JPS5923532B2 - heat shrink tube - Google Patents

heat shrink tube

Info

Publication number
JPS5923532B2
JPS5923532B2 JP54032924A JP3292479A JPS5923532B2 JP S5923532 B2 JPS5923532 B2 JP S5923532B2 JP 54032924 A JP54032924 A JP 54032924A JP 3292479 A JP3292479 A JP 3292479A JP S5923532 B2 JPS5923532 B2 JP S5923532B2
Authority
JP
Japan
Prior art keywords
polyethylene
shrinkage
melting point
temperature
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54032924A
Other languages
Japanese (ja)
Other versions
JPS55124615A (en
Inventor
義則 久保田
昭道 市場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Original Assignee
Nippon Telegraph and Telephone Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Sumitomo Electric Industries Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP54032924A priority Critical patent/JPS5923532B2/en
Publication of JPS55124615A publication Critical patent/JPS55124615A/en
Publication of JPS5923532B2 publication Critical patent/JPS5923532B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C61/00Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor
    • B29C61/003Shaping by liberation of internal stresses; Making preforms having internal stresses; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene

Landscapes

  • Cable Accessories (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 本発明は加熱することによつて収縮を起す熱収縮チュー
ブに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat-shrinkable tube that shrinks when heated.

一般的に糸状高分子化合物であるプラスチックは加熱下
に外力を加えることによつて変形を起し、そのまゝ冷却
すると変形したまゝで固化するいわゆる熱可塑性を有す
る。
Generally, plastics, which are filamentous polymer compounds, have so-called thermoplasticity, which means that they deform when external force is applied to them under heating, and when they are cooled, they solidify while remaining deformed.

ところがこのプラスチックに橋かけ反応を起させておく
と加熱下に外力を加え変形を起させたまゝ冷却すると常
温において5 はその変形は保たれているが、再び加熱
すると外力を加えて変形させる以前の形状に復帰するこ
とが認められている。この元の形状に復帰する場合の復
帰する早さは特に結晶性高分子においては顕著であり、
結晶の融点附近で急激に起ることは理10論的にもよく
理解され得る。熱収縮チューブにはポリエチレン或はエ
チレンと他のモノマーとの共重合体で分子間の橋かけ反
応が可能であるポリマーが利用される。
However, if this plastic is allowed to undergo a cross-linking reaction, then when an external force is applied to the plastic while it is heated and the plastic is allowed to deform, it will remain deformed at room temperature. It is allowed to return to its shape. The speed of returning to the original shape is particularly remarkable for crystalline polymers.
The fact that this occurs rapidly near the melting point of the crystal can be well understood from a logical perspective. The heat-shrinkable tube is made of polyethylene or a copolymer of ethylene and other monomers, which is capable of cross-linking reactions between molecules.

すなわち低密度ポリエチレン、中密度ポリエチ15 レ
ン、高密度ポリエチレンあるいはエチレンと酢酸ビニル
、エチルアクリレート、プロピレン、ブテン等との共重
合体が使用される。
That is, low-density polyethylene, medium-density polyethylene, high-density polyethylene, or copolymers of ethylene with vinyl acetate, ethyl acrylate, propylene, butene, etc. are used.

これらのポリマーをパイプ状あるいはチューブ状に成形
後橋かけ反応を起させる。
After forming these polymers into a pipe or tube shape, a crosslinking reaction is caused.

この橋かけ反20応を起させる手段としては通常電子線
、γ線、紫外線等を照射する方法および予め有機過酸化
物を加えておき成形後に加熱して橋かけをおこなわせる
方法を用いることができる。又シランカップリング剤を
予め加えておき成形後に水中に浸漬し橋25かけ反応を
起さしめる方法も可能である。このようにしで成形後橋
かけ反応を起さしめたポリマーを加熱下に外力を加えて
内径の大きなチューブの形状となるように膨脹させその
まゝ外力を加えた状態で冷却することによつて元のパイ
プ30から円周方向に延伸された状態でチューブが製造
される。このときの延伸率は必要に応じ元の内径の数十
%から大きい場合は500%以上にもすることが可能で
ある。
As a means for causing this cross-linking reaction, it is usually possible to use a method of irradiating with electron beams, gamma rays, ultraviolet rays, etc., or a method of adding an organic peroxide in advance and heating it after molding to cause cross-linking. can. It is also possible to add a silane coupling agent in advance, and after molding, immerse it in water to cause a bridge reaction. By applying an external force while heating the polymer that has caused a cross-linking reaction after molding in this way, it expands into the shape of a tube with a large inner diameter, and then is cooled while applying an external force. A tube is manufactured by being stretched circumferentially from the original pipe 30. The stretching ratio at this time can be increased from several tens of percent to 500% or more of the original inner diameter if necessary.

35このようにして製造された熱収縮チューブは常温で
は膨脹時の形状を保つているが加熱することによつて膨
脹以前の形状に殆んど完全に近く復帰する。
35 The heat-shrinkable tube thus manufactured maintains its expanded shape at room temperature, but when heated, it almost completely returns to its pre-expanded shape.

この現象を利用した熱収縮チユープはすでに15年以上
も前から−般に市販されている。
Heat-shrinkable tubes utilizing this phenomenon have been commercially available for over 15 years.

しかしながらこれらの収縮チユーブの欠点の一つとして
収縮チユーブを収縮の過程で停止させる場合に肉厚の不
均一を招くことがしばしば起ることである。収縮チユー
プを加熱により完全に元の形状に復帰させる場合は全く
問題ではないが、一般に使用する場合にはそのような例
は殆んどなく膨脹させたチユープを鋼管、電線、ケーブ
ル、ワイヤー等にかぶせた後収縮させて収縮の途中で収
縮力を残したまゝで止めることが主目的であり、これに
よつて内部に挿入した物体の保護あるいは断熱等の目的
で使用する。このように収縮の途中で止める場合に加熱
を理想的に均一にすることが殆んどできない場合が多く
、又高温槽のような均一な空気温度中に放置した場合に
おいても部分的な収縮の時間的なズレが起り、収縮後内
部の物体に密着した状態で肉厚の不均一が発生すること
がほとんどである。
However, one of the drawbacks of these retractable tubes is that when the retractable tube is stopped in the process of deflation, non-uniform wall thickness often occurs. There is no problem at all if the shrinked tube is completely restored to its original shape by heating, but in general use, such cases are rare and the expanded tube is not used to make steel pipes, electric wires, cables, wires, etc. Its main purpose is to shrink it after it is covered and stop it while retaining the shrinkage force during the contraction, and is used for the purpose of protecting objects inserted inside or for heat insulation. In this way, when stopping mid-shrinkage, it is almost impossible to ideally and uniformly heat the product, and even when left in a uniform air temperature such as a high-temperature bath, partial shrinkage may occur. There is a time lag, and in most cases, uneven thickness occurs when the material is in close contact with an internal object after shrinking.

本発明はかゝる欠点を無くし収縮させたチユープの肉厚
をできるだけ均一にし、しかも加熱の多少のバラツキが
ぁつてもなおかつ肉厚の不均一を招かない方法を提供し
ようとするものである。
The present invention aims to eliminate such drawbacks and provide a method that makes the wall thickness of a shrunken tube as uniform as possible, and that does not cause non-uniform wall thickness even if there is some variation in heating.

すなわちかゝる収縮チユーブの温度一収縮曲線を検討し
た結果第1図に示すごとく温度に対する収縮カープは結
晶の・融点附近において非常に傾斜が急であることが認
められた。そこで融点の異なる2種類以上のポリマーを
混合し収縮チユープと同様な工程で変形を起させたもの
について温度一収縮曲線を調べた結果、明らかに収縮の
早さは遅くなりしかも完全に収縮が終るためには従来以
上に広い温度差が必要であることが認められた。
That is, as a result of examining the temperature-shrinkage curve of such a shrinkage tube, it was found that the shrinkage curve against temperature has a very steep slope near the melting point of the crystal, as shown in FIG. Therefore, as a result of examining the temperature-shrinkage curve of a mixture of two or more types of polymers with different melting points and deformed in the same process as shrinkable tubes, it was found that the speed of shrinkage was clearly slower, and the shrinkage completely ended. It was recognized that a wider temperature difference than before was required for this purpose.

しかしながら融点の異なるポリマーのプレンドにおいて
−方の融点のポリマーの配合比率が全体の10チ以下で
ある場合には殆んどその効果は認められないようである
However, in a blend of polymers with different melting points, if the blending ratio of the polymer with the one melting point is less than 10% of the total, almost no effect appears to be observed.

この理由は低い融点のポリマーの収縮力を高い融点のポ
リマーの結晶部の抵抗で疎止する場合に全体の10“以
下の混合では止め切れないことを意味するものと考察さ
れる。こゝで言ラポリエチレンの種類については低密度
、中密度、高密度の順に融点は高くなつて来るがその区
別については一般に低密度ポリエチレンはいわゆる高圧
法によつて重合されたポリマーであり中密度ポリエチレ
ノはチーグラー法によつて重合され、高密度ポリエチレ
ンはフイリツプス法又はスタンダード法によつて重合さ
れたポリエチレンを意味するものとする。もつと端的に
表現すれば日刊工業新聞社発行のプラスチツク材料講座
Q力“ポリエチレン”に記載された区別を使用する。そ
の重な特性は次の第1表の通り。以下実施例にもとづい
て詳細な説明をおこなう実施例 1第2表に示す黒1、
屋2、黒3、跪4、黒5、應6、黒7のポリエチレンを
用い普通の押出し法により内径30fm1肉厚4mf1
(外径38Iwn)のパイプを製造しムこのバイブを電
子線加速機を用いて照射し橋かけ反応をおこない夫々約
60%のゲル分率のものが得られた。
The reason for this is considered to be that when the shrinkage force of a polymer with a low melting point is suppressed by the resistance of the crystalline parts of a polymer with a high melting point, it cannot be stopped by mixing the total amount of 10" or less. Regarding the types of polyethylene, the melting point increases in the order of low density, medium density, and high density, but in general, low density polyethylene is a polymer polymerized by the so-called high pressure method, and medium density polyethylene is a polymer polymerized by the Ziegler method. High-density polyethylene shall mean polyethylene polymerized by the Phillips method or the standard method.To put it simply, the Polyethylene The overlapping characteristics are as shown in Table 1 below.Detailed explanation will be given below based on the examples.
Inner diameter 30fm1 wall thickness 4mf1 using ordinary extrusion method using polyethylene of 2, black 3, 4, black 5, 6, and 7 black
A pipe with an outer diameter of 38 Iwn was produced, and a cross-linking reaction was carried out by irradiating the pipe with a vibrator using an electron beam accelerator, resulting in a gel fraction of approximately 60%.

この橋かけ反応をおこなつたパイプを各ポリエチレンの
融点以上、混合物の場合は高融点物の融点以上、具体的
には140〜150℃の温度に加熱後内部より加圧空気
で膨脹させ内径約130tr1nのチユーブになる迄膨
脹させそのまk冷却後内圧を常圧にもどしたところ内径
約120?のチユーブが得られた。肉厚の実測値は約0
.8?であつた。このチユーブはそのまX結晶の融点以
上に加熱すると殆んど元のパイプの内径30frr1n
に復帰した。これらのチユーブに外径80mnの金属パ
イプを挿入しポリエチレンチユーブの外面よりトーチラ
ンプで加熱し全体を収縮させ冷却後切断し、断面の肉厚
を測定した結果第1表に示す肉厚、偏肉率が得られた。
The pipe that has undergone this cross-linking reaction is heated to a temperature above the melting point of each polyethylene, or above the melting point of the high-melting point material in the case of a mixture, specifically 140 to 150°C, and then expanded with pressurized air from the inside to have an inner diameter of approx. I expanded it until it became a 130tr1n tube, then cooled it down, then returned the internal pressure to normal pressure, and the inner diameter was about 120mm. of tubes were obtained. The actual measured value of wall thickness is approximately 0
.. 8? It was hot. When this tube is heated above the melting point of the X crystal, the inner diameter of the original pipe is almost 30frr1n.
returned to. Metal pipes with an outer diameter of 80 mm were inserted into these tubes, and the outer surface of the polyethylene tube was heated with a torch lamp to shrink the entire tube. After cooling, it was cut. The thickness of the cross section was measured. As a result, the wall thickness and thickness unevenness shown in Table 1 were obtained. The rate was obtained.

これらのチユーブの材質と同じポリエチレンを同様に橋
かけ反応をおこなつた後、一方向に4倍に延伸しそのま
k冷却後標点を打ち加熱しながら温度一収縮曲線を測定
した結果を第1図に示す。
Polyethylene, which is the same material as these tubes, was subjected to the same cross-linking reaction, then stretched 4 times in one direction, cooled, and then heated to measure the temperature-shrinkage curve. Shown in Figure 1.

この第1図に見られる通りFLl、應2の単独のポリマ
ーでは温度に対し収縮曲線は比較的急であり収縮の温度
範囲も狭いことが認められた。それに対し屋4、屋5、
FL6は夫々収縮の早さはゆつくりしており第1表の結
果と合せて収縮が加熱温度のバラツキに対し非常にスム
ーズに進行することを示し、したがつて肉厚の不均一を
防ぐことが示された。しかし應3、屋7からは夫々温度
一収縮曲線、偏肉率を見ても混合比率が10%以下では
余り効果は期待できないことが認められた。
As seen in FIG. 1, it was observed that the shrinkage curves of single polymers of FL1 and O2 were relatively steep with respect to temperature, and the temperature range of shrinkage was narrow. On the other hand, Ya4, Ya5,
For FL6, the speed of shrinkage is slow, and together with the results in Table 1, this shows that shrinkage progresses very smoothly despite variations in heating temperature, thus preventing uneven thickness. It has been shown. However, when looking at the temperature-shrinkage curves and thickness unevenness ratios from O3 and Ya7, it was found that if the mixing ratio was less than 10%, not much effect could be expected.

さらに融点の異なるポリマーのブレンド以外に中間の密
度あるいは融点を持つポリエチレン単独での効果を検討
したが、たとえば應6の混合ポリエチレンと密度を同一
とする融点約128℃の単独のポリエチレンではかXる
効果は全く認めることはできなかつた。
Furthermore, in addition to blending polymers with different melting points, we investigated the effect of using polyethylene alone with an intermediate density or melting point, but for example, polyethylene alone with a melting point of about 128°C, which has the same density as the mixed polyethylene of 6, has no effect. No effect could be recognized at all.

実施例 2 実施例1の低い融点のポリエチレンの代りにエチレンと
エチルアクリレートの共重合体を用いた結果を第3表に
示し、温度一収縮曲線を第2図に示す。
Example 2 The results of using a copolymer of ethylene and ethyl acrylate in place of the low melting point polyethylene of Example 1 are shown in Table 3, and the temperature-shrinkage curve is shown in FIG.

さらに実施例1と同様に収縮チユーブでの偏肉率を第3
表に示す。
Furthermore, as in Example 1, the thickness unevenness rate of the shrink tube was
Shown in the table.

実施例1と同様に温度一収縮曲線を調ぺた結果を第2図
に示す。
The temperature-shrinkage curve was investigated in the same manner as in Example 1, and the results are shown in FIG.

この結果融点の異なる2種類のポリマーを用いる場合に
共重合体も同様に効果を示すことが認められた。実施例
3 実施例2と同様に低融点のエチレン共重合体としてエチ
レン−エチルアクリレート共重合体を用い同様におこな
つた結果を第4表ならびに第3図に示す。
As a result, it was found that when two types of polymers with different melting points are used, a copolymer also exhibits similar effects. Example 3 Similarly to Example 2, an ethylene-ethyl acrylate copolymer was used as the low melting point ethylene copolymer, and the results are shown in Table 4 and FIG.

ように混合物の収縮曲線の傾斜は緩やかであつた。The shrinkage curve of the mixture had a gentle slope.

実施例1〜実施例4において示したごとく融点の異なる
2種類のポリエチレン又はエチレンと他のモノマーの共
重合体を混合することによつて収縮の非常に緩やかな収
縮チユーブが得られた。この結果、橋かけ反応の方法に
かXわらず温度一収縮曲線の傾斜は融点の異なるポリエ
チレンの混合系では明らかに良好な結果が得られること
が認められた。以上述ぺたごとく橋かけ反応をおこなつ
たポリエチレン或はエチレンと他のモノマーの共重合体
を用いた収縮チユーブの収縮曲線を適当に選ぶために融
点の異なるポリエチレン或はエチレンと他のモノマーの
共重合体を混合することが有効であ、実施例 4そこで
さらに適当な温度一収縮曲線を得られる可能性として3
種類の融点の異なる混合を実施してみたところ第5表第
4図に示す通り同様に緩やかな傾斜を持つ曲線が得られ
た。
As shown in Examples 1 to 4, by mixing two types of polyethylene with different melting points or a copolymer of ethylene and other monomers, a shrink tube that shrinks very slowly was obtained. As a result, it was found that, regardless of the method of crosslinking reaction, clearly good results can be obtained in a mixed system of polyethylenes having different slopes of temperature-shrinkage curves with different melting points. In order to appropriately select the shrinkage curve of a shrink tube using polyethylene or a copolymer of ethylene and other monomers that has undergone the cross-linking reaction as described above, it is necessary to It is effective to mix polymers, and Example 4 shows the possibility of obtaining a more suitable temperature-shrinkage curve.
When we tried mixing different types of materials with different melting points, we obtained a curve with a similar gentle slope as shown in Table 5 and Figure 4.

この材料を用いて収縮チユーブを製造し実施例1と同様
にして収縮後の偏肉率を測定した結果、いずれも偏肉率
は30%以下であり良好な結果が得られた。
Shrinkable tubes were manufactured using this material and the thickness unevenness after shrinkage was measured in the same manner as in Example 1. As a result, the thickness unevenness was 30% or less in all cases, giving good results.

実施例 5 次に橋かけの手段が電離性放射線ではなく、たとえば有
機酸化化物を用いて橋かけをおこなつたものについても
同様であつた、すなわち、融点の異なるポリエチレンの
混合物にジ一α−クシルペルオキシド0.6%を添加し
シートを作成後加熱(160℃)し橋かけをおこなつた
ものはゲル分率が約65%であつた。
Example 5 Next, the same thing happened when the crosslinking method was not ionizing radiation but an organic oxide, i.e., di-α- A sheet prepared by adding 0.6% of sulfur peroxide and then heated (160° C.) for cross-linking had a gel fraction of about 65%.

このポリエチレンを各ポリエチレンの融点以上、混合物
の場合は高融点物の融点以上に加熱し、具体的には14
0〜150℃で4倍に延伸しこのまXの状態で常温迄冷
却してサンプルを調製し、同様に温度一収縮曲線を求め
た結果第6表、第5図に示す。以上の説明および実施例
によつて判る通りポリエチレン又はエチレンと他のモノ
マーの共重合体を用い橋かけ反応を起させた後、加熱下
において変形を与え内径を大にさせて収縮チユーブを製
造する方法において温度を上昇させ収縮させる過程にお
いて収縮する速度を緩やかにし、収縮後の肉厚を均一に
するため、融点の異なるポリエチレン又は共重合体の混
合物をチユーブ材料として用いることが非常に有効であ
ることが判つた。
This polyethylene is heated to a temperature higher than the melting point of each polyethylene, or in the case of a mixture, higher than the melting point of the high melting point material.
A sample was prepared by stretching it 4 times at 0 to 150°C and cooling it to room temperature in the X state, and the temperature-shrinkage curve was determined in the same manner, and the results are shown in Table 6 and Figure 5. As can be seen from the above explanation and examples, a shrink tube is manufactured by causing a cross-linking reaction using polyethylene or a copolymer of ethylene and other monomers, and then deforming the tube under heating to increase the inner diameter. It is very effective to use a mixture of polyethylenes or copolymers with different melting points as the tube material in order to slow down the rate of shrinkage and make the wall thickness uniform after shrinkage during the process of increasing the temperature and shrinking. It turned out that.

なお、収縮チユーブを製造する方法としては現在種々の
方法があるが基本的には1ポリエチレンの成形によつて
パイプ又はチユーブをつくり、2橋かけ反応をおこさせ
る。
There are currently various methods for producing shrink tubes, but basically a pipe or tube is made by molding polyethylene and then a cross-linking reaction is caused.

3加熱下に内径を拡げると共に緊張下に冷却し変形歪を
そのまX固定化する。
3. Expand the inner diameter while heating and cool under tension to fix the deformation strain as it is.

以上の工程であるが、橋かけ反応を起させる手段として
は電子線照射、γ線照射、紫外線照射、或は有機過酸化
物を成形前に添加し成形後に加熱反応させて橋かけをお
こなわせる方法等が採られる。
In the above process, the cross-linking reaction can be caused by electron beam irradiation, gamma ray irradiation, ultraviolet irradiation, or by adding an organic peroxide before molding and causing a heating reaction after molding to cause cross-linking. methods etc. will be adopted.

又、加熱下に変形歪を与える手段としては、内部に加圧
空気を吹込む方法、外部より真空で吸引する方法、内部
から機械的におし拡げる方法等を採ることが可能であり
、本発明においてもこれらの方法で熱収縮性チユーブの
製造が可能である。
In addition, as a means of applying deformation strain while heating, it is possible to adopt methods such as blowing pressurized air into the interior, vacuum suction from the outside, and mechanical expansion from the inside. In the present invention, heat-shrinkable tubes can also be manufactured using these methods.

又、熱収縮チユーブの製造方法としては予めポリエチレ
ンシートあるいはフイルムを製造し、このシートあるい
はフイルムに前記方法で橋かけ反応を却させた後、一方
向(多くの場合はロール方向)に延伸をおこなつて、一
方向に変形歪を起させた後、この変形歪を保つたま工金
型上に一層以上に捲回しできれば複数回重ね巻きを施し
た後加熱し一本化し冷却後に金型を脱形する方法によつ
ても収縮チユーブは製造が可能であることが知られてい
る。これらのいずれの方法においてもこの融点の異なる
ポリエチレン或は共重合体を使用することは可能であり
、温度一収縮曲線を緩やかにすることが可能である。
In addition, as a method for manufacturing a heat-shrinkable tube, a polyethylene sheet or film is manufactured in advance, the cross-linking reaction is reversed on this sheet or film by the method described above, and then the sheet or film is stretched in one direction (in most cases, in the direction of the roll). After causing deformation strain in one direction, if it is possible to wind the material in more than one layer on a rolling die that maintains this deformation strain, it can be wound several times, then heated to form a single piece, and after cooling, the mold is removed. It is known that shrink tubes can also be manufactured using different shaping methods. In any of these methods, it is possible to use polyethylenes or copolymers having different melting points, and it is possible to make the temperature-shrinkage curve gentler.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2,3,4,5図は、熱収縮チユーブを昇温速度
2℃/分で昇温せしめて熱収縮せしめた場合の温度と収
縮率(%)の関係を図示したグラ7である。
Figures 1, 2, 3, 4, and 5 are graphs 7 showing the relationship between temperature and shrinkage rate (%) when a heat-shrinkable tube is heated at a rate of 2°C/min to cause it to shrink. be.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエチレンあるいはエチレン共重合体を用い、パ
イプ、チューブに成形した後、分子間の橋かけ反応を生
ぜしめた成形品を加熱下において内径を大きくするよう
な変形を与えたまゝ冷却し変形歪を固定化させることに
よつて製造される熱収縮チューブにおいて、ポリエチレ
ンあるいはエチレン共重合体のうち融点の異なる重合体
を2種類以上使い混合割合として全体の10%(重量%
)以上含まれたものが2種類以上になるよう混合して、
かつ成形品を変形させる時の温度は融点の異なる重合体
混合物の高融点重合体の融点以上であることを特徴とす
る熱収縮チューブ。
1 After molding polyethylene or ethylene copolymer into pipes and tubes, the molded product that has caused intermolecular cross-linking reaction is deformed to increase the inner diameter while being heated, and then cooled to remove deformation strain. In heat-shrinkable tubes manufactured by fixation, two or more types of polyethylene or ethylene copolymers with different melting points are used at a mixing ratio of 10% (weight%) of the total.
) Mix so that there are two or more types of things contained above,
A heat-shrinkable tube, characterized in that the temperature at which the molded product is deformed is higher than the melting point of a high melting point polymer of the polymer mixture having different melting points.
JP54032924A 1979-03-20 1979-03-20 heat shrink tube Expired JPS5923532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54032924A JPS5923532B2 (en) 1979-03-20 1979-03-20 heat shrink tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54032924A JPS5923532B2 (en) 1979-03-20 1979-03-20 heat shrink tube

Publications (2)

Publication Number Publication Date
JPS55124615A JPS55124615A (en) 1980-09-25
JPS5923532B2 true JPS5923532B2 (en) 1984-06-02

Family

ID=12372447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54032924A Expired JPS5923532B2 (en) 1979-03-20 1979-03-20 heat shrink tube

Country Status (1)

Country Link
JP (1) JPS5923532B2 (en)

Also Published As

Publication number Publication date
JPS55124615A (en) 1980-09-25

Similar Documents

Publication Publication Date Title
US3669824A (en) Recoverable article
US3448182A (en) Method for making heat-shrinkable cap
US4302557A (en) Cold drawn film made of an ethylene polymer blend composition
US3899807A (en) Heat recoverable articles and method of making same
US3582457A (en) Heat shrinkable components with meltable insert liner
US4336212A (en) Composition for drawn film, cold drawn film made of said composition and process for manufacture of said film
US4127688A (en) Sealed cross-linked thermoplastic sheets
US4366107A (en) Making shrink-fit objects
US3399250A (en) Film comprising polyethylene and an ethylene-vinyl acetate copolymer
US4373554A (en) Self-sealing article and process
US4705657A (en) Method of making and applying ethylene-propylene diene terpolymer texturized heat shrinkable tubing
EA000705B1 (en) Pressure pipe and method of production same
US4348438A (en) Process for preparation of improved shrink wrap
JPS5923532B2 (en) heat shrink tube
JPH11277626A (en) Method and apparatus for manufacture of heat-shrinkable tube
JPS6054334B2 (en) Method for producing heat-shrinkable cross-linked polyethylene resin film
JPS598541B2 (en) Netshi Yushi Yukusei Plastic Tube Oyobi Sono Seizouhouhou
JPS5955712A (en) Preparation of thermally shrinkable tube
JPS5971851A (en) Heat-shrinkable plastic tube
JPS635256B2 (en)
JPS6233064B2 (en)
JPS5828354A (en) Manufacture of thermally shrinkable tube
JPS5951411B2 (en) Cross-linked polyethylene heat-shrinkable film
JPS58199121A (en) Thermally shrinkable film
JPS5918201B2 (en) heat shrinkable tube