JPS5923480A - Insulator for wire connector - Google Patents

Insulator for wire connector

Info

Publication number
JPS5923480A
JPS5923480A JP13123482A JP13123482A JPS5923480A JP S5923480 A JPS5923480 A JP S5923480A JP 13123482 A JP13123482 A JP 13123482A JP 13123482 A JP13123482 A JP 13123482A JP S5923480 A JPS5923480 A JP S5923480A
Authority
JP
Japan
Prior art keywords
insulation
silicone rubber
tape
insulating layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13123482A
Other languages
Japanese (ja)
Inventor
小野寺 功
俊一 川路
小林 芳隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP13123482A priority Critical patent/JPS5923480A/en
Publication of JPS5923480A publication Critical patent/JPS5923480A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は樹脂含浸による電線接続部の絶縁に関する。[Detailed description of the invention] The present invention relates to insulation of wire connections by resin impregnation.

電気車両搭載用の電気機器はその責務上から長期間の信
頼性が量水される。しかも、電圧400〜3000V、
 振動0.2〜7 G、 温$ −30−180”0の
ような電気的、機械的、熱的更には耐環境的に苛酷なス
トレスを受ける電気機器における絶縁は重要な役割を担
う。この電気絶縁の一部である渡り線接続部絶縁も同様
に高信頼性を要する重要部らの一つである。
Electrical equipment mounted on electric vehicles is subject to long-term reliability due to its responsibilities. Moreover, the voltage is 400-3000V,
Insulation plays an important role in electrical equipment that is subjected to severe electrical, mechanical, thermal, and environmental stress such as vibrations of 0.2 to 7 G and temperatures of -30 to 180"0. The crossover wire connection insulation, which is a part of the electrical insulation, is also an important part that requires high reliability.

従来、この渡り線接続部絶縁は、主に次のような絶縁が
施こされてきた。大別すると樹脂含浸を行なわず絶縁層
を形成する方法と、接続する機器(例えば絶縁・イル)
本体チ、も(樹脂含浸して絶縁層を形成する方法である
。1者は接続する機器2例えば、フレームに取り付けら
れ樹脂含浸したコイルの口出し端を研磨し、渡り線の一
端と溶接し、面落とし加工後、その段差部に室温硬化形
エポキシコンパウンドを塗布する。次いで接続部外周を
ナトリウム処理テフロンシートで覆い自己融着形シリコ
ーンゴムテープを数回巻き付け、更にその外周に無アル
カリガラステープを規定回数巻き付けた後表面に溶剤型
フェスを塗布して接続部絶縁を完成させる方法である。
Conventionally, the following insulation has been mainly applied to the crossover wire connection section. Broadly divided into methods that form an insulating layer without resin impregnation, and devices to be connected (e.g. insulation/illumination)
The main body is impregnated with resin to form an insulating layer. One is to polish the outlet end of the connected device 2, for example, a resin-impregnated coil attached to the frame, and weld it to one end of the crossover wire. After surface removal, a room-temperature curing epoxy compound is applied to the step.Then, the outer periphery of the joint is covered with a sodium-treated Teflon sheet, and self-fusing silicone rubber tape is wrapped several times, followed by alkali-free glass tape around the outer periphery. After winding the wire several times, a solvent-based coating is applied to the surface to complete the insulation of the connection.

しかし、この方法の絶縁層は樹脂含浸していない為、機
械的に弱く振動や外部圧によって容易に絶縁層が傷つく
という欠点がある。
However, since the insulating layer of this method is not impregnated with resin, it has the disadvantage that it is mechanically weak and easily damaged by vibration or external pressure.

また1ホキシコンパウンド層自体がボーラスな固体であ
ると共にガラス絶縁もワニスが緻密に浸透されない為、
吸湿しやすく絶縁抵抗が低下しやすいという欠点もある
。更には絶縁層全体が柔軟性であるため車両走行時の振
動等によって導体と絶縁層の界面が間隙をつくり易く、
その部分から水分等が浸入して絶縁短絡事故となる原因
となっている。
In addition, since the 1-phoxy compound layer itself is a bolus solid and the varnish does not penetrate into the glass insulation,
It also has the disadvantage that it easily absorbs moisture and its insulation resistance tends to decrease. Furthermore, since the entire insulating layer is flexible, it is easy to create gaps at the interface between the conductor and the insulating layer due to vibrations when the vehicle is running.
Moisture or the like can enter from that part, causing an insulation short circuit.

後者の方法を$1図の断面図によって説明する。接続す
るコイルの口出し導体1と渡り線の一端2を溶接で接続
する。その後室温硬化形のエポキシコンパウンド3で接
続部上に厚く塗り付はナトリウム処理テフロンシート4
にて包み込み、その上を自己−着量シリコーンゴムテー
プ5を数回巻き付は更にその外周に無アルカリガラステ
ープ6を所定厚さ巻き付けて絶縁層を形成させる。この
後、被含浸物全体を予備加熱し、無溶剤合成樹脂を用い
て真空・加圧含浸し、規定の温度・時間硬化させコイル
絶縁と渡り線接続部絶縁を完成させる。樹脂含浸して得
られたこの接続部絶縁は機械的には堅固な構造となるが
、渡り線の絶縁であるシリコーンゴム被覆22(シリコ
ーンゴム被覆以外は耐熱的に採用できない)と絶縁層間
の界面が異質成分の組合せの為接着力が劣り車両走行時
の振動等によってその部分に間隙をつくりその間隙を伝
って水分等が導体部まで浸入して導電路を形成し、絶縁
事故につながる原因にもなっている。
The latter method will be explained using the cross-sectional view of Figure $1. The lead conductor 1 of the coil to be connected and one end 2 of the crossover wire are connected by welding. Then apply room temperature curing epoxy compound 3 thickly over the connection area and use sodium treated Teflon sheet 4.
A self-adhesive silicone rubber tape 5 is then wrapped around it several times, and an alkali-free glass tape 6 is then wrapped around it to a predetermined thickness to form an insulating layer. Thereafter, the entire object to be impregnated is preheated, impregnated with a solvent-free synthetic resin under vacuum and pressure, and cured at a specified temperature and time to complete the coil insulation and crossover wire connection part insulation. This connection insulation obtained by resin impregnation has a mechanically strong structure, but the interface between the silicone rubber coating 22 (other than silicone rubber coating cannot be used for heat resistance) that is the insulation of the crossover wire and the insulation layer. However, due to the combination of dissimilar components, the adhesion strength is poor, and vibrations caused when the vehicle is running can create gaps in the area, allowing moisture, etc. to penetrate through the gaps and penetrate into the conductor, forming a conductive path, which can lead to insulation failures. It has also become.

又、樹脂含浸の際に、渡り線の細隙部より樹脂が浸入し
、渡り線素線23内に入り込み硬化することによって渡
り線の柔軟性を失なわさせ、外部端子への接合作業を困
難にするという場合もある。上述したシリコーンゴム被
覆とエポキシコンパウンドを除く絶縁層間の界面を緻密
にする為の1つの方法として室温硬化形のシリコーンゴ
ムが考えられるが、このシリコーンゴムはその硬化の際
、空気中の水分を吸収して硬化することを特徴とする為
、塗布後即時にその外周に気密性を有する絶縁テープ類
を巻き付けることができず硬化後に絶縁テープ類を巻さ
付けなければならないことから工期遅れの原因となり、
短納期製造の障害となる場合が多かった。
Furthermore, during resin impregnation, the resin infiltrates through the gaps in the crossover wire, enters the crossover wire strands 23, and hardens, causing the crossover wire to lose its flexibility and making it difficult to connect to external terminals. In some cases, it may be done. One way to make the interface between the silicone rubber coating and the insulating layer other than the epoxy compound dense is to use room-temperature curing silicone rubber, but this silicone rubber absorbs moisture from the air during curing. Because it is characterized by hardening, it is not possible to immediately wrap an airtight insulating tape around its outer circumference after application, and it is necessary to wrap insulating tape after it hardens, which causes delays in construction. ,
This was often an obstacle to short-term production.

尚、この従来の絶縁方式による水中浸漬の絶縁抵抗を測
定した結果を第3図の曲線Aで示す。
The results of measuring the insulation resistance of this conventional insulation method when immersed in water are shown by curve A in FIG.

水中に入れるとすぐに絶縁抵抗は低下している。As soon as it is placed in water, the insulation resistance decreases.

本発明は上述の諸欠点を除去し、機械的強度を有し、耐
熱的に優れ、かつ耐水構造を形成できる渡り線接続部絶
縁を得ることを目的とする。
The object of the present invention is to eliminate the above-mentioned drawbacks, and to obtain insulation for connecting wire connections that has mechanical strength, excellent heat resistance, and can form a water-resistant structure.

以下に本発明について図を用いて説明する。The present invention will be explained below using figures.

第2図に本発明の渡りIfM接続部絶縁の断面を示す。FIG. 2 shows a cross section of the crossover IfM connection insulation of the present invention.

接続するコイル口出し導体lと、渡り線であるシリコー
ンゴム被覆線の一端の絶縁を剥離し、圧接端子を装着し
た部分2との溶接を行なう。溶接部10を冷却・洗浄・
乾燥後、その外周と導体露出部及びシリコーンゴム被覆
22の一部に加熱硬化形シリコーンゴム33を用いて塗
りむらのないように一様に塗布する。塗布後その外周を
厚さ0.05〜1.0mのナトリウム処理テフロンシー
ト4を1枚以上巻きつけて覆い、その上に厚さ0.1〜
1.0罰の自己融着形シリコーンゴムテープ5を所定厚
さ巻き付け、更にその外周に厚さ0.07〜0.38 
urnの無アルカリがラステープ6を所定厚さ巻きつけ
て絶縁層を形成する。
The insulation of the coil lead-out conductor 1 to be connected and one end of the silicone rubber coated wire serving as a crossover wire is peeled off, and the part 2 to which the pressure contact terminal is attached is welded. Cooling/cleaning the welded part 10
After drying, heat-curable silicone rubber 33 is applied uniformly to the outer periphery, the exposed conductor portion, and a part of the silicone rubber coating 22 so as to avoid uneven coating. After coating, the outer periphery is covered with one or more sodium-treated Teflon sheets 4 having a thickness of 0.05 to 1.0 m, and a layer of 0.1 to 1.0 m thick
A self-fusing silicone rubber tape 5 of 1.0% is wound to a predetermined thickness, and further a thickness of 0.07 to 0.38 is wrapped around the outer circumference.
An insulating layer is formed by wrapping urn's alkali-free lath tape 6 to a predetermined thickness.

次いで電気機器全体を70〜130°0 に設定した恒
温槽中で予備加熱を行なう。予備加熱を行なうことによ
って絶縁層に含む水分を除去したり、後に含浸する樹脂
の粘度を低下させて含浸性を向上させるほか渡り線接続
部絶縁層内に充填しであるシリコーンゴム33は硬化が
完了する。
Next, the entire electrical equipment is preheated in a constant temperature bath set at 70 to 130 degrees. By preheating, the moisture contained in the insulating layer is removed, the viscosity of the resin to be impregnated later is lowered, and the impregnating properties are improved. In addition, the silicone rubber 33 filled in the insulating layer at the crossover wire connection part is hardened. Complete.

予備加熱終了後電気機器を含浸容器中に静置させ、含浸
タンクに搬入した後所定の温度・圧力・時間で合成樹脂
の真空・加圧含浸を行なう。含浸終了後は電気機器を樹
脂の満ちた含浸容器中から取り出し、規定の温度・時間
で加熱硬化させる。
After the preheating is completed, the electrical equipment is left in the impregnation container, and after being carried into the impregnation tank, it is impregnated with synthetic resin under vacuum and pressure at a predetermined temperature, pressure, and time. After the impregnation is complete, the electrical equipment is removed from the resin-filled impregnation container and cured by heating at a specified temperature and time.

このようにして得た電気機器の渡り線接続部絶縁は機械
的に強固で、外圧や振動に耐えることができる。従来水
分等が最も浸入する可能性の強いケーブル被覆であるシ
リコーンゴムと接続部絶縁層間の界面部分が同一成分の
シリコーンゴム被膜を用いることによって強力に接着し
更には絶縁層そのものが含浸m脂によって強固になった
ことが相乗して水分等の浸入を完全に防止し長期にわた
っての高信頼性を維持するものである。又このような構
成をとることにより、従来よりも工期が短縮するという
利点を有し、かつ渡り線への樹脂の浸透を防ぐことがで
きる為、後工程の作業をスムーズにする長所も有する。
The insulation of the crossover wire connection portion of the electrical equipment thus obtained is mechanically strong and can withstand external pressure and vibration. Conventionally, the interface between silicone rubber, which is the cable covering where moisture etc. has the highest possibility of infiltration, and the connection insulating layer are strongly bonded by using a silicone rubber coating of the same composition, and furthermore, the insulating layer itself is made of impregnated resin. Combined with the increased strength, it completely prevents moisture from entering and maintains high reliability over a long period of time. Further, by adopting such a configuration, there is an advantage that the construction period is shorter than that of the conventional method, and since it is possible to prevent the resin from penetrating into the crossover wire, it also has the advantage of smoothing the work in the subsequent process.

本発明による絶縁を施した実例ではつぎのような結果を
得た。
In an example using insulation according to the present invention, the following results were obtained.

これは車両塔載210 KVA[励発電機用リアクトル
の接続部絶縁の場合である。断面が35×65龍のノメ
ツクス被覆導体を使用したりアクドルのコイル口出し一
端のノメツクス被榎を50酎はど剥ぎ取り導体を露出さ
せる。また一方、接糾する渡すゲーブル(ガラスシーズ
付シリコーンゴム被覆ケーブル)のケーブル被覆を50
111剥ぎ取り、銅線を露出させた後、長さ25關の銅
パイプを挿入、圧着する。これを先のコイル口出しの一
端とを25txm重ね合わせ釧ロー溶接を行ない角部の
面落しをして洗浄・乾燥させる。乾燥後この溶接部及び
導体露出部とケーブルのシリコーンゴム被覆上に加熱硬
化型のシリコーンゴムを一様に塗り付は硬化前に厚さ0
5龍幅60IIl111のナトリウム処理パルフロンシ
ート(日本パルカー商品名)を1回巻き付ける。次にパ
ルフロンシートの外周及びその両側端15龍ずつ被せる
ように厚さ0.38龍1幅30m の自己融着形パルコ
ーンテープ(日本パルカー商品名)を半重ねで1回巻き
付け、更にその外周を厚さ0.1311111.幅19
 amの無アルカリがラステープを半重ねで2回巻き付
けて絶縁層を形成する。絶縁層を形成した後リアクトル
を120°0で10時間予備加熱を行ない、50°0ま
で徐冷した後含浸容器に入れ含浸タンク内に搬送し、耐
熱2種のビスフェノール系エポキシ樹脂を流し込み真空
・加圧含浸を行なう。約90分の含浸処理を終えた後リ
アクトルを含浸容器中から取り出し、余滴を落下させた
後160°0で15時間加熱硬化を行なう。このように
して得た接続部絶縁を含むリアクトル絶縁の水中浸it
の絶縁抵抗を測定した結果を第3図の8曲線で示す。
This is the case for insulating the connections of a 210 KVA exciter generator reactor mounted on a vehicle. Use a Nomex coated conductor with a cross section of 35 x 65 mm, or strip off the Nomex cover at one end of the coil opening of the accelerator to expose the conductor. On the other hand, the cable sheathing of the connecting cable (silicone rubber coated cable with glass sheath) was
After stripping 111 and exposing the copper wire, a 25-inch long copper pipe is inserted and crimped. This was overlapped with one end of the previous coil opening by 25txm, and then welded with a chisel weld, the corners were polished, and then washed and dried. After drying, apply heat-curable silicone rubber uniformly to the welded parts, exposed conductor parts, and the silicone rubber coating of the cable to a thickness of 0 before curing.
5 Wrap a sodium-treated Palfron sheet (Nippon Palcar brand name) with a width of 60IIl111 once. Next, wrap self-adhesive Palcon tape (Nippon Palcar brand name) with a thickness of 0.38mm and width of 30m once in a half overlap so that it covers the outer circumference of the Palflon sheet and 15mm on each side of the sheet, and then The thickness of the outer periphery is 0.1311111. Width 19
Wrap am's alkali-free lath tape twice, half overlapping, to form an insulating layer. After forming the insulating layer, the reactor was preheated at 120°0 for 10 hours, slowly cooled to 50°0, placed in an impregnating container, transported to an impregnating tank, poured with two heat-resistant bisphenol-based epoxy resins, and heated under vacuum. Perform pressure impregnation. After completing the impregnation treatment for about 90 minutes, the reactor was taken out from the impregnation container, and after allowing any remaining drops to fall, heat curing was performed at 160° 0 for 15 hours. Underwater immersion of reactor insulation including connection insulation obtained in this way
The results of measuring the insulation resistance are shown in curve 8 in FIG.

以−L本発明の電気機器の渡り線接続部絶縁は実施例で
示した水中浸漬の絶縁抵抗測定において48時間浸漬稜
でも絶縁抵抗は低下することなく、健全な絶縁性を示す
ことが確認でき、目的を十分に満足する絶縁を構成する
ことが判明した。
In the insulation resistance measurement of the crossover wire connection part of the electrical equipment of the present invention when immersed in water as shown in the example, it was confirmed that the insulation resistance did not decrease even after being immersed for 48 hours and showed sound insulation properties. It has been found that this constitutes an insulation which satisfactorily satisfies the purpose.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の接続部絶縁構成の断面図、第2図は本発
明による接続部絶縁構成の断面図。 第3図は従来及び本発明の接続部絶縁の水中絶縁抵抗の
経時変化特性曲線。 1、 コイル口出し導体、  2.渡り線先端圧接部、
  3 エホキシコV /< +7ンド、4、テフロン
シー)、5.pリコーンゴムテープ6、 ガラステープ
 11.コイル絶縁層、22、シリコーンゴム被覆、3
3.シリコーンゴム(加熱硬化形)っ (7317)代理人 弁理士 則近憲佑(ばか1名)第
  1  図 第  2  図
FIG. 1 is a sectional view of a conventional connection part insulation structure, and FIG. 2 is a sectional view of a connection part insulation structure according to the present invention. FIG. 3 is a time-dependent characteristic curve of the underwater insulation resistance of the conventional and inventive joint insulations. 1. Coil lead-out conductor; 2. Crossover wire tip pressure contact part,
3 Ethoxyco V /< +7nd, 4, Teflon Sea), 5. p silicon rubber tape 6, glass tape 11. Coil insulation layer, 22, silicone rubber coating, 3
3. Silicone rubber (heat curing type) (7317) Agent Patent attorney Kensuke Norichika (one idiot) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 電線の接続部表面に加熱硬化形シリコンゴムを塗布し、
その上に、ナトリウム処理テフロンシートと自己融着形
シリコンゴムテープおよび無アルカリガラステープを順
次巻き付け、加熱乾燥後無溶剤合成樹脂を含浸、硬化さ
せて形成した電線接続部の絶縁物。
Apply heat-curable silicone rubber to the surface of the wire connection,
An insulator for wire connections is formed by sequentially wrapping a sodium-treated Teflon sheet, a self-bonding silicone rubber tape, and an alkali-free glass tape on top of it, heating and drying it, then impregnating it with a solvent-free synthetic resin and curing it.
JP13123482A 1982-07-29 1982-07-29 Insulator for wire connector Pending JPS5923480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13123482A JPS5923480A (en) 1982-07-29 1982-07-29 Insulator for wire connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13123482A JPS5923480A (en) 1982-07-29 1982-07-29 Insulator for wire connector

Publications (1)

Publication Number Publication Date
JPS5923480A true JPS5923480A (en) 1984-02-06

Family

ID=15053143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13123482A Pending JPS5923480A (en) 1982-07-29 1982-07-29 Insulator for wire connector

Country Status (1)

Country Link
JP (1) JPS5923480A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931397U (en) * 1972-06-19 1974-03-18
JPS5022314U (en) * 1973-06-19 1975-03-13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4931397U (en) * 1972-06-19 1974-03-18
JPS5022314U (en) * 1973-06-19 1975-03-13

Similar Documents

Publication Publication Date Title
JP2738572B2 (en) High voltage insulation of electrical machines
US4450318A (en) Means and method for providing insulation splice
JPS6364218A (en) Compound power cable
JPH0554242B2 (en)
JPS5923480A (en) Insulator for wire connector
JP2846616B2 (en) Connection part and connection method of crosslinked polyethylene insulated power cable
JPH0210614A (en) Waterproof processing for electric wire
JPS6146145A (en) Insulating method of field coil
JPS5921260A (en) Manufacture of insulated coil
JPS5836483B2 (en) Cylindrical electromagnetic winding
JPH0154829B2 (en)
JPS59198817A (en) Crosslinked rubber and plastic insulated cable connector
JPS6016712B2 (en) Insulation treatment method for outlet cable connection part
JPH07222323A (en) Splicing for wire harness
JPH0326780Y2 (en)
JPS61179081A (en) Water resisting treatment for cable connection
JPS5854846A (en) Rotor coil
JPS6129088B2 (en)
JPS6048984B2 (en) Manufacturing method of generator for magnet generator
JPH01129737A (en) Insulation of high voltage rotating electric machine
JPS6282613A (en) Manufacture of moisture-proof rubber and plastic insulated power cable
JPS5915368B2 (en) Manufacturing method of molded coil
JPH0318253A (en) Connecting method for lead wire
JPS5982710A (en) Manufacture of primary coil
JPS6166552A (en) Insulating method for coil for rotary electric machine