JPS5923807A - Charging method of raw material into blast furnace - Google Patents

Charging method of raw material into blast furnace

Info

Publication number
JPS5923807A
JPS5923807A JP13186382A JP13186382A JPS5923807A JP S5923807 A JPS5923807 A JP S5923807A JP 13186382 A JP13186382 A JP 13186382A JP 13186382 A JP13186382 A JP 13186382A JP S5923807 A JPS5923807 A JP S5923807A
Authority
JP
Japan
Prior art keywords
furnace
raw material
raw materials
blast furnace
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13186382A
Other languages
Japanese (ja)
Inventor
Eiji Chikamatsu
近松 栄二
Takashi Yazaki
矢崎 尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13186382A priority Critical patent/JPS5923807A/en
Publication of JPS5923807A publication Critical patent/JPS5923807A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To charge effectively raw materials into a blast furnace by detecting beforehand the average grain sizes of the raw materials from the start until the end of discharging of the raw materials from the inside of a lower top hopper with lapse of time and controlling the tilting angle of a swiveling chute in accordance with the same. CONSTITUTION:Raw materials are charged through an upper top hopper 5 into a lower top hopper 4. The kinds of the raw materials and the amt. and average grain sizes thereof are inputted into a setter for raw material conditions prior to charging of the raw materials into a blast furnace 1, and the patterns at each opening of a gate valve 7A with respect to the raw materials having the same averge grain size is beforehand inputted to a control device. When the valve 7A is opened at a prescribed opening, the change in the average grain sizes of the descending raw materials with lapse of time is known from the time elapsed since the first descending of the raw materials, from which the change in the average grain size with time is predicted. Therefore, if the angle of inclination of a swiveling chute 3 is controlled in accordance with the change in the average grain size with time, the raw materials are charged into the blast furnace in the way as to satisfy in the preset operation conditions.

Description

【発明の詳細な説明】 本発明は高炉の原料装入方法に関するものであシ、詳し
くは炉内に旋回シュートを股Uペルを有さないクイズの
いわゆるベルレス高炉における炉内円周方向における原
料の粒度偏析をなりシ、かつ径方向における原料粒度の
制御を行なうことを目的とした高炉の原料装入方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for charging raw materials into a blast furnace, and more particularly, the present invention relates to a method for charging raw materials into a blast furnace. This invention relates to a method for charging raw materials into a blast furnace, which aims to eliminate particle size segregation and control the raw material particle size in the radial direction.

高炉の炉頂装入装置にはベルを有するクイズのもの(以
下ベル式高炉と称する)と炉内に旋回シーートを設はベ
ルを有さないクイズのもの(以下ベルレス式高炉と称す
る)とに大別することができ、前者は従来から広く採用
されてきたクイズのものであシ、後者は特公昭48−3
4082号公報に開示されているとお少比較的新しい技
術であってこの技術に関する改良も活発に行なわれてい
る。
There are two types of top charging equipment for blast furnaces: a quiz type with a bell (hereinafter referred to as a bell-type blast furnace) and a quiz type without a bell (hereinafter referred to as a bell-less type blast furnace) with a rotating seat inside the furnace. They can be roughly divided into two types: the former are quizzes that have been widely used in the past, and the latter are quizzes that have been widely adopted since then.
The technology disclosed in Japanese Patent No. 4082 is relatively new, and improvements regarding this technology are being actively made.

ベルレス式高炉の利点は、原料を炉内へ装入する際その
装入位置を任意に設定できるということと、炉頂装入装
置がコンパクトで経済的であるという点がちけられる。
The advantages of the bellless blast furnace are that the charging position can be set arbitrarily when charging raw materials into the furnace, and that the furnace top charging device is compact and economical.

即ち、最初に述べた利点は炉内に設けた旋回シュートを
旋回させつつその傾動角度を調節することによって装入
平面の任意所望の点に原料を装入することが可能である
ということであシ、次に述べた経済的であるということ
は、ベル式高炉では大型になる程ベルの製作や取替に非
常な困難を伴い又高炉炉高が高くなることから建設費が
非常に高くつくという欠点があるのに対して、ペルレス
式高炉ではベルを有さないためベルの製作や取替に係る
制約や困難さはなり、9炉頂装入装置がコン/4’クト
にできることからベル式のものに比較して炉高を低くす
ることができ建設費が安価になるという経済的利点を有
するものである。
That is, the first advantage mentioned is that the raw material can be charged at any desired point on the charging plane by rotating the rotating chute provided in the furnace and adjusting its tilt angle. The economical aspect mentioned below means that the larger the bell type blast furnace becomes, the more difficult it is to manufacture and replace the bell, and the higher the height of the blast furnace, the higher the construction cost. On the other hand, since the pellet-less blast furnace does not have a bell, there are no restrictions or difficulties in manufacturing or replacing the bell, and the 9-furnace top charging device can be made into a concrete. This has the economical advantage that the furnace height can be lowered and the construction cost is lower than that of the conventional type.

しかしながらベル式高炉に比較して劣っている点もいく
つかあげることができる。即ち、第1点として、原料を
炉η111心を中心とした同心円状に装入するのが困難
であること、第2点として、炉内に装入された原料の径
方向の粒度分布をfllJ御することが困難であること
、があげられる。
However, there are some points in which it is inferior to the bell-type blast furnace. That is, the first point is that it is difficult to charge the raw material concentrically around the furnace η111 center, and the second point is that the particle size distribution in the radial direction of the raw material charged into the furnace is One example is that it is difficult to control.

上記第1点は、ペルレス式高炉では前記特公昭48−3
4082号公報に例示されているように炉頂に設置する
複数個の貯蔵装置(以下炉頂ホッパーと称する)が炉軸
心を中心にして左右に並設されておシ、これらの炉頂ホ
ッパーから原料を又互に切シ出して下方の炉軸心に設け
た流れ口(以下垂直シーートと称する)を経て旋回シュ
ート上へ落下させ炉内へ分配するが、炉頂ポツパーが炉
軸心とずれだ位置に設置されでいるために原料が落下す
る過稈で水平方向の分力を生じこの分力によって炉内に
分配された後の原料は同心円状には落−トせずゆがんだ
形となる。このゆがみを旋回シ−トの傾動角度で制御し
て解消しようとしても完全に解消することは非常に困難
であるということである。
The first point above is that in the pelletless blast furnace, the
As illustrated in Publication No. 4082, a plurality of storage devices (hereinafter referred to as furnace top hoppers) installed at the furnace top are arranged side by side on the left and right with the furnace axis centered, and these furnace top hoppers The raw materials are cut out from each other and dropped onto the rotating chute through a flow port (hereinafter referred to as the vertical sheet) provided at the lower furnace axis and distributed into the furnace. Because the raw material is installed at an offset position, a horizontal component force is generated in the overculm where the raw material falls, and due to this component force, the raw material after being distributed into the furnace does not fall in a concentric circle but has a distorted shape. becomes. Even if it is attempted to eliminate this distortion by controlling the tilting angle of the swivel seat, it is extremely difficult to completely eliminate this distortion.

また、上記第2点は、ベル式高炉のもつ優れた1時性を
ペルレス式高炉では有していないという点で問題である
Furthermore, the second point above is problematic in that the pelletless blast furnace does not have the excellent temporary properties of the bell blast furnace.

前述したとbpルベル高炉では原料がベルにょシ分配さ
れるため炉内へ装入された原料の落下点が炉軸心を中心
とした円輪状になるという利点を有しておシ、更に又こ
の落下位置の利点に優るとも劣らないオリ点として、ベ
ルによる原料粒の分級作用があげられる。この分級作用
は原料がベルを滑走して炉内に落下する際に粒度の大な
るものは小なる原料粒よシも遠方へ落下するという現象
によって生ずるものである。そして、ベル式高炉による
原料の装入では原料の落下点が限定されておシ、ムーバ
ブルアーマ−による落下位置の調整が可能であることを
考慮しても炉内に形成きれるプロフィルはV又はM型と
なる。従ってベルを滑走し炉内に落下する原料はその前
例装入されている原料の頂部又はその近傍へ落下するこ
とに々シ、ここでまた炉内原料のプロフィルに沿って炉
軸心方向へ滑走して粗粒のものが炉軸心側へ転がるよう
な分級作用を受け、原料固有の安息角に従っだ新たなプ
ロフィルを形成する。即ちベル式高炉による原料の装入
では炉内に装入されたW、和のプロフィルがV又はM型
で径方向の原料粒度も炉軸心側で粗となるよう自然分級
が生じ、高炉操業上好都合なプロフィル及び原料の径方
向粒度分布が自然に得られるという利点を有している。
As mentioned above, the BP Lebel blast furnace has the advantage that the raw material is distributed throughout the furnace, so the falling point of the raw material charged into the furnace becomes a circular ring centered on the furnace axis. The advantage of this falling position is not inferior to that of the bell's ability to classify raw material grains. This classification effect is caused by the phenomenon that when the raw material slides down the bell and falls into the furnace, larger particles fall further away than smaller raw material particles. When charging raw materials in a bell-type blast furnace, the falling point of the raw materials is limited, and even considering that the dropping position can be adjusted using a movable armor, the profile that can be formed inside the furnace is V or M. Becomes a mold. Therefore, the raw materials that slide down the bell and fall into the furnace tend to fall onto or near the top of the charged raw materials, and here they also slide in the direction of the furnace axis along the profile of the raw materials inside the furnace. Then, the coarse particles are subjected to a classification action that causes them to roll toward the furnace axis, forming a new profile according to the angle of repose specific to the raw material. In other words, when charging raw materials into a bell-type blast furnace, natural classification occurs so that the profile of the W and sum charged into the furnace is V or M type, and the grain size of the raw materials in the radial direction is coarser on the furnace axis side. It has the advantage that a favorable profile and radial particle size distribution of the raw material is naturally obtained.

ところが、ペルレス式高炉ではベルを有さないためにベ
ル式高炉での原料装入時に得られる前記プロフィルの形
成及び炉軸心から炉壁部寸での間における原料の自然分
級による高炉操業上好都合な粒度分布は得られず、この
うちプロフィルについてはペルレス式高炉でも容易に形
成するととができるしベル式高炉では得ることができな
い複雑なプロフィルをも形成することができるが、炉軸
心から炉壁に至る径方向の粒度分布を望ましい形に制御
することは非常に困難であシ、ペルレス式高炉における
解決ずべき技術的課題となっていた。
However, since the pelletless blast furnace does not have a bell, it is convenient for blast furnace operation due to the formation of the profile obtained when charging raw materials in a bell type blast furnace and the natural classification of raw materials between the furnace axis and the furnace wall dimension. However, it is possible to easily form a profile in a pellet-less blast furnace, and it is also possible to form a complex profile that cannot be obtained in a bell-type blast furnace. It is extremely difficult to control the particle size distribution in the radial direction down to the wall in a desirable manner, and this has been a technical problem that must be solved in the pelletless blast furnace.

このように、ペルレス式高炉での原料装入方法において
は、炉内に装入された原料が真円に近い円輪状にはなら
ないこと、及び炉軸心から炉壁に至る径方向での原料の
粒度分布の制御が困難であること、の二つの問題点を有
しておシ、従って当業者はペルレス式高炉の上記技術的
課題な整決し、良好な高炉操業を行なうために努力を続
けて゛いるところである。
In this way, in the method of charging raw materials in a pelletless blast furnace, it is important to ensure that the raw materials charged into the furnace do not form a nearly perfect circle, and that the raw materials are Therefore, those skilled in the art continue to make efforts to solve the above technical problems of pelletless blast furnaces and to perform good blast furnace operations. That's where I am.

これまでに提案された上記課題に対する改善策を例示す
ると、実公昭57−18425号公報には、旋回シーー
トの内底面と内側面とのなす角度を鋭角にすることによ
って旋回シュート上に落下した原料の落下点が異なって
も原料の放出時の位置と速度を一定とし、炉内の原料落
下位置を真円に近づけようとする技術が開示されている
To exemplify the improvement measures for the above problem that have been proposed so far, Japanese Utility Model Publication No. 57-18425 discloses that by making the angle between the inner bottom surface and the inner surface of the rotating sheet an acute angle, the raw material that has fallen onto the rotating chute is A technique has been disclosed in which the position and velocity of the raw material at the time of discharge are constant even if the falling points of the raw material are different, and the falling position of the raw material in the furnace is made to approximate a perfect circle.

しかしながら従来のペルレス式高炉では炉頂に設置する
2個の炉頂ホッパーが高炉の軸心をはさんで両側に並設
されていたから、原料落下時の水平方向分力の影響で炉
内に装入された原料が円輪状にはならないという本質的
な欠点を有しておシ、従ってシュートの形状を改善して
装入したとしても的配本質的欠点の解決にはならない。
However, in conventional pellet-less blast furnaces, two furnace top hoppers installed at the top of the furnace were installed side by side on both sides of the blast furnace axis, so the horizontal component force when the raw material falls into the furnace caused the material to be charged into the furnace. There is an essential drawback in that the raw material produced does not form a ring shape, so even if the shape of the chute is improved and the chute is charged, it will not solve the essential drawback of target distribution.

この本質的欠点を解決する技術として、特開昭56−3
3411号公報、特開昭56−87613号公報、実開
昭57−59850号公報に開示されているように、2
個の炉頂ホッパーを垂直又は高炉の軸心を中心として同
心円状に設置する技術が提案されている。これらの技術
によれば炉頂ホラ・や−から切シ出された原料は水平方
向の分力を生じることなく落下するから、炉頂ホラ/e
−を並設したペルレス式高炉の前記本質的欠点は解消で
き、更に前記実公昭57−18425号公報に開示され
た旋回シュートを併用することによジベルレス式高炉の
解決すべき技術的課題のうち前記第1点として示した、
炉内に装入される原料の円周方向の落下軌跡が円輪状に
ならないという問題は解決できるまでに至った。
As a technique to solve this essential drawback, JP-A-56-3
As disclosed in Japanese Patent Application Laid-Open No. 3411, Japanese Unexamined Patent Publication No. 56-87613, and Japanese Utility Model Application No. 57-59850,
Techniques have been proposed in which furnace top hoppers are installed vertically or concentrically around the axis of the blast furnace. According to these techniques, the raw material cut out from the furnace top hollow falls without generating any horizontal component force, so the furnace top hollow/e
The above-mentioned essential drawbacks of the pellet-less type blast furnace installed side by side can be solved, and furthermore, by using the rotating chute disclosed in the above-mentioned Japanese Utility Model Publication No. 57-18425, one of the technical problems to be solved with the pellet-less type blast furnace can be solved. As shown in the first point above,
We have reached the point where we have been able to solve the problem that the falling locus of the raw material charged into the furnace in the circumferential direction does not form a circular ring.

しかしながら、ペルレス式高炉の解決すべき技術的課題
の前記第2点として示しだ、炉内に装入された原料の径
方向の粒度分布を制御する有効な技術は未だ出現してお
らない。しかしこの粒度分布に注目した高炉の原料装入
技術についてもとれまでに提案された技術は少なくない
However, an effective technique for controlling the radial particle size distribution of the raw material charged into the furnace, which is the second technical problem to be solved for the pelletless blast furnace, has not yet appeared. However, there have been many proposed technologies for charging raw materials into blast furnaces that focus on this particle size distribution.

例えば特公昭55−16203号公報には高炉へ装入す
る固体還元剤(コークス)を粒度別に装入する技術が開
示されておシ、特開昭55−28308号及び特開昭5
5−62106号公報には、焼結鉱などの含鉄原料及び
コークスからなる原料をそれぞれ所定の粒径を有する複
数の種類に区分しておき炉周方向におけるガス流分布の
不均一化に応じて装入原料の種別と装入量と装入すべき
個所を選定し区別して装入する技術が開示されておシ又
、粒度の小さい原料を炉壁近傍へ装入すると共に炉軸心
部から壁部に至る含鉄原料とコークスの堆積層厚をそれ
ぞれ一定とするように装入する技術も開示されている。
For example, Japanese Patent Publication No. 55-16203 discloses a technique for charging a solid reducing agent (coke) into a blast furnace according to particle size;
Publication No. 5-62106 discloses that iron-containing raw materials such as sintered ore and raw materials consisting of coke are divided into a plurality of types each having a predetermined particle size, and the method is divided into a plurality of types, each having a predetermined particle size. A technology has been disclosed in which the type of raw material to be charged, the amount to be charged, and the location to be charged are selected and charged separately. A technique has also been disclosed in which the iron-containing raw material and coke are charged so that the deposited layer thicknesses thereof reaching the wall portion are constant.

これら高炉における装入原料の粒度別装入技術は、高炉
の生産性向上、燃料原単位低減、高炉操業の安定化等の
効果を奏し、今後の高炉操業に広く活用・されるべき技
術として注目されている。
These particle size-based charging technologies for charging raw materials in blast furnaces are effective in improving blast furnace productivity, reducing fuel consumption, and stabilizing blast furnace operations, and are attracting attention as a technology that should be widely used and widely used in blast furnace operations in the future. has been done.

しかしながら、高炉における前記粒度別装入を実施する
ためにはコークス及び焼結鉱等含鉄原料を予め粒度別に
区分するための分級設備と区分された原料を貯蔵するた
めの貯鉱槽が必要であシ、貯鉱槽の数は原料の種類及び
粒度別に区分する数毎に設けなければならないという問
題があυ、設備費が嵩むほか各区分された原料の管理や
装入スケジュール等運用面でも複雑化するという難点が
あシ、更に粒度別に区分された原料であってもそれぞれ
粒度分布を有しておυ、これをペルレス式高炉で炉内へ
装入すると装入毎に原料の粒度分布に起因する粒度の偏
析が生じ、この粒度偏析の把握が困難力ために粒度別装
入を行なっても前記粒度偏析に起因する分だけその効果
の減少は避は得ないものであった。
However, in order to carry out the above-mentioned charging according to particle size in a blast furnace, it is necessary to have classification equipment to pre-sort iron-containing raw materials such as coke and sintered ore according to particle size, and an ore storage tank to store the classified raw materials. However, there is a problem in that the number of ore storage tanks must be set up for each type of raw material and particle size, which increases equipment costs and complicates operations such as management of raw materials for each classification and charging schedule. Moreover, even if the raw materials are classified by particle size, they each have their own particle size distribution, and when this is charged into the furnace in a pelletless blast furnace, the particle size distribution of the raw material changes each time it is charged. It is difficult to grasp this particle size segregation, so even if charging is carried out by particle size, the effect inevitably decreases by the amount caused by the particle size segregation.

従って、ペルレス式高炉における原料装入方法において
、径方向の粒度分布を制御して原料の粒度別装入を行な
うことができれば、ペルレス式高炉による操業が飛躍的
に向上することから、その技術の出現が切望されていた
Therefore, if it is possible to control the particle size distribution in the radial direction and charge raw materials according to particle size in the method of charging raw materials in a pelletless blast furnace, the operation of the pelletless blast furnace will be dramatically improved. It was eagerly awaited.

本発明はこのような状況に鑑みてなされたもので、炉頂
ホッパーを垂直2段に設置したペルレス式炉頂装入装置
によシ原料を炉内へ装入する際、このタイプの炉頂装入
装置特有の現象として現7これる原料の自然分級作用を
利用して原料の粒度別装入を有利に実施する方法を提供
せんとするものである。即ち、本発明は、 (1)  炉頂ホッパーを炉軸心と同軸として2段に設
置し炉内に旋回シュートを設けた高炉炉頂装入装置によ
る高炉の原料装入方法において、下部炉頂ホッパー内原
相の排出開始から排出終了までの間における原料の平均
粒径を経時的に予め把握しておき、この予め把握した平
均粒径の経時変化に基づき旋回シーートの傾動角度を制
御して炉内へ原料を装入することを特徴とする高炉の原
料装入方法、 (2)  前記旋回シーートの傾動角度は平均粒径の小
さい原料を炉壁ぎわへ装入するように制御するものであ
る前記第(0項記載の高炉の原料装入方法、(3)  
前記炉頂ホッパーから排出される原料の平均粒径の経時
変化はパターン化して把握するものである前記第(1)
項記載の高炉の原料装入方法、(4)前記パターンは原
料の種類及び炉頂ポツパー底部に設けた流量調整弁の開
度毎に把握するものである前記第(3)項記載の高炉の
原料装入方法、を要旨とするものである。
The present invention was made in view of the above situation, and when charging raw materials into the furnace using a pelletless type furnace top charging device in which furnace top hoppers are installed in two vertical stages, this type of furnace top charging device is used. It is an object of the present invention to provide a method for advantageously carrying out charging of raw materials according to particle size by utilizing the natural classification effect of raw materials, which is a phenomenon unique to charging equipment. That is, the present invention provides: (1) A method for charging raw material into a blast furnace using a blast furnace top charging device in which a top hopper is installed coaxially with the furnace axis in two stages and a rotating chute is provided in the furnace; The average particle size of the raw material in the hopper from the start of discharge to the end of discharge is known in advance over time, and the tilting angle of the rotating seat is controlled based on the change in the average particle size determined in advance. (2) The tilting angle of the rotating sheet is controlled so that the raw material having a small average particle size is charged to the side of the furnace wall. The method for charging raw materials into a blast furnace according to item 0, (3)
(1) above, wherein the change over time in the average particle size of the raw material discharged from the furnace top hopper is understood by forming a pattern;
(4) The pattern is determined for each type of raw material and the opening degree of a flow rate regulating valve provided at the bottom of the top popper of the blast furnace. The gist is the raw material charging method.

以下図面に基づき本発明の詳細な説明する。The present invention will be described in detail below based on the drawings.

第1図は本発明に係るペルレス高炉を例示する縦方向断
面図である。
FIG. 1 is a longitudinal sectional view illustrating a pelletless blast furnace according to the present invention.

第1図に示すように、本発明に係るペルレス式高炉は、
高炉1の炉内頂部に炉軸心2を中心として旋回し原料を
分配する旋回シー−1−3e有し、この旋回シュート3
はシーートの旋回と一:無関係に任意にその傾動角を変
更しイ0るように股猶されている。そして、炉頂部には
炉軸心2と同軸に下部炉頂ホッパー4と上部炉頂ホッパ
ー5が設置され、下部炉頂ボッ・や−4の底部にはシー
ル弁6人が設けられて高炉1の頂部と下部炉頂ホッパ−
4との間の気密維持及び連通による原料の通路形成を繰
返えして行なうようになっておシ、シール弁三Aの直上
には炉軸心2を中心として開度が任意に設定でき原料が
落下する際その流度を調整する機能を有するケ゛−ト弁
7Aが設けられている。
As shown in FIG. 1, the pelletless blast furnace according to the present invention is
The blast furnace 1 has a rotating chute 1-3e at the top of the furnace that rotates around the furnace axis 2 and distributes the raw material.
The angle of inclination can be arbitrarily changed irrespective of the rotation of the seat. At the top of the furnace, a lower furnace top hopper 4 and an upper furnace top hopper 5 are installed coaxially with the furnace axis 2, and six seal valves are installed at the bottom of the lower furnace top hopper 4. Top and bottom hopper
The opening degree can be set as desired with the furnace axis center 2 as the center, and the seal valve 3A is located directly above the seal valve 3A. A gate valve 7A is provided which has the function of adjusting the flow rate of the falling raw material.

また、下部炉頂ホラ・中−4と上部炉頂ホッパー5との
間、即ち上部炉頂ホラ/P −5の底部にはシール弁6
Bとその直上にダート弁7Bが設けられており、とのシ
ール弁6Bは前記シール弁6人と同等の機能を有し、ダ
ート弁7Bは前記ケ゛−ト弁7Aと同等の機能を有する
ものであってよいが単に開閉の機能を持たせただけのも
のとする事も可能である。
In addition, a seal valve 6 is provided between the lower furnace top hollow/middle-4 and the upper furnace top hopper 5, that is, at the bottom of the upper furnace top hollow/P-5.
B and a dart valve 7B are provided directly above it, the seal valve 6B of and has the same function as the six seal valves, and the dart valve 7B has the same function as the gate valve 7A. However, it is also possible to simply provide an opening/closing function.

上部炉頂ボッ・々−5の上部には炉軸心2近傍へ原料を
落下せしめるだめのベルトコンベア8が設けられておシ
、このベルトコンベア8の上端部8人と上部炉頂ポッノ
や−5との間に上部旋回シーート9が設けられていてベ
ルトコンベア8によυ地上に設けた貯鉱槽(図示せず)
から原□料を炉頂へ輸送した後上端部8Aを介して落下
した原料をこのシュート9を旋回しながら上部炉頂ホッ
パー5内へ装入する。図中10は上部旋回シュート9を
駆動するための駆動装置N  IIA、IIBは歯車、
12は支持ローラを示す。
At the top of the upper furnace top box 5, there is a belt conveyor 8 for dropping the raw material to the vicinity of the furnace axis 2. Eight people at the upper end of this belt conveyor 8 and an upper furnace top box 5 are installed. An upper revolving seat 9 is provided between the belt conveyor 8 and the ore storage tank (not shown) provided on the ground.
After the raw material is transported to the furnace top, the raw material that falls through the upper end 8A is charged into the upper furnace top hopper 5 while rotating through this chute 9. In the figure, 10 is a drive device N for driving the upper swing chute 9, IIA and IIB are gears,
12 indicates a support roller.

第2図(イ)及び(ロ)は本発明に係るダート弁7Aを
例示する底面図であシ、第2図(イ)に示すタイプのも
のは軸21.22,23.24を介してそれぞれ回動可
能に設置された羽根板25 、26 、27.28が一
斉に同角度だけ回動することにより中央部に開口部Aを
形成させるもの、又第2図(ロ)に示すタイプのものは
中央に直角の開先な設けた2枚の金属板31及び32を
相対して回動又は摺接可能に設置しておき、これらの金
属板31.32をそれぞれ対向的に回動又は摺接ぜしめ
て中央に開口部Bを形成せしめるタイプのものである。
FIGS. 2(a) and 2(b) are bottom views illustrating the dart valve 7A according to the present invention, and the type shown in FIG. The blade plates 25, 26, 27, and 28, which are each rotatably installed, are rotated at the same angle to form an opening A in the center, and the type shown in FIG. Two metal plates 31 and 32 with a right-angled bevel in the center are installed so that they can rotate or slide against each other, and these metal plates 31 and 32 can be rotated or slid against each other. It is of the type that slides into contact and forms an opening B in the center.

前記”・開口部A及びBはその開口部断面積を予め設定
した値九できることと、断面積は炉軸心を中心として変
化するという点が共通しておシ、かつこれらの点が本発
明に係るペルレス高炉において大切な構造の一つである
The openings A and B have in common that the cross-sectional area of the opening can be set to a preset value, and that the cross-sectional area changes around the axis of the furnace, and these points are unique to the present invention. It is one of the important structures in the perleless blast furnace.

なお、1下部炉頂ホッパー4は均排圧を行なう機能を有
しているが、均排圧自体はいかなるタイプ■高炉におい
ても設けられている機能であり周知のととであるため説
明は省略する。
Note that the lower furnace top hopper 4 has a function of equalizing the exhaust pressure, but the equalizing pressure itself is a function provided in any type of blast furnace and is a well-known function, so the explanation is omitted. do.

次に本発明方法の基礎となるペルレス式高f”Kおける
原料の分級作用について説明する。
Next, the classification action of raw materials in the Pelleless high f''K system, which is the basis of the method of the present invention, will be explained.

第1図に例示しだペルレス式高炉において、原料をベル
トコンベア8によυ炉頂へ輸送した後上部旋回シ*−−
) 9を旋回させつつ上部炉頂ホラ・9−5内へ装入す
ると、上部炉頂ホラ・′l′−5内には炉軸心2を中心
とした円周方向に満遍なく原料が装入されることにな如
、このことによって貝はもとより原料が所定の粒度分布
を持つものであっても−に1部炉頂ボッ・!−5内では
炉軸心を中心とした円周方向の粒度偏析は著しく小さな
ものとなる。
In the pelletless blast furnace illustrated in Fig. 1, after the raw material is transported to the top of the furnace by the belt conveyor 8, the upper rotating
) 9 is rotated and charged into the upper furnace top hollow 9-5, the raw material is charged evenly in the circumferential direction around the furnace axis 2 into the upper furnace top hollow 9-5. This means that even if the shellfish or the raw material has a predetermined particle size distribution, a portion of it will be exposed to the top of the oven! -5, particle size segregation in the circumferential direction around the furnace axis becomes extremely small.

J1部炉頂ホッノ臂−5内に装入された原料は、下部炉
頂ポツパー4内の圧力を大気圧まで低減した後シール弁
6Bを開放しケ゛−ト弁7Bを開いて下部炉頂ホッパー
4内へ落下するが、原料が上部炉頂ホッパー5の底部で
この炉頂ホッパ?−5の径に比較して著しく小径の開口
部を経て落下するために、下部炉頂ホラ・♀−4内に装
入された原料はこの7にツノマー4内軸心部に小径の原
料が、又このホy 1R−4内壁部には大径の原料が多
く集まるような自然分級作用を受ける。即ち、」二部炉
頂ホラ・ヤー5内の原料が下部炉頂ホラ・ぐ−4内へ落
下すると、最初に落下した原料が下部炉頂ホッパー4内
の中央底部に落下堆積してその原料の安息角によυ凸状
のプロフィルを形成することとなる。原料の落下は連続
的であるけれども落下位置が常に凸状に堆積した原料の
頂部とガるが故にこの頂部から放射状に原料が流れる際
に大径の原料が上り遠くへ転がるように、即ち大径の原
料がホラ・P−内壁部近傍へ集まるような分級作用を受
けることとなり、小径の原料は炉軸心部に多く堆積する
The raw material charged into the top hopper arm 5 of the J1 section is transferred to the lower top hopper by opening the seal valve 6B and opening the gate valve 7B after reducing the pressure in the bottom top hopper 4 to atmospheric pressure. However, the raw material falls into the upper furnace top hopper 5 at the bottom of this furnace top hopper. Since the raw material charged into the lower furnace top hollow ♀-4 falls through an opening with a significantly smaller diameter compared to the diameter of the In addition, the inner wall of Hoy 1R-4 is subjected to a natural classification effect in which many large-diameter raw materials gather. That is, when the raw material in the two-part furnace top hopper 5 falls into the lower furnace top hopper 4, the first material that falls falls and accumulates at the center bottom of the lower furnace top hopper 4, and the raw material is This results in the formation of a υ convex profile due to the angle of repose of . Although the raw material falls continuously, the falling position always meets the top of the convexly deposited raw material, so when the raw material flows radially from the top, large diameter raw materials rise and roll far away. The raw material with a small diameter is subjected to a classification action such that it gathers near the inner wall of the conch/P-hole, and the raw material with a small diameter is largely deposited at the core of the furnace shaft.

このように下部炉頂ホッパー4内では、あたかもベル式
高炉で原料を装入しだ際炉内で生じる自然分級と類似し
ていて炉軸心を中心とした径方向の粒度分布では正反対
の分級作用を受けることとなる。
In this way, the classification in the lower furnace top hopper 4 is similar to the natural classification that occurs in a bell-type blast furnace when raw materials are charged, but is exactly the opposite in terms of particle size distribution in the radial direction around the furnace axis. It will be affected.

とのような分級作用を受けて装入された]5部炉頂ホッ
パー4内の原料は、このホッパー内のJIE 力を炉内
圧力と等しくなる程度に加圧した後シール弁6Aを開き
、ダート弁7Aの開度を予め定めた開度になるように開
いて炉内に設けた旋回シー〜ト3−\、落下式せ炉内に
分配するように装入するが\このとき更に著しい分級作
用を受けて炉内へ装入されることとなる。
The raw material in the five-part furnace top hopper 4, which was charged after being subjected to a classification action such as The dart valve 7A is opened to a predetermined opening degree, and the rotating seat 3-\ provided in the furnace is charged so as to be distributed into the dropping furnace. It will be charged into the furnace after being subjected to classification action.

即ち、1部炉頂ボッ・や−4から炉内へ原料を装入する
際、ダート弁7Aを経て落下する原料はこのホッパー4
の軸心下部の原料が先に排出されてこのホッパー4の壁
部に位置する原料は遅れて排出されるという分級作用を
受けるので、炉内へ装入されつつある原料の粒度は経時
変化がきわめて大きく、装入開始時と終了時では粒度の
差は顕著なものとなる。
That is, when charging raw materials into the furnace from the first furnace top hopper 4, the raw materials falling through the dart valve 7A are transferred to this hopper 4.
The raw material located at the bottom of the axis of the hopper 4 is discharged first, and the raw material located on the wall of the hopper 4 is discharged later, resulting in a classification effect, so that the particle size of the raw material being charged into the furnace does not change over time. The particle size is extremely large, and the difference in particle size between the beginning and end of charging is significant.

第3図はその経時変化の一例を示す図で、表1に示しだ
条件のもとて原料を炉内に装入した際の原料流出開始か
らの経過時間とそのときに排出される原料の平均粒径と
の関係を示している。
Figure 3 is a diagram showing an example of the change over time, showing the elapsed time from the start of the raw material outflow when the raw material was charged into the furnace under the conditions shown in Table 1, and the amount of raw material discharged at that time. It shows the relationship with the average particle size.

表     1 平均粒径は搬入焼結鉱のヤードサンプリングにニジ求め
た。
Table 1 Average grain size was determined by yard sampling of imported sintered ore.

本発明はこのような現象を利用してベルレス式高炉にお
ける原料装入上の問題点を解決せんとするものである。
The present invention utilizes such a phenomenon to solve problems in charging raw materials in a bellless blast furnace.

本発明は、第3図に例示しだ原料の平均粒径の経時変化
が本発明に係るペルレス式高炉特有の現象であシ、かつ
との現象は原料の種類、環、、平均粒径、ケ゛−ト弁の
開度2等の第件を限定することによ多高い再現性がある
という点に立脚している。
In the present invention, the change over time in the average particle size of the raw material, as illustrated in FIG. 3, is a phenomenon unique to the pelletless blast furnace according to the present invention. This method is based on the fact that high reproducibility can be achieved by limiting conditions such as the opening degree of the gate valve.

勿論設備によっても異なるが、炉頂装入装置):]−度
建設すると不変のものであるから、その高炉固有のもの
とすることができるし、設計変更や修理等で設備を変更
した際にはその時点で再度基本となるf−夕をとシ直し
て修正すればよく、又ホッパー内面やダート弁の摩耗等
についてはそれなシにプ゛−りの補正で対処することが
できる。
Of course, this differs depending on the equipment, but since it remains unchanged once it is constructed, it can be made unique to the blast furnace, and when the equipment is changed due to design changes or repairs, etc. At that point, the basic f-number can be reset and corrected, and wear on the inner surface of the hopper or the dart valve can be dealt with by additional correction.

本発明を実施するに際し、第3図に例示した原石の流出
時間と原料の平均粒径との関係を、前述した条件を限定
して実操業上採用し得る条件をそれぞれパターン化して
予め把握しておくことが有効である。又、そのパターン
をコンピユータを利用して記憶させておき、実操業にお
いて必要なパターンを瞬時に取シ出して制御に利用する
ことができる。パターンを数式等で表現してもよいこと
は勿論である。
When carrying out the present invention, the relationship between the outflow time of the raw ore and the average particle diameter of the raw material illustrated in FIG. It is effective to keep it. In addition, by storing the patterns using a computer, the patterns required in actual operation can be retrieved instantaneously and used for control. Of course, the pattern may be expressed using a mathematical formula or the like.

次に本発明の原料装入方法について説明する。Next, the raw material charging method of the present invention will be explained.

本発明は第1図に例示した本発明に係るベルレス高炉を
使用し、第3図に例示した原料の流出時間と原料の平均
粒径との関係に基づき、下部炉頂ポツパーから落下しつ
つある原料の平均粒径を剣劇推定すると共にこの推定し
た値に基づき旋回シュ。
The present invention uses the bellless blast furnace according to the present invention illustrated in FIG. 1, and based on the relationship between the outflow time of the raw material and the average particle size of the raw material illustrated in FIG. The average particle diameter of the raw material is estimated and the rotation is made based on this estimated value.

−トの傾動角度を制御して原料を炉内に装入するもので
ある。
- The raw material is charged into the furnace by controlling the tilting angle of the tray.

第4図は本発明方法を説明するブロック線図である。FIG. 4 is a block diagram illustrating the method of the present invention.

第4図に示すように、旋回シュート3の旋回速度と傾動
角度を制御する制御装置41にパターン設定器44から
第3図に例示したパターン、即ち原料の流出時間と平均
粒径との関係を原料の種類。
As shown in FIG. 4, the pattern setter 44 sends a control device 41 that controls the rotation speed and tilting angle of the rotation chute 3 to the pattern illustrated in FIG. Type of raw material.

量9平均粒度、ダート7Aの開度毎に予め把握しておい
たパターンを操業上とシ得る条件について、複数種類入
力しておき、ダート弁制御器43からはダート弁7Aの
開度及びr−)弁7Aを開としてからの経過時間を入力
し、又装入条件設定器45からは炉内装入原料の70ロ
フイル、炉軸心から炉壁に至るまでの径方向の粒度分布
、原石層厚分布等の条件を入力しておいて、下部炉頂ボ
ッ・?−4から刻々落下する原料の平均粒度を前記パタ
ーンによシ推定し、この推定した値に基づいて旋回シー
ートの傾動角度を制御し原料を装入するものである。
A plurality of types of conditions are entered for operational purposes such as the average particle size and the opening degree of the dart valve 7A and the opening degree of the dart valve 7A and r -) Enter the elapsed time since the opening of the valve 7A, and input from the charging condition setting device 45 the 70 rofile of the raw material to be fed into the furnace, the particle size distribution in the radial direction from the furnace axis to the furnace wall, and the raw ore layer. After inputting the conditions such as thickness distribution, is the lower furnace top exposed? The average particle size of the raw material falling every moment from -4 is estimated based on the above pattern, and based on this estimated value, the tilting angle of the rotating sheet is controlled and the raw material is charged.

即ち、炉内に装入する前に下部炉頂ホッパー4内に入っ
ている原料の種類、例えば鉱石かコークスかということ
及びその謂4、更にはその原料の平均粒径は既知である
からこれを原料条件設定器42から制御装ff、41へ
入力しておき、この下部炉頂ポツパー4内の原料の性状
即ち原料の種類。
That is, the type of raw material contained in the lower furnace top hopper 4, for example, whether it is ore or coke, and the average particle size of the raw material are known before charging into the furnace. is input from the raw material condition setting device 42 to the control device ff, 41 to determine the properties of the raw material in the lower furnace top popper 4, that is, the type of raw material.

量、平均粒径が同じ原料についてケ・−ト弁開度毎の前
記第3図に例示したパターンも予め制御装置41に入力
しておくから、ダート弁7Aを所定の開度として開くと
落下する原料の平均粒径の経時変化は下部炉頂ホッパー
4から落下し始めてからの経過時間が判れば刻々落下し
ている原料の平均粒径がMシ、更にはその平均粒径の経
時変化も予測できる。従って、この平均粒径の経時変化
によシ旋回シュート3の傾動角度を制御して予め設定し
た操業条件を満足するように原料を装入するものである
The pattern illustrated in FIG. 3 for each degree of opening of the dart valve for raw materials having the same amount and average particle size is also input into the control device 41 in advance, so that when the dart valve 7A is opened to a predetermined opening, the particles will fall. The change over time in the average particle size of the raw material to be dropped can be determined by knowing the elapsed time since it started falling from the lower furnace top hopper 4. Predictable. Therefore, the tilting angle of the rotating chute 3 is controlled based on the change in the average particle diameter over time, and the raw material is charged so as to satisfy preset operating conditions.

例えば、炉内原料のプロフィルがM形で、かっ炉壁近傍
には細粒の原料を装入し炉軸心部には粗粒の原料を装入
して高炉を操業する場合には、第3図のテスト扁1のパ
ターンであれば、下部炉頂ホラ・や−から原料を排出し
始めてから25秒間は旋回シーートの傾動角度を大とし
て炉壁近傍へ却1粒原判を装入し、25〜60秒間は経
時的に平均粒径が犬となるから旋回シーートの傾動角度
を除徐に減じて螺線状に装入すると炉内に装入された原
料の炉径方向の原石の粒度分布は、炉壁部では細粒で炉
軸心部では粗粒となシ、かつ炉軸心部からの径方向の原
料の平均粒径も把握できる。
For example, if the profile of the raw material in the furnace is M-shaped and the blast furnace is operated with fine-grained raw material charged near the furnace wall and coarse-grained raw material charged into the core of the furnace, In the case of the test plate 1 pattern in Figure 3, the tilting angle of the rotating sheet is increased for 25 seconds after starting to discharge the material from the lower furnace top hole, and one grain original is charged near the furnace wall. , for 25 to 60 seconds, the average particle size becomes small over time, so if the tilting angle of the rotating sheet is gradually reduced and the material is charged in a spiral manner, the rough grain size in the radial direction of the raw material charged into the furnace is The particle size distribution shows that the grains are fine at the furnace wall and coarse at the core of the furnace, and the average particle size of the raw material in the radial direction from the core of the furnace can also be determined.

炉内での原料のプロフィルについては既に装入されてい
る原料のプロフィルとの関係も考慮して原料の装入位置
を定めなければkらないが、本発明によれば原料の装入
位置と量のにかにi人位置における平均粒径を把握する
ことができるから汗にプロフィルを所定の形に形成する
というだけでシく炉径方向の粒度分布を制御できるので
jX″C」炉操業上非常に有益である。
Regarding the profile of the raw material in the furnace, the charging position of the raw material must be determined in consideration of the relationship with the profile of the raw materials that have already been charged, but according to the present invention, the charging position of the raw material and Since it is possible to grasp the average particle size at the location of the person in question, the particle size distribution in the radial direction of the furnace can be controlled simply by forming a profile in the sweat in a predetermined shape. The above is very informative.

本発明方法は高炉へ装入する原料を予め[ス分しておく
ことなしに粒度別装入を行なうことをn」能ならしめる
ものであることは勿論のこと、予め区分された原料によ
る粒度別装入を行なう場合にもその「4分内における原
料粒度分布を利用して本発明に基づく装入を行なうこと
が可能であシ、よシきめ細かな粒度別装入を行なうこと
ができるものである。
The method of the present invention not only makes it possible to charge raw materials according to particle size without dividing them into sections in advance, but also Even when separate charging is performed, it is possible to perform charging according to the present invention by utilizing the raw material particle size distribution within 4 minutes, and it is possible to perform charging according to the finer particle size. It is.

以」二連ぺたように、本発明は炉軸心と同軸に複数段の
炉頂ホラ・ぞ−を有するペルレス式高炉特有の原料分級
作用を利用して原料の粒度別装入を行なうものであるか
ら、高炉の建設費低減や高炉の操業上きわめて顕著な効
果を奏するものである。
As described above, the present invention utilizes the raw material classification effect unique to the pelletless blast furnace, which has multiple stages of furnace top holes coaxial with the furnace axis, to charge raw materials according to particle size. Because of this, it has an extremely significant effect on reducing blast furnace construction costs and blast furnace operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図d、本発明に係るペルレス高炉を例示する縦方向
断面図、第2図(イ)及び第2図(ロ)は本発明に係る
り゛−ト弁を例示する底面図、第3図は原料の流出時間
と平均粒径の関係を例示する図、第4図は本発明方法を
説明するブロック線図である。 1:高炉、2:炉軸心、3・・・旋回シー−ト、4:下
部炉頂ホッパー、5:上部炉頂ホッパー、6A、611
:シール弁、7A、7B:ダート弁、21〜24:軸、
25〜28:羽根板、31 、32:金属板、A、El
:開口部、41:制御装置、42:原料条件設定器、4
3:ケ゛−1・弁制御器、44 : /’Pターン設定
器、45:装入条件設定器。
FIG. 1d is a longitudinal cross-sectional view illustrating a pelletless blast furnace according to the present invention, FIGS. The figure is a diagram illustrating the relationship between raw material outflow time and average particle size, and FIG. 4 is a block diagram illustrating the method of the present invention. 1: Blast furnace, 2: Furnace axis, 3... Rotating seat, 4: Lower furnace top hopper, 5: Upper furnace top hopper, 6A, 611
: Seal valve, 7A, 7B: Dart valve, 21-24: Shaft,
25-28: Feather plate, 31, 32: Metal plate, A, El
: opening, 41: control device, 42: raw material condition setting device, 4
3: Key-1 valve controller, 44: /'P turn setting device, 45: Charging condition setting device.

Claims (3)

【特許請求の範囲】[Claims] (1)  炉頂ポツパーを炉軸心と同軸として2段に設
置し炉内に旋回シュートを設けた高炉炉頂装入装置によ
る高炉の原料装入方法において、下部炉頂ホッノ9−内
原料の排出開始から排出終了までの間における原料の平
均粒径を経時的に予め把握しておき、この予め把握した
平均粒径の経時変化に基づき旋回シーートの傾動角度を
制御して炉内へ原料を装入することを特徴とする高炉の
原料装入方法。
(1) In a method for charging raw materials into a blast furnace using a blast furnace top charging device in which the top popper is installed coaxially with the furnace axis in two stages and a rotating chute is provided in the furnace, the raw material in the lower furnace top hole 9 is The average particle size of the raw material over time from the start of discharge to the end of discharge is known in advance, and the tilting angle of the rotating seat is controlled based on the change in the average particle size determined in advance over time to feed the raw material into the furnace. A method for charging raw materials into a blast furnace characterized by charging.
(2)  前記旋回シュートの傾動角度は平均粒径の小
さい原料を炉壁ぎわへ装入するように制御するものであ
る特許請求の範囲第1項記載の高炉の原料装入方法。
(2) The method for charging materials into a blast furnace according to claim 1, wherein the tilting angle of the rotating chute is controlled so that the material having a small average particle size is charged to the side of the furnace wall.
(3)  前記炉頂ホラ・や−か←排出される原料の平
均粒径の経時変化はパターン化して予め把握するもので
ある特許請求の範囲第1項記載の高炉の原料装入方法。 (リ 前記パターンはJg、別の種類及び炉頂ボッ・や
−底部に設けだ流星調整弁の開度4σに把握するもので
ある特許請求の範囲第3項記載の高炉の原料装入方法。
(3) The method for charging raw materials into a blast furnace according to claim 1, wherein the change over time in the average particle diameter of the raw material discharged from the top of the furnace is patterned and grasped in advance. (i) The method for charging materials into a blast furnace according to claim 3, wherein the pattern is determined by Jg, another type, and an opening degree of 4σ of a meteor adjustment valve provided at the top and bottom of the furnace.
JP13186382A 1982-07-28 1982-07-28 Charging method of raw material into blast furnace Pending JPS5923807A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13186382A JPS5923807A (en) 1982-07-28 1982-07-28 Charging method of raw material into blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13186382A JPS5923807A (en) 1982-07-28 1982-07-28 Charging method of raw material into blast furnace

Publications (1)

Publication Number Publication Date
JPS5923807A true JPS5923807A (en) 1984-02-07

Family

ID=15067881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13186382A Pending JPS5923807A (en) 1982-07-28 1982-07-28 Charging method of raw material into blast furnace

Country Status (1)

Country Link
JP (1) JPS5923807A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223113A (en) * 1985-03-28 1986-10-03 Nippon Steel Corp Raw material charging method for blast furnace
JPS61227108A (en) * 1985-03-30 1986-10-09 Nippon Steel Corp Method for charging raw material to blast furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223113A (en) * 1985-03-28 1986-10-03 Nippon Steel Corp Raw material charging method for blast furnace
JPS6339641B2 (en) * 1985-03-28 1988-08-05 Shinnippon Seitetsu Kk
JPS61227108A (en) * 1985-03-30 1986-10-09 Nippon Steel Corp Method for charging raw material to blast furnace
JPS6339642B2 (en) * 1985-03-30 1988-08-05 Nippon Steel Corp

Similar Documents

Publication Publication Date Title
JP6405877B2 (en) Raw material charging method for bell-less blast furnace
JP2015134941A (en) Method for charging raw material in bell-less blast furnace
JPS5923807A (en) Charging method of raw material into blast furnace
JP6304174B2 (en) Raw material charging method to blast furnace
JPS60208404A (en) Method and device for charging raw material to blast furnace
JP4296912B2 (en) Raw material charging method for vertical furnace
JP2000178616A (en) Method for charging iron ore having high blending ratio pellet into blast furnace
JP6102497B2 (en) Raw material charging method for bell-less blast furnace
JPH08350Y2 (en) Adjustment device for time-series particle size characteristics from hopper
JPS63259377A (en) Method and device for charging raw material in vertical type furnace
JP2009299154A (en) Apparatus and method for charging raw material to bell-less blast furnace
JP2002302706A (en) Method for charging raw material into blast furnace
JPS62260010A (en) Charging method of mixed raw material for bell-less type blast furnace
JPH0329311Y2 (en)
JPH02401B2 (en)
JP4608906B2 (en) Raw material charging method for bell-less blast furnace
JP3700457B2 (en) Blast furnace operation method
JP5853977B2 (en) Raw material charging method to blast furnace
JPH04235206A (en) Method and apparatus for charging raw material in bellless blast furnace
JPS61227109A (en) Charging method for blast furnace charge
JP2770616B2 (en) Raw material charging method and apparatus for bellless blast furnace
JP2847995B2 (en) Raw material charging method for bellless blast furnace
JPS61276908A (en) Raw material distributing and adjusting device in top charger for blast furnace
JPS5941403A (en) Method for charging raw material in blast furnace
JPH05179320A (en) Raw material charging method for bell-less blast furnace