5977880U JP 5977880 U JP5977880 U JP 5977880U JP S5923970 Y2 JPS5923970 Y2 JP S5923970Y2
Authority
JP
Japan
Prior art keywords
tube
fluid
pipe
partition
triple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5977880U
Other languages
Japanese (ja)
Other versions
JPS56162475U (en
Inventor
博之 浦野
平一 池田
Original Assignee
株式会社前田鉄工所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社前田鉄工所 filed Critical 株式会社前田鉄工所
Priority to JP5977880U priority Critical patent/JPS5923970Y2/en
Publication of JPS56162475U publication Critical patent/JPS56162475U/ja
Application granted granted Critical
Publication of JPS5923970Y2 publication Critical patent/JPS5923970Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 本考案は流体間の熱交換を効率良く行なうことができる
伝熱性能の優れた三重管式熱交換ユニットに関するもの
である。
[Detailed Description of the Invention] The present invention relates to a triple-pipe heat exchange unit that can efficiently exchange heat between fluids and has excellent heat transfer performance.

小容量の流体を熱交換する場合に二重管式熱交換器ある
いは多管式熱交換器が使用されているが、二重管式熱交
換器は第1図の如く適当な管径を有する外管と内管とが
組み合わされたもので、この内管には平滑な円管の他に
、らせん管、フィン付管あるいはねじれ片が挿入された
ものなどが用いられて伝熱性能を改善されたものが製作
されており、また外管と内管との温度差による伸縮量の
大きい場合には外管に伸縮継手を設けた方式、グランド
パツキン方式、あるいは二重管のリターンベンドなどに
より温度差による伸縮を吸収する方式が使用されている
が、かかる二重管式熱交換器は長さが長くなり小容量の
流体の熱交換するのに大きな設置面積を必要とするばか
りでなく、熱交換能力が不充分であるなどの欠点を有し
ていた。
Double-tube heat exchangers or multi-tube heat exchangers are used to exchange heat with small volumes of fluid, and double-tube heat exchangers have appropriate pipe diameters as shown in Figure 1. It is a combination of an outer tube and an inner tube, and in addition to a smooth circular tube, the inner tube is a spiral tube, a finned tube, or a tube with twisted pieces inserted to improve heat transfer performance. If the amount of expansion or contraction is large due to the temperature difference between the outer tube and the inner tube, a method of installing an expansion joint on the outer tube, a gland packing method, or a return bend of a double tube is used. A method of absorbing expansion and contraction due to temperature differences is used, but such a double-tube heat exchanger not only has a long length and requires a large installation area to exchange heat of a small volume of fluid. It had drawbacks such as insufficient heat exchange ability.

また多管式熱交換器は設置面積が小さくて済むが、組立
が複雑となり、伝熱性能を向上させるための流体の流速
の確保が難しく、設計上及び製作上程々の難点があり、
構造上無理を生じ易く熱交換効率が低下したりするなど
種々の欠点があった。
In addition, although multitubular heat exchangers require a small installation area, they are complicated to assemble, and it is difficult to secure the fluid flow rate to improve heat transfer performance, and there are some design and manufacturing difficulties.
There were various drawbacks, such as the structure being easily strained and the heat exchange efficiency decreasing.

本考案はかかる欠点を解決したものであり、流体が通過
する流路が外側流路と中間流路と中心流路との三流路に
形成されている三重管より戊り、中間流路が外側流路と
中心流路とで囲まれ、中間流路の外周面及び内周面の両
面が伝熱面となっていて、中間流路の内外管壁から熱交
換することにより伝熱面積の増加と伝熱係数の向上を計
るように形成されていると共に、三重管の外管、中管及
び内管が単体の仕切室で組立て係合された構造となって
おり、三重管の保合が容易で、その構造も小形に形成す
ることができ、しかも流体間の熱交換を効率良く行なう
ことができる伝熱性能の優れた三重管式熱交換ユニット
を提供するものである。
The present invention solves this drawback, and the flow path through which the fluid passes is cut out from the triple pipe formed in the outer flow path, the intermediate flow path, and the center flow path, and the intermediate flow path is formed on the outside. Surrounded by the flow path and the center flow path, both the outer and inner peripheral surfaces of the intermediate flow path are heat transfer surfaces, and the heat transfer area is increased by exchanging heat from the inner and outer tube walls of the intermediate flow path. In addition, the structure is such that the outer, middle, and inner tubes of the triple tube are assembled and engaged in a single partition, making it possible to secure the triple tube. To provide a triple-pipe heat exchange unit that is easy to form, has a compact structure, and can efficiently exchange heat between fluids and has excellent heat transfer performance.

更に詳しくは、本考案は所定の管径を有する外管と両端
部が平滑な円管で両端部がらせん管より成る中管及び内
管とで三重管が形成されて外管と中管との間に外側流路
、中管と内管との間に中間流路、内管内に中心流路の三
流路が設けられ、外管、中管及び内管の両端部が一流体
が流入又は流出する単体の仕切室にそれれ係合されてい
て、その仕切室には外側流路に連通ずる仕切室外側通路
、中心流路に連通ずる仕切室中心通路、中間流路に連通
ずる仕切室中間通路がそれぞれ該けられていることを特
徴とする三重管式熱交換ユニットに関するものである。
More specifically, the present invention forms a triple tube with an outer tube having a predetermined diameter, a middle tube and an inner tube which are both smooth round tubes at both ends and spiral tubes at both ends. There are three flow paths: an outer flow path between the middle and inner tubes, an intermediate flow path between the middle and inner tubes, and a center flow path within the inner tube. each of which is engaged with a single outflow compartment, the compartment having a compartment outer passage communicating with the outer passage, a compartment center passage communicating with the central passage, and a partition communicating with the intermediate passage. The present invention relates to a triple-tube heat exchange unit characterized in that intermediate passages are separated from each other.

以下、図面により本考案に係る三重管式熱交換ユニット
について詳細に説明する。
Hereinafter, the triple tube heat exchange unit according to the present invention will be described in detail with reference to the drawings.

第2図は本考案に係る三重管式熱交換ユニットの1実施
例を一部を断面で示した側面図、第3図、第4図及び第
5図は本考案に係る三重管式熱交換ユニットの三重管が
係合されている仕切室の他の実施例をそれぞれ示す側断
面図、第6図は本考案に係る三重管式熱交換ユニットの
三重管が拡管方式で係合された状態の1実施例を示す側
断面図、第7図は本考案に係る三重管式熱交換ユニット
の三重管がOリング方式で係合された状態の1実施例を
示す側断面図である。
Fig. 2 is a partially cross-sectional side view of one embodiment of the triple-tube heat exchange unit according to the present invention, and Figs. 3, 4, and 5 are the triple-tube heat exchange unit according to the present invention. Side sectional views showing other embodiments of the partitions in which the triple tubes of the unit are engaged, FIG. 6 is a state in which the triple tubes of the triple tube heat exchange unit according to the present invention are engaged in the tube expansion method. FIG. 7 is a side sectional view showing an embodiment of the triple tube type heat exchange unit according to the present invention in which the triple tubes are engaged by an O-ring method.

図面中、1,2及び3は三重管を形成している所定の管
径を有する外管、中管及び内管であり、外管1は平滑な
円管、中管2及び内管3は両端部が平滑な円管で両端部
間がらせん管より成り、これらの外管1、中管2及び内
管3は同心円状に組み立てられていてもよいが、同心円
状に組み立てられていなくてもよく、組み立てられた三
重管には容管の管壁によって仕切られた気体又は液体又
はその混合体より威る流体が通過する外管1と中管2と
の間の外側流路a、中管2と内管3との間の中間流路す
及び内管3内の中心流路Cの三流路が設けられている。
In the drawing, 1, 2, and 3 are an outer tube, a middle tube, and an inner tube having predetermined tube diameters forming a triple tube, and the outer tube 1 is a smooth circular tube, and the middle tube 2 and the inner tube 3 are It consists of a circular tube with both ends smooth and a spiral tube between the two ends, and these outer tube 1, middle tube 2 and inner tube 3 may be assembled concentrically, but they are not assembled concentrically. The assembled triple-pipe tube has an outer flow path a between the outer tube 1 and the inner tube 2, through which a fluid more aggressive than gas or liquid or a mixture thereof passes through, which is partitioned by the tube wall of the container tube. Three channels are provided: an intermediate channel between the tube 2 and the inner tube 3, and a central channel C within the inner tube 3.

また両端部間がらせん管より成る中管2及び内管3はら
せんのねじれ方向が互いに同じ方向に組み立てられてい
ても、あるいは互いに逆方向に組み立てられていてもよ
い。
Further, the middle tube 2 and the inner tube 3, each of which has a spiral tube between its ends, may be assembled so that the twist directions of the spirals are the same or opposite to each other.

4,5は外管1、中管2及び内管3の両端部が係合され
ているそれぞれ単体の仕切室、6は仕切室4内に設けら
れ外側流路aに連通している仕切室外側通路、7は仕切
室4内に設けられ中心流路Cに連通している仕切室中心
通路、7′は仕切室4内に設けられ中間流路すに連通し
ている仕切室中間通路、8は仕切室4の端部に設けられ
流体Aが流入又は流出する流体A出入口であり、この変
A出入口8は仕切室中心通路7に連通し、仕切室中心通
路7と仕切室外側通路6とは第2図の如く連通している
かあるいは第4図の如く仕切られている。
4 and 5 are individual partitions in which both ends of the outer tube 1, middle tube 2, and inner tube 3 are engaged, and 6 is a partition chamber provided in the partition chamber 4 and communicating with the outer flow path a. an outer passage; 7 is a partition center passage provided in the partition 4 and communicating with the central passage C; 7' is a partition intermediate passage provided in the partition 4 and communicating with the intermediate passage C; Reference numeral 8 denotes a fluid A inlet/outlet provided at the end of the partition chamber 4 through which fluid A flows in or out. They are either connected as shown in Figure 2 or separated as shown in Figure 4.

9は仕切室4の側部に設けられ流体Bが流入又は流出す
る流体B出入口であり、この流体B出入口9は仕切室中
間通路7′に連通している。
Reference numeral 9 denotes a fluid B inlet/outlet provided on the side of the partition 4 through which fluid B flows in or out, and this fluid B inlet/outlet 9 communicates with the partition intermediate passage 7'.

10は仕切室5の端部に設けられ仕室5内の仕切室中心
通路7に連通し流体Aが流入又は流出する流体A出入口
、11は仕切室5の側部に設けられ仕切室5内の仕切室
中間流路7′に連通し流体Bが流入又は流出する流体B
出入口である。
10 is a fluid A inlet/outlet provided at the end of the partition 5 and communicates with the partition center passage 7 in the partition 5, through which fluid A flows in or out; 11 is provided at the side of the partition 5 and communicates with the partition center passage 7 inside the partition The fluid B communicates with the intermediate flow path 7' of the partition chamber, and the fluid B flows into or out of the partition chamber.
It is an entrance/exit.

仕切室4と仕切室5とが第2図に示す如く同じ構造であ
る場合には流体Aは仕切室4の流体A出入口8から仕切
室4内に流入すると、仕切室外側通路6と仕切室中心通
路7とに分岐されて三重管の外管1と中管2との間に形
成された外側流路aと内管3の内部の中心流路Cとに分
流して通過し、仕切室5内で合流して仕切室5の流体A
出入口10から流出し、一方、流体Bは仕切室5の流体
B出入口11から仕切室5内に流入すると、中管2と内
管3との間に形成された中間流路すを通過して流体Aが
接する内管3及び中管2の両壁面を介して熱交換されて
仕切室4の流体B出入口9から流出する構造となってお
り、この場合流体Aを仕切室5の流体A出入口10から
流入させて仕切室4の流体A出入口8から流出させても
よく、また熱交換は流体Aと流体Bとをカウンターフロ
ー又はパラレルフローのいずれの状態で行ってもよいの
で流体Bも仕切室4の流体B出入口9から流入させて仕
切壁5の流体B出入口11から流出させてもあるいはそ
の逆であってもよい。
When the partition chamber 4 and the partition chamber 5 have the same structure as shown in FIG. The flow branches into an outer flow path a formed between the outer pipe 1 and the middle pipe 2 of the triple pipe, and a center flow path C inside the inner pipe 3, and passes through the partition chamber. 5 and the fluid A in the partition chamber 5
On the other hand, when fluid B flows into the partition chamber 5 from the fluid B entrance and exit port 11 of the partition chamber 5, it passes through the intermediate flow path formed between the middle pipe 2 and the inner pipe 3. The structure is such that the fluid A is heat exchanged through both wall surfaces of the inner tube 3 and the middle tube 2 in contact with each other and flows out from the fluid B inlet/outlet 9 of the partition chamber 4. In this case, the fluid A is transferred to the fluid A inlet/outlet of the partition chamber 5. 10 and outflow from the fluid A inlet/outlet 8 of the partition chamber 4.Furthermore, since heat exchange may be performed between fluid A and fluid B in either counter flow or parallel flow state, fluid B may also be partitioned. The fluid B may flow in through the fluid B inlet/outlet 9 of the chamber 4 and flow out through the fluid B inlet/outlet 11 of the partition wall 5, or vice versa.

第3図は流体Aを分岐させる構造の他の実施例を示すも
ので、仕切室4及び5に係合されている内管3の両端部
が仕切室外側通路6を貫通して流体A出入口8及び10
で係合され、仕切室外側通路6に面する内管3に小孔6
′が貫通穿孔されていて内管3に流入した流体Aの一部
が小孔6′から仕切室外側通路6に分岐して流出して外
側流路aを通過し、小孔6′から流出しない流体Aが内
管3内の中心流路Cを通過し、仕切室5内で外側流路a
を通過した流体Aと中心流路Cを通過した流体Aとが合
流する構造より成るものである。
FIG. 3 shows another embodiment of the structure for branching the fluid A, in which both ends of the inner pipe 3 engaged with the partition chambers 4 and 5 pass through the partition chamber outer passage 6 and enter the fluid A inlet/outlet. 8 and 10
A small hole 6 is formed in the inner tube 3 facing the outer passage 6 of the partition.
A part of the fluid A that flows into the inner tube 3 branches from the small hole 6' to the outer passage 6 of the partition chamber, flows out, passes through the outer passage a, and flows out from the small hole 6'. Fluid A passes through the central flow path C in the inner tube 3 and flows through the outer flow path a in the partition chamber 5.
The structure is such that the fluid A that has passed through the center flow path C and the fluid A that has passed through the center flow path C join together.

また仕切室の構造は第4図に示す如く仕切室4の仕切室
外側通路6と仕切室中心通路7とが仕切られていて、仕
切室4の側壁に仕切室外側通路6と連通ずる流体A出入
口8′が別に設けられ、仕切室中心通路7に流体A出入
口8が連通している分岐部分を有しい構造であっても差
し支えない。
Further, the structure of the partition is such that, as shown in FIG. It is also possible to adopt a structure in which an inlet/outlet 8' is separately provided and a branched portion where the fluid A inlet/outlet 8 communicates with the central passage 7 of the partition chamber.

第5図は流体Aを中心流路C又は外側流路aを通過させ
てUターンさせ、外側流路a又は中心流路Cから戻して
中間流路すを通過する流体Bと熱交換する三重管の外管
1、中管2及び内管3が係合されている仕切室4及び5
の構造を示すもので、仕切室4において仕切室外側通路
6と仕切室中心通路7とが仕切られていて、仕切室4の
側壁に仕切室外側通路6と連通ずる流体A出入口8′が
別に設けられ、仕切室中心通路7に流体A出入口8が連
通しており、仕切室5の仕切室外側通路6と仕切室中心
通路7とが連通し、仕切室5の流体A出入口10は盲プ
ラグ24などで閉塞された構造となっており、流体Aは
仕切室4の流体出入口8又は8′から流入して仕切室中
心通路7又は仕切室外側通路6を経て中心流路C又は外
側流路aを通過して仕切室5に達すると、仕切室5にお
いて仕切室中心通路7又は仕切室外側通路6に流出して
Uターンし、外側流路a1又は中心流路Cを通過して仕
切室4に戻って流体A出入口8′又は8から流出する。
Figure 5 shows a three-layer structure in which fluid A is passed through the central flow path C or outer flow path a, made a U-turn, returned from the outer flow path a or the center flow path C, and exchanged heat with fluid B passing through the intermediate flow path. Partitions 4 and 5 in which the outer tube 1, middle tube 2 and inner tube 3 of the tube are engaged
This structure shows a structure in which the partition chamber outer passage 6 and the partition chamber central passage 7 are partitioned in the partition chamber 4, and a fluid A inlet/outlet 8' communicating with the partition chamber outer passage 6 is separately provided in the side wall of the partition chamber 4. The fluid A inlet/outlet 8 communicates with the partition center passage 7, the partition outer passage 6 of the partition 5 communicates with the partition center passage 7, and the fluid A inlet/outlet 10 of the partition 5 communicates with a blind plug. 24, etc., and the fluid A flows in from the fluid inlet/outlet 8 or 8' of the partition chamber 4, passes through the center passage 7 of the partition chamber or the outer passage 6 of the partition chamber, and then enters the center flow path C or the outer flow path. When it passes through a and reaches the partition 5, it flows out into the partition center passage 7 or the partition outside passage 6 in the partition 5, makes a U turn, passes through the outside passage a1 or the central passage C, and enters the partition. 4 and flows out from the fluid A inlet/outlet 8' or 8.

一方、流体Bは流体B出入口11又は9から流入して流
体B出入口9又は11から流出するので流体Aと流体B
との熱交換が行なわれる。
On the other hand, since fluid B flows in from fluid B inlet/outlet 11 or 9 and flows out from fluid B inlet/outlet 9 or 11, fluid A and fluid B
Heat exchange is performed with

第6図は中管2及び内管3が仕切室4に拡管方式によっ
て係合固着された構造を示すもので、12は仕切室4の
流体A出入口8と反対側の端部開口部にネジあるいは溶
接などによって外管1の端部が接合された外管接続部、
13は仕切室4内に設けられた仕切室中間通路7′を仕
切室4内で仕切室外側通路6と仕切っている仕切部の外
管1側に開口して設けられている中管2を拡管固着する
中管拡管孔部であり、この中管拡管孔部13に外管1内
に挿入された中管2の平滑円管の端部が挿入され流体A
出入口8を通して挿入した拡管工具によって拡管固着さ
れている。
Fig. 6 shows a structure in which the middle pipe 2 and the inner pipe 3 are engaged and fixed to the partition chamber 4 by the tube expansion method, and 12 is a screw at the end opening on the opposite side to the fluid A inlet/outlet 8 of the partition chamber 4. Or an outer tube connection part where the ends of the outer tube 1 are joined by welding or the like,
Reference numeral 13 denotes a middle pipe 2 which is opened to the outer pipe 1 side of the partition part that separates the partition intermediate passage 7' provided in the partition chamber 4 from the partition outer passage 6 in the partition chamber 4. This is the middle tube expansion hole portion to which the tube is fixed, and the end of the smooth circular tube of the middle tube 2 inserted into the outer tube 1 is inserted into this middle tube expansion hole portion 13, and the fluid A is inserted into the middle tube expansion hole portion 13.
The tube is expanded and fixed by a tube expansion tool inserted through the entrance/exit port 8.

14は中管2が拡管固着された仕切部と流体A出入口8
との間で仕切部に開口して設けられいる内管3を拡管固
着するブツシュ嵌合孔部、15はブツシュ嵌合孔部14
にネジ、圧着などの手段で固着されているブツシュであ
り、このブツシュ嵌合孔部14に、中管2内に挿入され
た内管3の平滑円管の端部が挿入されブツシュ15の内
周面に流体A出入口8から挿入した拡管工具によって拡
管されて固着されている。
14 is a partition part where the middle pipe 2 is expanded and fixed, and a fluid A inlet/outlet 8
A bushing fitting hole 15 is a bushing fitting hole 14 for expanding and fixing the inner tube 3 which is opened in the partition between the
The end of the smooth circular tube of the inner tube 3 inserted into the middle tube 2 is inserted into the bushing fitting hole 14, and the inner tube of the bush 15 is fixed to the inner tube by means of screws, crimping, etc. The tube is expanded and fixed to the circumferential surface using a tube expansion tool inserted from the fluid A inlet/outlet 8.

また仕切室5内にも同様に外管1、中管2及び内管3が
係合されて三重管が組ぢてられる。
Similarly, the outer tube 1, the middle tube 2, and the inner tube 3 are engaged in the partition chamber 5 to form a triple tube.

第7図は中管2及び内管3が仕切室4にOリング方式に
よって保合装着された構造を示すもので、外管1の端部
が第6図と同様に仕切室4の流体A出入口8と反対側の
端部開口部の外管接続部12にネジあるいは溶接などに
よって接合されており、外管1内に挿入された中管2の
平滑円管の端部が仕切室4内で仕切室中間通路7′を仕
切室外側通路6と仕切っている仕切部の外管1側に設け
られている開口部に挿入され、この開口部の内周面に設
けられた中管Oリング用溝16に嵌入された中管用Oリ
ング17で中管2が係合装着されている。
FIG. 7 shows a structure in which the middle tube 2 and the inner tube 3 are fixedly attached to the partition chamber 4 by an O-ring method, and the end of the outer tube 1 is connected to the fluid A of the partition chamber 4 as in FIG. It is connected to the outer pipe connection part 12 at the end opening opposite to the entrance/exit 8 by screws or welding, and the end of the smooth circular pipe of the middle pipe 2 inserted into the outer pipe 1 is connected to the inside of the partition chamber 4. The middle pipe O-ring is inserted into an opening provided on the outer pipe 1 side of the partition that partitions the partition chamber intermediate passage 7' from the partition chamber outer passage 6, and is provided on the inner peripheral surface of this opening. The middle tube 2 is engaged and mounted with an O-ring 17 for the middle tube inserted into the groove 16.

また中管2内に挿入されている内管3の平滑円管の端部
は仕切部と流体A出入口8との間で仕切室4内の仕切部
の開口部に挿入され、この開口部の内周面に設けられた
内管Oリング用溝18に嵌入された内管用Oリン19で
係合装着されている。
The end of the smooth circular tube of the inner tube 3 inserted into the inner tube 2 is inserted into the opening of the partition in the partition chamber 4 between the partition and the fluid A inlet/outlet 8, and The inner tube O-ring 19 is fitted into an inner tube O-ring groove 18 provided on the inner peripheral surface.

このように中管2及び内管3は中管用Oリング17及び
内管用Oリング19で水密に係合組み立てられ、仕切室
5内も同様に外管1、中管2及び内管3が係合されて三
重管が組み立てられている。
In this way, the middle pipe 2 and the inner pipe 3 are engaged and assembled in a watertight manner with the O-ring 17 for the middle pipe and the O-ring 19 for the inner pipe, and the outer pipe 1, the middle pipe 2, and the inner pipe 3 are similarly engaged in the partition chamber 5. They are combined to form a triple pipe.

このように中管2及び内管3が中管用Oリング17及び
内管用Oリング19によって係合されていると、中管2
及び内管3が軸方向に滑動可能であり、流体などの熱に
よって管が伸縮してもその伸縮が吸収される。
When the middle pipe 2 and the inner pipe 3 are engaged with each other by the middle pipe O-ring 17 and the inner pipe O-ring 19 in this way, the middle pipe 2
The inner tube 3 is slidable in the axial direction, and even if the tube expands and contracts due to heat from fluid, the expansion and contraction is absorbed.

20及び21は仕切室中間通路7′と仕切室外側通路6
とを仕切っている仕切部に取り付けられ中管2及び内管
3が伸長して滑動する範囲を所定の滑動範囲で停止せし
める中管ストッパー及内管ストッパーである。
20 and 21 are the intermediate passage 7' of the partition and the outer passage 6 of the partition
The middle pipe stopper and the inner pipe stopper are attached to the partition part separating the inner pipe and the inner pipe, and stop the range in which the middle pipe 2 and the inner pipe 3 extend and slide within a predetermined sliding range.

22は第2図に示すように仕切室4,5の上部に設けら
れた空気抜き口に取り付けられている空気抜きプラグ、
23は仕切室4又は5の下部に設けられたドレン抜き口
に取り付けられたドレン抜きプラグである。
22 is an air vent plug attached to the air vent provided in the upper part of the partitions 4 and 5 as shown in FIG.
23 is a drain plug attached to a drain port provided at the bottom of the partition chamber 4 or 5.

このように本考案に係る三重管式熱交換ユニットは外管
1と中管2と内管3とが仕切室4及び5に保合装着され
たものであり、外管1、中管2及び内管3の管径は熱交
換する流体A及びBの流量、圧力損失などの他に、流体
Aが外側流路aと中心流路Cとを通過する流量割合及び
外管1、中管2、内管3のそれぞれの伝熱面積、熱伝達
係数などの関係により選択されるものである。
In this way, the triple tube type heat exchange unit according to the present invention has the outer tube 1, the middle tube 2, and the inner tube 3 fixedly attached to the partition chambers 4 and 5. The pipe diameter of the inner pipe 3 is determined based on the flow rate and pressure loss of the fluids A and B that exchange heat, as well as the flow rate ratio of the fluid A passing through the outer flow path a and the center flow path C, and the outer pipe 1 and the middle pipe 2. , the heat transfer area of the inner tube 3, the heat transfer coefficient, and the like.

かかる構造より成る本考案に係る三重管式熱交換ユニッ
トで流体Aと流体Bとの二流体を通過させて熱交換を行
なう場合、流体Aを仕切室4の流体A出入口8,8′又
は仕切室5の流体A出入口10がら流入させて流体A出
入口10又は流体A出入口8.8′から流出させるので
あるが、例えば仕切室4の流体A出入口8,8′から流
体Aを流入させると、次の如き流路で流体Aが三重管内
を通過する。
When heat exchange is performed by passing two fluids, fluid A and fluid B, in the triple pipe heat exchange unit according to the present invention having such a structure, fluid A is passed through the fluid A inlet/outlet 8, 8' of the partition chamber 4 or the partition. The fluid A flows in through the fluid A inlet/outlet 10 of the chamber 5 and flows out through the fluid A inlet/outlet 10 or the fluid A inlet/outlet 8.8'. For example, if fluid A flows in through the fluid A inlet/outlet 8, 8' of the partition chamber 4, Fluid A passes through the triple pipe through the following flow path.

(1)仕切室4及び5が第2図又は第3図の如き構造の
場合には、流体A出入口8から流入した流体Aは仕切室
外側通路6と仕切室中心通路7とに分岐され、仕切室外
側通路6に分岐された流体Aは外側流路aを通過し、仕
切室中心通路7に分岐された流体Aは中心流路Cを通過
して仕切室5で合流して流体A出入口10から流出する
(1) When the partition chambers 4 and 5 have a structure as shown in FIG. 2 or 3, the fluid A flowing in from the fluid A inlet/outlet 8 is branched into the partition chamber outer passage 6 and the partition chamber center passage 7, Fluid A branched to the partition chamber outer passage 6 passes through the outer passage a, and fluid A branched to the partition chamber center passage 7 passes through the center passage C and merges in the partition chamber 5, where the fluid A is inlet and outlet. It flows out from 10.

(2)仕切室4が第2図又は第3図の如き構造で仕切室
5が第4図の如き構造の場合には、仕切室4の流体A出
入口8から流入した流体Aは上記と同様に分岐されて外
側流路aと中心流路Cとを通過して仕切室5に至り、仕
切室5で合流することなく流体A出入口8及び8′から
それぞれ流出する。
(2) When the partition chamber 4 has a structure as shown in FIG. 2 or 3 and the partition chamber 5 has a structure as shown in FIG. The fluid A is branched into two, passes through the outer flow path a and the center flow path C, reaches the partition chamber 5, and flows out from the fluid A inlet and outlet ports 8 and 8', respectively, without merging in the partition chamber 5.

(3)仕切室4及び5が第5図の如き構造の場合、仕切
室4の流体A出入口8から流入した流体Aは中心流路C
を通過して仕切室5に至り、仕切室5内でUターンして
外側流路aを通過して仕切室4の流体A出入口8′から
流出する。
(3) When the partition chambers 4 and 5 have a structure as shown in FIG.
The liquid passes through the partition chamber 5, reaches the partition chamber 5, makes a U-turn within the partition chamber 5, passes through the outer flow path a, and flows out from the fluid A inlet/outlet 8' of the partition chamber 4.

(4)仕切室4及び5が第5図の如き構造の場合、仕切
室4の流体A出入口8′から流入した流体Aは外側流路
aを通過して仕切室5に至り、仕切室5内でUターンし
て中心流路Cを通過して仕切室4の流体A出入口8から
流出する。
(4) When the partition chambers 4 and 5 have a structure as shown in FIG. The fluid A makes a U-turn inside, passes through the central flow path C, and flows out from the inlet/outlet port 8 of the partition chamber 4.

一方、流体Bは仕切室4の流体B出入口9から流入させ
て仕切室5の流体B出入口11から流出させるか、ある
いは逆に仕切室5の流体B出入口11から流入させて仕
切室4の流体B出入9から流出させて流体Aに対する流
れをカウンターフローあるいはパラレルフローにして中
間流路す通過させるのである。
On the other hand, fluid B may be caused to flow in from the fluid B inlet/outlet 9 of the partition chamber 4 and flow out from the fluid B inlet/outlet 11 of the partition chamber 5, or conversely, may be caused to flow in from the fluid B inlet/outlet 11 of the partition chamber 5 to cause the fluid B to flow out from the fluid B inlet/outlet 11 of the partition chamber 5. The fluid B is made to flow out from the inlet/outlet 9 and the flow relative to the fluid A is made into a counter flow or parallel flow and is passed through the intermediate flow path.

このように外側流路aと中心流路Cとに流体Aを通過さ
せ、中間流路すに流体Bを通過させると、内管3及び中
管2の両壁面を介して流体Aと流体Bとの熱交換が行な
われる。
In this way, when fluid A is passed through the outer flow path a and the center flow path C, and fluid B is passed through the middle flow path, fluid A and B are passed through both walls of the inner tube 3 and the middle tube 2. Heat exchange is performed with

以上詳述した如く、本考案に係る三重管式熱交換ユニッ
トは、外管1と中管2と内管3とで形成され、基管の管
壁によって仕切られた三流路のうち外側流路aと中心流
路Cとに流体Aを通過させ、中間流路すに流体Bを通過
させ二流体間の熱交換を行なう構造となっており、中管
2及び内管3の両端部間がそれぞれらせん管となってい
るので、次の如き利点を有するものである。
As described in detail above, the triple tube heat exchange unit according to the present invention is formed of an outer tube 1, a middle tube 2, and an inner tube 3, and the outer channel is one of the three channels partitioned by the tube wall of the base tube. It has a structure in which fluid A is passed through a and central flow path C, and fluid B is passed through an intermediate flow path to exchange heat between the two fluids. Since each tube is a spiral tube, it has the following advantages.

(1)構造が簡単であり、小容量の流体の熱交換器とし
て配管中にその一部として組み込むことができ、また配
管接続も容易である。
(1) It has a simple structure, can be incorporated into piping as a heat exchanger for a small volume of fluid, and can be easily connected to piping.

(2)交換熱量、流量、圧力損失などの仕様条件により
複数本の三重管で直列、並列あるいは直列・並列併用の
配管組立ができ、標準化しやすい。
(2) Piping can be assembled in series, parallel, or in combination with series and parallel using multiple triple-pipe pipes, depending on specification conditions such as heat exchange, flow rate, and pressure loss, making it easy to standardize.

(3)二重管式に比し長さ当りの伝熱面積が倍増され、
基管によって仕切られた三つの流路の伝熱係数が増加し
、熱交換能力が倍加される。
(3) Compared to the double pipe type, the heat transfer area per length is doubled,
The heat transfer coefficient of the three channels partitioned by the base pipe increases, and the heat exchange capacity is doubled.

(4)中管2及び内管3がらせん管で構成されているの
で、総括伝熱係数が向上し、また管の伸縮をらせん管で
吸収させることが可能であり、構造を簡単、小形にする
ことができる。
(4) Since the middle tube 2 and the inner tube 3 are composed of helical tubes, the overall heat transfer coefficient is improved, and expansion and contraction of the tubes can be absorbed by the helical tubes, making the structure simple and compact. can do.

(5)中管2及び内管3のらせん管のねじれ方向を互い
に逆向きのものを採用することにより、中間流路すにお
ける熱伝達は乱流効果によって向上し、伝熱性能が著し
く向上する。
(5) By adopting the spiral tubes of the middle tube 2 and the inner tube 3 whose twist directions are opposite to each other, the heat transfer in the intermediate flow path is improved by the turbulence effect, and the heat transfer performance is significantly improved. .

(6)高粘度流体などは中間流路すを通過させることに
より、両伝熱壁面から均一な加熱、冷却を行なうことが
できる。
(6) By passing a high viscosity fluid through the intermediate flow path, uniform heating and cooling can be performed from both heat transfer wall surfaces.

(7)三重管を単体の仕切室4及び5に簡単に保合でき
る構造となっているので小形に製作でき、配管スペース
、据付スペースなどを小さくすることが可能である。
(7) Since the structure allows the triple pipe to be easily attached to the single partition chambers 4 and 5, it can be manufactured in a small size, and the piping space and installation space can be reduced.

(8)三重管は直管形の他、コイル状あるいは曲管形と
して利用することができる。
(8) Triple pipes can be used in a straight pipe shape, a coiled pipe shape, or a curved pipe shape.

このように本考案に係る三重管式熱交換ユニットは従来
の多管式あるいは二重管式のものに比べて種々の優た利
点を有しており、その実用的価値は大きなものがある。
As described above, the triple-tube heat exchange unit according to the present invention has various advantages over conventional multi-tube or double-tube heat exchange units, and has great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の二重管式の熱交換器の1例を一部を断面
で示した側面図、第2図は本考案に係る三重管式熱交換
ユニットの1実施例を一部を断面で示した側面図、第3
図、第4図及び第5図は本考案に係る三重管式熱交換ユ
ニットの三重管が係合されている仕切室の他の実施例を
それぞれ示す側断面図、第6図は本考案に係る三重管式
熱交換ユニットの三重管が拡管方式で係合された状態の
1実施例を示す側断面図、第7図は本考案に係る三重管
式熱交換ユニットの三重管がOリング方式で係合された
状態の1実施例を示す側断面図である。 1・・・外管、2・・・・・・中管、3・・・・・・内
管、4,5・・・・・・仕切室、6・・・・・・仕切室
外側通路、6′・・・・・・小孔、7・・・・・・仕切
室中心通路7′・・・・・・仕切室中間通路、8.8’
、10・・・・・・流体A出入口、9.11・・・・・
・流体B出入口、12・・・・・・外管接続部、13・
・・・・・中管拡管孔部、14・・・・・・ブツシュ嵌
合孔部、15・・・・・・ブツシュ、16・・・・・・
中管Oリング用溝、17・・・・・・中管用Oリング、
18・・・・・・内管Oリング用溝、19・・・・・・
内管用Oリング、20・・・・・・中管ストッパー、2
1・・・・・・内管ストッパー、22・・・空気抜きプ
ラグ、23・・・・・・ドレン抜きプラグ、24・・・
・・・盲プラグ、a・・・・・・外側流路、b・・・・
・・中間流路、C・・・・・・中心流路、A、B・・・
・・・流体。
Fig. 1 is a partially sectional side view of an example of a conventional double-pipe heat exchanger, and Fig. 2 is a partially sectional side view of an example of a triple-pipe heat exchange unit according to the present invention. Side view in section, 3rd
4 and 5 are side sectional views respectively showing other embodiments of the partition in which the triple tubes of the triple tube heat exchange unit according to the present invention are engaged, and FIG. FIG. 7 is a side sectional view showing an embodiment of the triple tube heat exchange unit in which the triple tubes of the triple tube heat exchange unit according to the present invention are engaged in the tube expansion method. FIG. 3 is a side sectional view showing one embodiment in an engaged state. 1... Outer pipe, 2... Middle pipe, 3... Inner pipe, 4, 5... Partition chamber, 6... Partition room outer passage. , 6'...Small hole, 7...Partition center passage 7'...Partition middle passage, 8.8'
, 10... Fluid A inlet/outlet, 9.11...
・Fluid B inlet/outlet, 12...Outer pipe connection part, 13・
...Medium tube expansion hole, 14...Bushing fitting hole, 15...Bushing, 16...
Groove for middle pipe O-ring, 17...O-ring for middle pipe,
18... Groove for inner tube O-ring, 19...
O-ring for inner tube, 20...Inner tube stopper, 2
1... Inner pipe stopper, 22... Air vent plug, 23... Drain vent plug, 24...
...Blind plug, a...Outer flow path, b...
...Middle flow path, C...Center flow path, A, B...
···fluid.

Claims (1)

【実用新案登録請求の範囲】 ■、所定の管径を有する外管1と両端部が平滑な円管で
両端部間がらせん管より戊る中管2及び内管3とで三重
管が形成されて外管1と中管2との間に外側流路a、中
管2と内管3との間に中間流路b、内管3内に中心流路
Cの三流路が設けられ、外管1、中管2及び内管3の両
端部が流体A及びBの二流体が流入又は流出する単体の
仕切室4と5とにそれぞれ係合されていて、該仕切室4
及び5には外側流路aに連通ずる仕切室外側通路6、中
心流路Cに連通ずる仕切室中心通路7、中間流路すに連
通ずる仕切室中間通路7′がそれぞれ設けられているこ
とを特徴とする三重管式熱交換ユニット。 2、中管2のらせん管と内管3のらせん管とがらせんの
ねじれ方向を互いに同じ方向に組み合わされている実用
新案登録請求の範囲第1項に記載の三重管式熱交換ユニ
ット。 3、中管2のらせん管と内管3のらせん管とがらせんの
ねじれ方向を逆方向に組み合わされている実用新案登録
請求の範囲第1項に記載の三重管式熱交換ユニット。 4、外管1と中管2と内管3とが同心円状に組み立てら
れている実用新案登録請求の範囲第1項から第3項まで
のいずれか1項に記載の三重管式熱交換ユニット。 5、外管1と中管2と内管3とが同心円状でなく組み立
てられている実用新案登録請求の範囲第1項から第3項
までのいずれか1項に記載の三重管式熱交換ユニット。
[Claims for Utility Model Registration] ■ A triple pipe is formed by an outer pipe 1 having a predetermined pipe diameter, an inner pipe 2 and an inner pipe 3 which are circular pipes with smooth ends and have a hole between the ends of the spiral pipe. Three flow paths are provided: an outer flow path a between the outer tube 1 and the middle tube 2, an intermediate flow path b between the middle tube 2 and the inner tube 3, and a center flow path C within the inner tube 3. Both ends of the outer tube 1, the middle tube 2, and the inner tube 3 are respectively engaged with single partition chambers 4 and 5 into which two fluids A and B flow into or out, and the partition chamber 4
and 5 are provided with a partitioned chamber outer passageway 6 communicating with the outer passageway a, a partitioned chamber central passageway 7 communicating with the central passageway C, and a partitioned chamber intermediate passageway 7' communicating with the intermediate passageway A. A triple tube heat exchange unit featuring: 2. The triple-pipe heat exchange unit according to claim 1, wherein the helical tube of the middle tube 2 and the helical tube of the inner tube 3 are combined so that the helical twist directions are the same as each other. 3. The triple-tube heat exchange unit according to claim 1, wherein the spiral tube of the middle tube 2 and the spiral tube of the inner tube 3 are combined with the twist directions of the spirals opposite to each other. 4. The triple tube heat exchange unit according to any one of claims 1 to 3 of the utility model registration claim, in which the outer tube 1, the middle tube 2, and the inner tube 3 are assembled concentrically. . 5. The triple tube heat exchanger according to any one of claims 1 to 3 of the utility model registration claim, in which the outer tube 1, the middle tube 2, and the inner tube 3 are assembled in a non-concentric manner. unit.
JP5977880U 1980-05-02 1980-05-02 Triple tube heat exchange unit Expired JPS5923970Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5977880U JPS5923970Y2 (en) 1980-05-02 1980-05-02 Triple tube heat exchange unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5977880U JPS5923970Y2 (en) 1980-05-02 1980-05-02 Triple tube heat exchange unit

Publications (2)

Publication Number Publication Date
JPS56162475U JPS56162475U (en) 1981-12-03
JPS5923970Y2 true JPS5923970Y2 (en) 1984-07-16

Family

ID=29654246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5977880U Expired JPS5923970Y2 (en) 1980-05-02 1980-05-02 Triple tube heat exchange unit

Country Status (1)

Country Link
JP (1) JPS5923970Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5743051B2 (en) * 2010-09-15 2015-07-01 三浦工業株式会社 Heat exchanger and boiler water supply system
JP6032585B2 (en) * 2011-09-03 2016-11-30 株式会社西山製作所 Triple tube structure and heat exchanger

Also Published As

Publication number Publication date
JPS56162475U (en) 1981-12-03

Similar Documents

Publication Publication Date Title
US10132570B2 (en) Heat exchanger with multiple flow tubes for fluid circulation
US5242015A (en) Heat exchanger
US3468371A (en) Heat exchangers
US5311661A (en) Method of pointing and corrugating heat exchange tubing
JPH06123523A (en) Heat exchanger
JP2003121086A (en) Heat exchange tube and heat exchanger
US4440217A (en) Counterflow heat exchanger
KR20200098409A (en) Reverse header design for thermal cycle
JPH0571884A (en) Heat exchanger with small core depth
JPH1038491A (en) Double tube type heat exchanger
AU2012200524B2 (en) Heat Exchanger
JPS5923970Y2 (en) Triple tube heat exchange unit
JP4414197B2 (en) Double tube heat exchanger
JPH11183062A (en) Double piped heat exchanger
JP4414196B2 (en) Double tube heat exchanger
CN213984692U (en) Microchannel double-pipe heat exchanger
JPH0443732Y2 (en)
JPS6334489A (en) Heat exchanger
JPH0412373Y2 (en)
JP2006078017A (en) Tube type heat exchanger and water heater with this
JPS5923969Y2 (en) Heat exchanger
US20020129928A1 (en) Radiator with internal header tank oil cooler
JP4338591B2 (en) Heat exchanger distributor
CN215063907U (en) Coiled tube type heat exchanger and refrigerating system
CN207963564U (en) A kind of double-tube heat exchanger