JPS592335A - Inspection method for semiconductor substrate having epitaxial layer - Google Patents

Inspection method for semiconductor substrate having epitaxial layer

Info

Publication number
JPS592335A
JPS592335A JP10992082A JP10992082A JPS592335A JP S592335 A JPS592335 A JP S592335A JP 10992082 A JP10992082 A JP 10992082A JP 10992082 A JP10992082 A JP 10992082A JP S592335 A JPS592335 A JP S592335A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
epitaxial layer
oxidation
semiconductor
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10992082A
Other languages
Japanese (ja)
Inventor
Kohei Nagata
幸平 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10992082A priority Critical patent/JPS592335A/en
Publication of JPS592335A publication Critical patent/JPS592335A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To perform the inspection for insulation and high resistance easily and in a short time by a method wherein anodic oxidation treatment is performed onto a semiconductor substrate composed of a semiconductor wafer and an N type epitaxial layer formed thereon, and the current variation thereat is observed. CONSTITUTION:A detection device consists of a quartz vessel 22 filled with electrolyte 21, a constant voltage power source 23, a variable resistor 24 which adjusts initial oxidation current, a cathode electrode 25 of a Pt plate, a resistor 26, and an X-Y recorder 27. Anodic oxidation is performed by dipping the semiconductor substrate 28 into the electrolyte 21, and then the change of oxidation currents is recorded by the X-Y recorder 27. The oxidation current decreases exponentially in the semiconductor substrate A of a semi-insulating GaAs wafer of good insulation, and the oxidation current becomes out of exponential decrease and becomes staggered about 5min after passage in the substrate B of poor insulation.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は半導体ウェハー(特に、化合物半導体の半絶縁
性ウェハー)の絶縁性および/又は抵抗性の検査方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method for testing the insulation and/or resistance of a semiconductor wafer (particularly a semi-insulating compound semiconductor wafer).

(2)技術の背景 例えば、GaAm FEAT (電界効果トランジスタ
)は半絶縁性又は絶縁性半導体基板上に高不純物濃度n
型エピタキシャル層を形成した半導体ウェハーを利用し
て作られている。この場合に高不純物濃度n型エピタキ
シャル層が動作層(活性層)とされ、該活性層の上にソ
ース、ドレインおよびr−トの電極が形成されてFIT
が構成されるわけであるが、半絶縁性(高抵抗の)半導
体ウェハーの絶縁性すなわち高抵抗性が悪い(低い)と
リーク電流が生じるためFErl’の特性が低下してし
まう。
(2) Background of the technology For example, GaAm FEAT (field effect transistor) is a semi-insulating or insulating semiconductor substrate with high impurity concentration n.
It is made using a semiconductor wafer on which a type epitaxial layer is formed. In this case, the highly impurity-concentrated n-type epitaxial layer is used as the active layer (active layer), and source, drain, and r-to electrodes are formed on the active layer to form the FIT.
However, if the insulation, that is, the high resistance of the semi-insulating (high-resistance) semiconductor wafer is poor (low), leakage current will occur, and the characteristics of FErl' will deteriorate.

この半導体ウェハーの絶縁性や高抵抗性の低下がエピタ
キシャル層成長の際の熱変性および成長条件の違りによ
って生じることがある。そのために、nWエピタキシ1
ル成長後の半絶縁性ウェハーの(2) 絶縁性および高抵抗性を検査する必要がある。また、上
述の半絶縁性半導体ウェハーとn型エピタキシャル層と
の間に高抵抗率のバッファ一層を形成することがあり、
この場合には、半導体ウェハーとバッファ一層とを合せ
てその絶縁性および高抵抗性を検査する必要がある。
This reduction in the insulation properties and high resistance of the semiconductor wafer may occur due to thermal denaturation during epitaxial layer growth and differences in growth conditions. For that purpose, nW epitaxy 1
(2) Insulating properties and high resistance of semi-insulating wafers after semiconductor layer growth must be inspected. In addition, a single layer of high resistivity buffer may be formed between the above-mentioned semi-insulating semiconductor wafer and the n-type epitaxial layer,
In this case, it is necessary to test the insulation and high resistance of the semiconductor wafer and the buffer layer together.

(3)従来技術と問題点 上述の検査全従来は次のようにして行なって騒た。半絶
縁性ウェハーl(第1図)の上に高不純物濃度n型エピ
タキシャル層2を形成した後で、このエピタキシャル層
2上に金属層を蒸着又はスフ9ツタリングにて形成し、
ホトエツチングによってオーミック電極3を少なくとも
2個形成する(第1図)。これらオーミック電極30間
においてエピタキシャル層2をホトエツチング法にテ第
1図のように選択的にエツチング除去して半導体ウェハ
ー1に達する溝4を形成する。そして、これらオーミッ
ク電極3の間に電源5による電圧を印加して半絶縁性半
導体ウエノ・−を流れる電流を電流計6で測定すること
で検査をしていた。しかしながら、このよう々検査方法
ではオーミック電極の形成およびエビクギ1ル層の選択
エツチングを行なうことが必要であり、検査を行なうだ
めの工程数が多くまた時間も長くかがる欠点がある。
(3) Prior Art and Problems All the above-mentioned tests have been conventionally performed as follows. After forming a highly impurity-concentrated n-type epitaxial layer 2 on a semi-insulating wafer 1 (FIG. 1), a metal layer is formed on this epitaxial layer 2 by vapor deposition or sintering,
At least two ohmic electrodes 3 are formed by photoetching (FIG. 1). Between these ohmic electrodes 30, the epitaxial layer 2 is selectively etched away using a photoetching method, as shown in FIG. 1, to form a groove 4 reaching the semiconductor wafer 1. Inspection was carried out by applying a voltage from a power source 5 between these ohmic electrodes 3 and measuring the current flowing through the semi-insulating semiconductor material with an ammeter 6. However, such an inspection method requires the formation of ohmic electrodes and selective etching of the double layer, and has the disadvantage that it requires a large number of inspection steps and takes a long time.

(4)発明の目的 本発明の目的は、半導体ウェハー(好−ましくけ半絶縁
性の化合物半導体ウェハー)とその上に形成したn型エ
ピタキシャル層とからなる半導体基板における半導体ウ
ェハーの絶縁性および高抵抗性の検査を容易にかつ短時
間に行なう方法を提案することである。
(4) Purpose of the Invention The purpose of the present invention is to improve the insulation properties of the semiconductor wafer in a semiconductor substrate consisting of a semiconductor wafer (preferably a semi-insulating compound semiconductor wafer) and an n-type epitaxial layer formed thereon. The purpose of this invention is to propose a method for easily and quickly testing resistance.

(5)発明の構成 前述の目的が、半導体ウェハーとその上に形成したnW
エピタキシ1ル層とからなる半導体基板(又は半導体ウ
ェハーとその上に順次形成したバッファ一層とn型エピ
タキシャル層とからなる半導体基板)に陽極酸化処理を
施こし、その際の電流の変化を観測して半導体ウェハー
(又は半導体ウェハーとバッファ一層)の絶縁性および
/又は抵抗性の検査を行なうエピタキシャル層を有する
半導本基板の検査方法を提案することによって達成され
る。
(5) Structure of the invention The above-mentioned object is to provide a semiconductor wafer and an nW
A semiconductor substrate consisting of an epitaxial layer (or a semiconductor substrate consisting of a semiconductor wafer, a buffer layer and an n-type epitaxial layer formed sequentially on the semiconductor wafer) is anodized, and changes in current at that time are observed. This is achieved by proposing a method for testing a semiconductor substrate having an epitaxial layer, which tests the insulation and/or resistance of a semiconductor wafer (or a semiconductor wafer and a buffer layer).

陽極酸化処理とは、電解a液中で半導体基板を陽極電、
玉とし白金板を:婆砥電標として電流を流すことによっ
て半導体基板の表面Km化膜を形成することである。
Anodic oxidation is a process in which a semiconductor substrate is coated with an anode electrode in an electrolytic a solution.
The process involves forming a Km film on the surface of a semiconductor substrate by passing a current through a platinum plate as a ball and as an electric standard.

(6)発明の実施態様 以下、添付図面に関連した本発明の実施態様例および実
施例によって本発明の詳細な説明する。
(6) Embodiments of the invention Hereinafter, the present invention will be described in detail by embodiments and examples of the invention in conjunction with the accompanying drawings.

実施態様例 第2図(、)は湯極酸化処理前の半導体基板の部分断面
図であって、半絶碌性半導体つz/’−11の上に不均
一な厚みの高不純物濃度n型エピタキシャル層12が形
成されている。この半導体基板を陽極とし、白金板を陰
、原として電解液中にて陽極酸化全行なうならば、第2
図(b)に示すようにn型エピタキシャル層12の上に
酸化膜13が形成されかつこのエピタキシャル層120
表面がら空乏層14がウェハー11のほうへ広がること
が一般に知られている。適切に設定できる定電圧電源を
用いるならば、酸化′11を流■は次式で表わされるよ
うに指数関数的に減少する。
Embodiment FIG. 2 ( ) is a partial cross-sectional view of a semiconductor substrate before hot oxide oxidation treatment, in which a high impurity concentration n-type film with a non-uniform thickness is deposited on a semi-permanent semiconductor layer z/'-11. An epitaxial layer 12 is formed. If this semiconductor substrate is used as an anode and the platinum plate is used as a cathode and source, the entire anodic oxidation is carried out in an electrolytic solution.
As shown in Figure (b), an oxide film 13 is formed on the n-type epitaxial layer 12, and this epitaxial layer 120
It is generally known that the depletion layer 14 extends toward the wafer 11 from the surface. If a constant voltage power supply that can be appropriately set is used, the oxidation current '11' will decrease exponentially as expressed by the following equation.

I (t)ζKexp(−−) τ 式中二には定数、τは時定数およびtは時間である。そ
の際に、第2図(b)のように空乏層14の一部が半絶
縁性ウェハー11に達した場合には、このウェハー11
に高′鑞界が印加される。このときに、半絶嫌性半導体
ウェハー11の絶縁性が良ければ、酸化電流はn型エピ
タキシ丁ル層12全体が空乏層14の厚さになるまで、
すなわち、陽極酸化が停止するまで、指数関数的に減少
する。しかしながら、もしウェハー11の絶縁性が悪け
れば、電流のリークが生じるために酸化電流は指数関数
的減少に対してリーク電流分かたされることになる。そ
こで酸化電流1x−yレコーダなどで観測すると、半導
体ウエノ・−の絶縁性が良い場合に酸化電流が時間に対
して指数関数的減少することがわかり、そうでなく悪い
場合には指数関数的減少の形からずれることがわかる。
I (t)ζKexp(--) τ In the formula, the second is a constant, τ is a time constant, and t is time. At that time, if a part of the depletion layer 14 reaches the semi-insulating wafer 11 as shown in FIG. 2(b), this wafer 11
A high field is applied to . At this time, if the semi-averse semiconductor wafer 11 has good insulation, the oxidation current will continue until the entire n-type epitaxial layer 12 reaches the thickness of the depletion layer 14.
That is, it decreases exponentially until anodization stops. However, if the insulation of the wafer 11 is poor, current leakage will occur and the oxidation current will be divided into leakage currents for an exponential decrease. Therefore, by observing the oxidation current with a 1x-y recorder, etc., we found that the oxidation current decreases exponentially with time when the insulation of the semiconductor wafer is good, and when it is bad, it decreases exponentially. You can see that it deviates from the shape of.

このようにして半絶縁性半導体ウニ・・−(Toるいは
、半絶縁性半導体ウェハーと・ぐッファ一層)の絶縁性
(高抵抗性)を容易に検査できる。なお、上述の高不純
物濃度n型エピタギシャル層の厚さは不均一であるとし
たが、均一な厚さであっても同様に検査できる。また、
このエピタキシャル層がn型でなくp型である場合には
空乏層がそれほど広がらないので本発明に係る検査法は
不向きである。
In this way, the insulation (high resistance) of the semi-insulating semiconductor wafer (or semi-insulating semiconductor wafer and one layer) can be easily tested. It should be noted that although the thickness of the highly impurity-concentrated n-type epitaxial layer described above is non-uniform, it can be similarly inspected even if the thickness is uniform. Also,
If this epitaxial layer is not n-type but p-type, the depletion layer will not expand so much, so the inspection method according to the present invention is not suitable.

実施例 異なるGaAa単結晶から切り出したCrドーノの半絶
縁fiGaAsウェハー上に気相エピタキシャル成長法
によって不純物濃度8×10crn  程度のn型Ga
Aa層を厚さ0.5〜0.65μmに形成した。得た半
導体基板AおよびBについてのGa Asウェハーの絶
縁性を本発明に係る検査法にて調べるために第3図に示
した検査装置を使用した。この装置は電解液21(例え
ば、3tlI酒石酸水溶液と!ロビレングリコールとの
混合液)の入った石英容器22、定電圧電源23、初期
酸化電流を調整する可変抵抗器24、白金板の陰極電極
25、抵抗器26および酸化電流を時間と共に記録する
X−Yレコーダ27からなる。半導体基板28(第3図
)を電N液21中へ浸漬して15分間陽極酸化し、その
際の酸化電流の時間での変化をX−Yレコーダ27にて
記録した。半導体基板AおよびBそれぞれの酸化′!!
尚の変化が第4図中の線aおよびbであった。第4図に
おいては縦軸が酸化電流を表わし、横軸が経過時間を表
わしている。
Embodiments N-type Ga with an impurity concentration of about 8×10 crn was grown by vapor phase epitaxial growth on a semi-insulating fiGaAs wafer with a Cr dome cut from a different GaAA single crystal.
The Aa layer was formed to have a thickness of 0.5 to 0.65 μm. The testing apparatus shown in FIG. 3 was used to examine the insulation properties of the GaAs wafers of the obtained semiconductor substrates A and B using the testing method according to the present invention. This device includes a quartz container 22 containing an electrolytic solution 21 (for example, a mixed solution of 3tlI tartaric acid aqueous solution and !robilene glycol), a constant voltage power source 23, a variable resistor 24 for adjusting the initial oxidation current, and a cathode electrode made of a platinum plate. 25, a resistor 26 and an X-Y recorder 27 that records the oxidation current over time. The semiconductor substrate 28 (FIG. 3) was immersed in the electrolytic nitrogen solution 21 and anodized for 15 minutes, and the change in oxidation current over time was recorded using an X-Y recorder 27. Oxidation of each of semiconductor substrates A and B! !
These changes were indicated by lines a and b in FIG. In FIG. 4, the vertical axis represents the oxidation current, and the horizontal axis represents the elapsed time.

第4図から明らかなように、絶縁性の良い半絶縁性Ga
 Asウェハーの半導体基板Aでは酸化電流が指数関数
的に減少しており、一方、絶縁性の悪い半絶縁性GaA
sウェハ〜の半導体基板Bでは経過5分後ぐらいから酸
化電流が指数関数的な減少からずれかつふらついている
As is clear from Figure 4, semi-insulating Ga has good insulation properties.
The oxidation current decreases exponentially in the As wafer semiconductor substrate A, while the semi-insulating GaA with poor insulation properties
In the semiconductor substrate B of wafer S, the oxidation current deviates from an exponential decrease and starts to fluctuate after about 5 minutes.

半導体基板AおよびBを従来の検査方法にてそれぞれの
GaAsウェハーの絶縁性を次のようにして調べた。ま
ず気相エピタキシ丁ル成長法にて形成したn型Ga A
m層上にAura/Auの金属膜(厚さ200nm)を
蒸着法にて形成し所定パターンにホトエツチングしてか
ら窒*雰囲気中にて450℃で2分間熱処理してオーミ
、り電極とした。オーミック電極の間でGaAmエピタ
キシャル層をホトエツチングして深さ0.6〜0.8μ
常のGaAsウェハーに達する溝を第1図のように形成
した。そして、電極間に100■を印加して各半導体基
板A。
The insulation properties of the GaAs wafers of the semiconductor substrates A and B were examined using a conventional testing method as follows. First, n-type Ga A was formed by vapor phase epitaxy growth method.
An Aura/Au metal film (thickness: 200 nm) was formed on the m layer by vapor deposition, photoetched into a predetermined pattern, and then heat-treated at 450° C. for 2 minutes in a nitrogen atmosphere to form an ohmic electrode. Photoetch the GaAm epitaxial layer between the ohmic electrodes to a depth of 0.6-0.8μ.
A groove reaching a conventional GaAs wafer was formed as shown in FIG. Then, a voltage of 100 cm was applied between the electrodes to separate each semiconductor substrate A.

Bの電流値を測定した。その結果、半導体基板Aでは1
0μAであり、−男手導体基板Bでは1o。
The current value of B was measured. As a result, in semiconductor substrate A, 1
0 μA, and 1o for male conductor board B.

μAであった。このことからも半導体基板Aのほうが半
導体基板BよりもGaAsウェハーの絶縁性の良いこと
が明らかである。
It was μA. From this, it is clear that the semiconductor substrate A has a better insulation property of the GaAs wafer than the semiconductor substrate B.

(7)発明の効果 本発明に係る検査方法を用いれば、酸化電流の減少変化
状態を観測することでn型エピタキシτル層下の半絶縁
性半導体ウェハーの絶縁性(高抵抗性)が容易にかつ短
時間に調べることができる。
(7) Effects of the invention By using the inspection method according to the present invention, the insulation (high resistance) of a semi-insulating semiconductor wafer under the n-type epitaxial layer can be easily determined by observing the decreasing change state of the oxidation current. It can be investigated in a short time.

半導体基板全体を電解液中に浸漬して検査するので、従
来方法のように測定・量ターン部分のみでなく全体とし
て絶縁性が評価できる。また、GaAmエピタキシャル
層はその厚さが不均一に形成されやすいのであるが、不
均一な場合には陽極酸化によって均一化が図れる。
Since the entire semiconductor substrate is immersed in the electrolytic solution and inspected, the insulation properties can be evaluated as a whole, not just the measurement/quantity turn part as in conventional methods. Furthermore, although the GaAm epitaxial layer tends to be formed to have a non-uniform thickness, if the thickness is non-uniform, it can be made uniform by anodic oxidation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の検査方法を説明する半導体基板の部分
断面図であp、 第2図(&)は陽極酸化処理前の半導体基板の部分断面
図であり、 第2図(b)tよ陽極酸化処理中の半導体基板の部分断
面図であり、 第3図は本発明に係る検査方法を実施する装置の概略図
であり、 第4図は酸化電流の時間経過での変化を示す図である。 1・・・半絶縁性半導体ウェハー、2・・・エピタキシ
ャル層、3・・・オーミック電極、6・・・電流針、1
1・・・半絶縁性半導体ウェハー、12・・・エピタキ
シャル層、13・・・陽極酸化膜、14・・・空乏層、
21・・・電解液、27・・・X−Yレコーダ、28・
・・半導体基板。
Figure 1 is a partial cross-sectional view of a semiconductor substrate to explain a conventional inspection method, and Figure 2 (&) is a partial cross-sectional view of a semiconductor substrate before anodizing treatment. FIG. 3 is a schematic diagram of an apparatus for carrying out the inspection method according to the present invention; FIG. 4 is a diagram showing changes in oxidation current over time; FIG. It is. DESCRIPTION OF SYMBOLS 1... Semi-insulating semiconductor wafer, 2... Epitaxial layer, 3... Ohmic electrode, 6... Current needle, 1
DESCRIPTION OF SYMBOLS 1... Semi-insulating semiconductor wafer, 12... Epitaxial layer, 13... Anodic oxide film, 14... Depletion layer,
21... Electrolyte, 27... X-Y recorder, 28.
...Semiconductor substrate.

Claims (1)

【特許請求の範囲】 1、半導体ウェハーとその上に形成したnをエピタキシ
ャル層とからなる半導体基板又は半導体ウェハーとその
上に順次形成したバッファ一層とn型エピタキシャル層
とからなる半導体基板に陽極酸化処理を施こし、その際
の電流の変化を観測して前記半導体ウェハー又は前記半
導体ウェハーとバッファ一層の絶縁性および/又は抵抗
性の検査を行なうエピタキシャル層を有する半導体基板
の検査方法。 2、前記半導体ウエノ・−が化合物半導体であることを
特徴とする特許請求の範囲第1項記載の方法。 3、前記半導体ウエノ・−が半絶縁性又は絶縁性半導体
ウエノ・−であることを特徴とする特許請求の範囲第2
項記載の方法。 (,1)                   、、
、へ
[Claims] 1. Anodizing a semiconductor substrate consisting of a semiconductor wafer and an n-type epitaxial layer formed thereon, or a semiconductor substrate consisting of a semiconductor wafer and a buffer layer and an n-type epitaxial layer formed sequentially thereon. A method for inspecting a semiconductor substrate having an epitaxial layer, which inspects the insulation and/or resistance of the semiconductor wafer or the semiconductor wafer and the buffer layer by performing a process and observing changes in current during the process. 2. The method according to claim 1, wherein the semiconductor material is a compound semiconductor. 3. Claim 2, characterized in that the semiconductor wafer is a semi-insulating or insulating semiconductor wafer.
The method described in section. (,1) ,,
,fart
JP10992082A 1982-06-28 1982-06-28 Inspection method for semiconductor substrate having epitaxial layer Pending JPS592335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10992082A JPS592335A (en) 1982-06-28 1982-06-28 Inspection method for semiconductor substrate having epitaxial layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10992082A JPS592335A (en) 1982-06-28 1982-06-28 Inspection method for semiconductor substrate having epitaxial layer

Publications (1)

Publication Number Publication Date
JPS592335A true JPS592335A (en) 1984-01-07

Family

ID=14522473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10992082A Pending JPS592335A (en) 1982-06-28 1982-06-28 Inspection method for semiconductor substrate having epitaxial layer

Country Status (1)

Country Link
JP (1) JPS592335A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889514A1 (en) * 1993-07-16 1999-01-07 Shin-Etsu Handotai Company Limited Method for determination of resistivity of N-type silicon epitaxial layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0889514A1 (en) * 1993-07-16 1999-01-07 Shin-Etsu Handotai Company Limited Method for determination of resistivity of N-type silicon epitaxial layer

Similar Documents

Publication Publication Date Title
US7078919B2 (en) In situ determination of resistivity, mobility and dopant concentration profiles
US4995939A (en) Method and apparatus for determining the layer thickness of semiconductor layer structures
US4168212A (en) Determining semiconductor characteristic
CN111474456B (en) Hall effect voltage determining method and Hall test system
KR20090096711A (en) Silicon wafer evaluation method
Ahmad et al. Investigation of AuGeNi contacts using rectangular and circular transmission line model
JPS592335A (en) Inspection method for semiconductor substrate having epitaxial layer
US5138256A (en) Method and apparatus for determining the thickness of an interfacial polysilicon/silicon oxide film
US20040000692A1 (en) Method and device for determining backgate characteristics
US11183433B2 (en) Method of evaluating silicon layer and a method of manufacturing silicon epitaxial wafer
Lakshmi et al. Interface-state characteristics of GaN/GaAs MIS capacitors
US6528335B2 (en) Electrical method for assessing yield-limiting asperities in silicon-on-insulator wafers
Harten The surface recombination on silicon contacting an electrolyte
CA1069221A (en) Anodic etching method for the detection of electrically active defects in silicon
JPH04223355A (en) Electromigration monitor of integrated circuit
JP3019564B2 (en) Evaluation method of insulating film
JPH06331582A (en) Method for evaluating generation of defect of anode oxide film
JP2520870B2 (en) Method for manufacturing semiconductor device
CN117276107A (en) Monitoring method for SiC power device high-temperature activation process and monitoring sample structure
US3806430A (en) Method for fabricating anodic films
Prussin The continuous anodic oxidation technique
JPS60115847A (en) Inspecting method of insulator film
CN115963148A (en) Hall measurement device and method based on mercury cadmium telluride material
JPH06140433A (en) Manufacture of semiconductor device
Da Silva Filho et al. Optimized electrolyte for electrochemical capacitance-voltage profiling of carrier concentration in In 0.49 Ga 0.51 P