JPS5923354B2 - Method for producing cerium-activated yttrium orthoaluminate phosphor - Google Patents

Method for producing cerium-activated yttrium orthoaluminate phosphor

Info

Publication number
JPS5923354B2
JPS5923354B2 JP15076877A JP15076877A JPS5923354B2 JP S5923354 B2 JPS5923354 B2 JP S5923354B2 JP 15076877 A JP15076877 A JP 15076877A JP 15076877 A JP15076877 A JP 15076877A JP S5923354 B2 JPS5923354 B2 JP S5923354B2
Authority
JP
Japan
Prior art keywords
phosphor
cerium
mol
emission intensity
activated yttrium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15076877A
Other languages
Japanese (ja)
Other versions
JPS5482389A (en
Inventor
哲彦 富来
武司 竹田
威男 宮田
文夫 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP15076877A priority Critical patent/JPS5923354B2/en
Publication of JPS5482389A publication Critical patent/JPS5482389A/en
Publication of JPS5923354B2 publication Critical patent/JPS5923354B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】 本発明は短残光紫外螢光体の製造方法に関するもので、
特にセリウム(Ce)で付活されたイットリウムオルソ
アルミネート(YAl03)螢光体の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a short afterglow ultraviolet phosphor,
In particular, it relates to a method for producing a yttrium orthoaluminate (YAl03) phosphor activated with cerium (Ce).

Ce付活螢光体の発光減衰時間(τl/e)は一般にl
00n秒以下と非常に短かく、フライシダスポット管あ
るいはビームインデックス管への応用に関心がもたれて
いる。
The luminescence decay time (τl/e) of Ce-activated phosphor is generally l
It is very short, less than 00 nanoseconds, and there is interest in its application to fly fender spot tubes or beam index tubes.

フライシダスポット管としては、可視全域にわたる発光
スペクトルが要求され、ビームインデックス管では、発
光スペクトルのピーク波長(λmax)が340〜40
0nmの範囲にあることが要求されている。Ce付活螢
光体で市販されているものはP16、P46、P47、
P48の4種あり、これらは次のような構成をしている
A fly fern spot tube is required to have an emission spectrum covering the entire visible range, and for a beam index tube, the peak wavelength (λmax) of the emission spectrum is 340 to 40.
It is required to be in the range of 0 nm. Commercially available Ce-activated phosphors are P16, P46, P47,
There are four types of P48, and these have the following configuration.

Pl6;Ca2MgSi2O7:Ce、Liλmaxχ
370nmP46;Y3Al5O12:Ceλmaxχ
540P47;Y2SiO5:Ceλmaxχ410n
mP48;P46:P47=70:30の割合で混合し
たもの。
Pl6; Ca2MgSi2O7:Ce, Liλmaxχ
370nmP46; Y3Al5O12:Ceλmaxχ
540P47; Y2SiO5: Ceλmaxχ410n
mP48; P46:P47 mixed at a ratio of 70:30.

これらのうち、τl/e λmaxおよび電子線衝撃に
対する安定性を考慮して、フライシダスポット管用とし
てはP48、ビームインデックス管用としてはP47が
有望視されている。
Among these, in consideration of τl/e λmax and stability against electron beam impact, P48 is considered promising for use in fly flea spot tubes, and P47 is considered promising for use in beam index tubes.

一方、Y2O3−Al2O3系には、Y2O3:Al2
O3が3:5のY3Al5O12、1:lのYAlO3
および2:1のY4Al2O9の3相が存在する。
On the other hand, Y2O3-Al2O3 system has Y2O3:Al2
Y3Al5O12 with O3 of 3:5, YAlO3 with 1:l
and 2:1 Y4Al2O9.

これらをCeで付活した螢光体のうちで最もよく研究さ
れているのはY3Al5012:Ce(P46)である
。これは、Y3Al5O12が最も安定であり簡単な固
相反応法でも比較的容易に単一相として得られるためで
ある。YAlO3:Ce螢光体は、特公昭50−298
33号明細書に示されるようにフライングスポツト管用
螢光体としてすぐれているが、同公報によると、電子線
衝撃に対して安定であり、ウエーバ一の論文によれば、
チヨクラルスキ法で育成したYAlO3:Ce単結晶で
は紫外線励起でτ1/e一16n秒、λMax≧370
nmとなり、ビームインデツクス管用螢光体としても有
望である。
Among these phosphors activated with Ce, Y3Al5012:Ce (P46) is the most widely studied. This is because Y3Al5O12 is the most stable and can be relatively easily obtained as a single phase even by a simple solid phase reaction method. YAlO3:Ce phosphor is manufactured by the Japanese Patent Publication No. 50-298
As shown in the specification of No. 33, it is excellent as a phosphor for flying spot tubes, but according to the same publication, it is stable against electron beam impact, and according to the paper by Weber et al.
In the YAlO3:Ce single crystal grown by the Czyochralski method, τ1/e - 16 ns, λMax≧370 with ultraviolet excitation
nm, and is also promising as a phosphor for beam index tubes.

本出願人はこの点に着目し先に、このYAlO3:Ce
螢光体の発光強度を改善したものを特開昭51−141
787号として出願している。本発明の目的は、YAl
O3:Ce螢光体の発光強度を向上させることにあるが
、その方法は特開昭51−141787号のそれとは全
く異なる。
The present applicant focused on this point and first developed this YAlO3:Ce.
A phosphor with improved luminous intensity was published in Japanese Patent Application Laid-Open No. 51-141.
It has been filed as No. 787. The object of the present invention is to
The purpose of this method is to improve the emission intensity of the O3:Ce phosphor, but the method is completely different from that of JP-A-51-141787.

特開昭51−141787号の発明では、出発原料の混
合物中に含まれるAlイオンの数と、YイオンとCeイ
オンの数の和との比であるAl/(Y+Ce)値が化学
量論比の値の1であり、この混合物に更に反応促進剤と
して炭酸バリウムのようなバリウム化合物を加えること
を特徴としている。すなわち、生成螢光体の発光強度向
上は、反応促進剤の添加によつてもたらされている。一
方、本発明は原料の混合物中のAl/(Y+Ce)値を
1より減少させて0.95〜0.65とし、この混合物
を1100℃〜1400℃で焼成する点に特徴を有して
おり、反応促進剤は添加してもしなくてもよい。すなわ
ち、生成螢光体の発光強度向上は、Al/(Y+Ce)
を0.95〜0.65とし、焼成温度を1100〜14
00℃とすることによりもたらされるものである。付活
剤として添加されるCeの濃度範囲は、通常のCe付活
螢光体の場合と同じく、Yのモル量に対して0.01〜
5モル%が望ましい。
In the invention of JP-A-51-141787, the Al/(Y+Ce) value, which is the ratio of the number of Al ions contained in the mixture of starting materials to the sum of the numbers of Y ions and Ce ions, is the stoichiometric ratio. It is characterized in that a barium compound such as barium carbonate is further added to this mixture as a reaction accelerator. That is, the emission intensity of the produced phosphor is improved by adding a reaction accelerator. On the other hand, the present invention is characterized in that the Al/(Y+Ce) value in the raw material mixture is reduced from 1 to 0.95 to 0.65, and this mixture is fired at 1100°C to 1400°C. , a reaction accelerator may or may not be added. In other words, the emission intensity of the generated phosphor is improved by Al/(Y+Ce)
is set to 0.95 to 0.65, and the firing temperature is set to 1100 to 14
This is brought about by setting the temperature to 00°C. The concentration range of Ce added as an activator is 0.01 to 0.01 to the molar amount of Y, as in the case of ordinary Ce-activated phosphors.
5 mol% is desirable.

この範囲外のCe濃度の場合でもAl/(Y+Ce)値
を1より減少させれば発光強度の増大は認められるが、
発光強度の絶対値が次第に減少し実用的でなくなる。以
下実施例をもとに本発明を詳細に説明する。
Even if the Ce concentration is outside this range, if the Al/(Y+Ce) value is decreased below 1, an increase in luminescence intensity is observed.
The absolute value of the emission intensity gradually decreases, making it impractical. The present invention will be explained in detail below based on Examples.

実施例 1あらかじめ灼熱減量補正をした99.99%
の酸化イツトリウムY2O3、99.99%の酸化アル
ミニウムAl2O3、99.99%の弗化セリウムを次
のモル数に比例した重量だけ秤量した。
Example 1 99.99% with scorching heat loss correction in advance
Yttrium oxide Y2O3, 99.99% aluminum oxide Al2O3, and 99.99% cerium fluoride were weighed in amounts proportional to the following mole numbers.

Y2O3・・・・・・・・・・・・・・・0.495モ
ルAl2O3・・・・・・・・・・・・0.5yモルC
eF3・・・・・・・・・・・・・・・0.010モル
ただし、yは1.00、0.97、0.94、0.91
、0.88、0.83、0.78、0.73、0.65
、0.50の10通りを用意した。
Y2O3・・・・・・・・・・・・0.495 mol Al2O3・・・・・・・・・0.5y mol C
eF3・・・・・・・・・・・・0.010 mol However, y is 1.00, 0.97, 0.94, 0.91
, 0.88, 0.83, 0.78, 0.73, 0.65
, 0.50 were prepared.

秤量した各原料をエチルアルコール中で約20時間湿式
ボールミル混合した。
The weighed raw materials were mixed in ethyl alcohol in a wet ball mill for about 20 hours.

各混合物中のAl/(Y+Ce)値は2×0.5y/(
0.495X2+0.01)であるのでAl/(Y+C
e)=yである。各混合物を乾燥後白金ルツボに入れ、
1400℃で4時間焼成した。各生成物は粉末X線回折
によつて生成物中に含まれるYAlO3、Y3Al5O
l2、Y4Al2O,、Y2O3相の存在量の変化を追
跡された。
The Al/(Y+Ce) value in each mixture is 2×0.5y/(
0.495X2+0.01), so Al/(Y+C
e)=y. After drying each mixture, put it in a platinum crucible,
It was baked at 1400°C for 4 hours. YAlO3, Y3Al5O contained in each product was determined by powder X-ray diffraction.
Changes in the abundance of l2, Y4Al2O, and Y2O3 phases were tracked.

代表例を第1図に示す。YAlO3は(121)、Y3
Al5Ol2は(420)、Y4Al2O9は(221
)、Y2O3は(222)面による回折線のピーク強度
に対してプロツトされており、各試料は同一条件で測定
した。
A typical example is shown in Figure 1. YAlO3 is (121), Y3
Al5Ol2 is (420), Y4Al2O9 is (221
) and Y2O3 are plotted against the peak intensity of the diffraction line due to the (222) plane, and each sample was measured under the same conditions.

第1図から明らかな様に、yの減少と共にYAlO3、
Y3Al5Ol2相は減少し、Y4Al2O9、Y2O
3相は増大する。第2図に、各生成物の紫外発光強度を
示す。測定はデマウンタブル電子線照射装置を用いて行
なわれ、電子線の加速電圧は10K、電流密度0.3μ
A/CrAである。電子線励起で発せられた光はHOy
aU36Oフイルタを通して浜松テレビR666ホトマ
ルで受光された。なお、この測定系で市販のP47螢光
体の発光強度を測定するとlになる。
As is clear from Fig. 1, as y decreases, YAlO3,
Y3Al5Ol2 phase decreases, Y4Al2O9, Y2O
Phase 3 increases. FIG. 2 shows the ultraviolet emission intensity of each product. The measurement was carried out using a demountable electron beam irradiation device, the acceleration voltage of the electron beam was 10K, and the current density was 0.3μ.
A/CrA. The light emitted by electron beam excitation is HOy
The light was received by Hamamatsu TV R666 Photomaru through an aU36O filter. Note that when the emission intensity of the commercially available P47 phosphor is measured using this measurement system, it is 1.

図において、y一1.0の場合はAlイオンの数と、Y
イオンとCeイオンの数の和とが等しい場合で、従来例
として知られているYAlO3:Ce螢光体である。前
述したように、yの減少と共にYAlO3相は単調に減
少するが、紫外発光強度は第2図に示される如く、yの
減少と共に一旦増大し、y≦0.73で再び減少を示す
。yが0.91〜0.73の範囲で発光強度は最大値を
示し、y−1の従来例に比べ約20%発光強度が増大し
た。
In the figure, when y-1.0, the number of Al ions and Y
This is a case where the sum of the numbers of ions and Ce ions is equal, and this is a YAlO3:Ce phosphor known as a conventional example. As described above, the YAlO3 phase decreases monotonically as y decreases, but as shown in FIG. 2, the ultraviolet emission intensity increases once as y decreases, and then decreases again when y≦0.73. The emission intensity showed a maximum value when y was in the range of 0.91 to 0.73, and the emission intensity increased by about 20% compared to the conventional example of y-1.

これは本出願人による特開昭51一141787号に示
したBa化合物添加による発光強度の増大効果と比較し
ても同等以上のものである。なお、Y2O3、Y4Al
2O9相は稀硝酸に溶解するため、生成物を稀硝酸で洗
浄することにより、これらの相のX線回折ピークは減少
もしくは消失するが、紫外発光強度はむしろ増大し、本
発明による発光強度の増大がY2O3もしくはY4Al
2O9相中のCe発光に関連したものでない事は明らか
である。実施例 2 実施例1において焼成温度を1100℃にした。
This is equivalent to or more than the effect of increasing the luminescence intensity by adding a Ba compound as shown in JP-A-51-141787 by the present applicant. In addition, Y2O3, Y4Al
Since the 2O9 phase is dissolved in dilute nitric acid, by washing the product with dilute nitric acid, the X-ray diffraction peaks of these phases decrease or disappear, but the ultraviolet emission intensity increases, and the emission intensity of the present invention is improved. The increase is Y2O3 or Y4Al
It is clear that this is not related to Ce emission in the 2O9 phase. Example 2 In Example 1, the firing temperature was set to 1100°C.

その他の条件はすべて実施例1と同じである。各生成物
におけるX線回折、紫外発光強度の測定結果を第3図と
第4図に示す。YAlO3相の生成量はYが1から0.
7に至るまでほぼ一定で、y<0.7で減少を示すが、
紫外発光強度はy〜0.65で最大値を示し、y−1の
従来例に比べて約30%、本出願人によるBa化合物添
加によるものに比べても同等以上の増大を示した。
All other conditions are the same as in Example 1. The measurement results of X-ray diffraction and ultraviolet emission intensity for each product are shown in FIGS. 3 and 4. The amount of YAlO3 phase produced varies when Y is 1 to 0.
It is almost constant up to 7 and shows a decrease when y<0.7,
The ultraviolet emission intensity showed a maximum value at y~0.65, and showed an increase of about 30% compared to the conventional example of y-1, and an increase equal to or higher than that obtained by the addition of a Ba compound by the present applicant.

実施例 3 実施例1において焼成温度を130『Cにした。Example 3 In Example 1, the firing temperature was set to 130°C.

その他の条件はすべて実施例1と同じである。各生成物
の紫外発光強度の測定結果を第5図に示す。第5図に示
される如く、yの減少と共に著しく紫外発光強度が増大
し、yが0.83〜0.73で最大値を示しy−1の従
来例に比べ約60%の増大が得られた。実施例1〜3か
ら明らかな如く、y1では焼成温度が1100′C〜1
400′Cで変化しても紫外発光強度はほぼ一定の値を
示すのに対し、yく1ではかなり大巾に変化する。出発
原料としてY2O3、Al2O3、CeF3を用いた場
合には、yが〜0.9から〜0.7で、且つ焼成温度が
〜1300℃の時、最も望ましい特性が得られる。実施
例 4出発原料として、Y2O3、YF3、Al2O3
、CeO2を用いて実施例1と同様の実験を行なつた。
All other conditions are the same as in Example 1. The measurement results of the ultraviolet emission intensity of each product are shown in FIG. As shown in Fig. 5, the ultraviolet emission intensity increases significantly as y decreases, reaching a maximum value when y is 0.83 to 0.73, which is an increase of about 60% compared to the conventional example of y-1. Ta. As is clear from Examples 1 to 3, in y1, the firing temperature was 1100'C to 1
While the ultraviolet emission intensity shows a nearly constant value even when changing at 400'C, it changes considerably at y×1. When Y2O3, Al2O3, and CeF3 are used as starting materials, the most desirable properties are obtained when y is ~0.9 to ~0.7 and the firing temperature is ~1300C. Example 4 Y2O3, YF3, Al2O3 as starting materials
An experiment similar to that in Example 1 was conducted using CeO2.

Y2O3・・・・・・・・・・・・・・・0.485モ
ルYF3・・・・・・・・・・・・・・・0.020モ
ルAl2O3・・・・・・・・・・・・0,5yモルC
eO2・・・・・・・・・・・・・・・0.010モル
ただし、y−1、0.88、0.78の3種を用意し、
1300℃で4時間焼成した。各生成物の紫外発光強度
は、第6図のようになり、yく1とすると約40%増大
した。
Y2O3・・・・・・・・・・・・0.485 mole YF3・・・・・・・・・・・・0.020 mole Al2O3・・・・・・・・・...0.5y mol C
eO2・・・・・・・・・・・・0.010 mol However, three types of y-1, 0.88, and 0.78 were prepared,
It was baked at 1300°C for 4 hours. The ultraviolet emission intensity of each product was as shown in FIG. 6, and increased by about 40% when y×1.

なお、本実施例で、YF3を用いず、Y2O3、Al2
O3、CeO2のみの組合せでもyの減少による紫外発
光強度の増大は認められたが、高々10%程度であり、
YF3の使用により、効果が顕著になる。実施例 5実
施例4でy−0,78に固定し、YF3の使用量を変化
させ、以下のモル数に比例した重量だけ秤量した。
Note that in this example, YF3 was not used, and Y2O3, Al2
Even with the combination of O3 and CeO2 alone, an increase in the ultraviolet emission intensity due to a decrease in y was observed, but it was only about 10% at most.
With the use of YF3, the effect becomes more pronounced. Example 5 In Example 4, y-0.78 was fixed, the amount of YF3 used was varied, and the following weights were weighed in proportion to the number of moles.

Y2O3・・・・・・・・・・・・・・・(0.495
−Ix)モルYF3・・・・・・・・・・・・・・・x
モルAl2O3・・・・・・・・・・・・0.5×0.
78モルCeO2・・・・・・・・・・・・・・・0.
010モルただし、x−0、0.003、0.010,
.0.020、0.050,.0.100の6種を用意
し、1300℃で4時間焼成した。
Y2O3・・・・・・・・・・・・(0.495
-Ix) Molar YF3...
Mol Al2O3・・・・・・・・・0.5×0.
78 mol CeO2・・・・・・・・・・・・0.
010 mol However, x-0, 0.003, 0.010,
.. 0.020, 0.050, . Six types of 0.100 were prepared and fired at 1300°C for 4 hours.

各生成物の紫外発光強度は、第7図のようになる。The ultraviolet emission intensity of each product is as shown in FIG.

この結果から、YF3の量は0.010モル〜0.05
0モルの範囲が最適である事が明らかになつた。実施例
6 出発原料として、実施例4のYF3のかわりにAlF3
を用い、同様の実験を行なつた。
From this result, the amount of YF3 is 0.010 mol to 0.05 mol.
It has become clear that the range of 0 mol is optimal. Example 6 As a starting material, AlF3 was used instead of YF3 in Example 4.
A similar experiment was conducted using

Y2O3・・・・・・・・・・・・・・・0.495モ
ルAl2O3・・・・・・・・・・・・(0.5y−0
.010)モルAlF3・・・・・・・・・・・・・・
・0.020モルCeO2・・・・・・・・・・・・・
・・0.010モルただしy−1と0.76の2種を用
意し、1300℃で4時間焼成した。
Y2O3・・・・・・・・・・・・・・・0.495 mol Al2O3・・・・・・・・・(0.5y-0
.. 010) Molar AlF3・・・・・・・・・・・・・・・
・0.020 mol CeO2・・・・・・・・・・・・
...0.010 mol However, two types, y-1 and 0.76, were prepared and fired at 1300°C for 4 hours.

生成物の紫外発光強度はy1の従来例では7.0、y−
0.76では9.2となり、約30%の増大が得られた
。この場合も実施例4と同様にAlF3の使用により発
光強度増大が顕著になつた。実施例 7 実施例4で、CeO2のかわりにCeF3を用い、y−
1とy−0.78の2種の混合物を1300℃で焼成し
た。
The ultraviolet emission intensity of the product is 7.0 in the conventional example of y1, and y-
At 0.76, it became 9.2, an increase of about 30%. In this case as well, as in Example 4, the use of AlF3 resulted in a remarkable increase in luminescence intensity. Example 7 In Example 4, CeF3 was used instead of CeO2, and y-
A mixture of two types, 1 and y-0.78, was fired at 1300°C.

生成物の紫外発光強度はy−1の従来例で6.8y−0
.78で10.3を示し、CeO2の場合とほぼ同じ結
果が得られた。以上のように、本発明はセリウムで付活
されたイツトリウムオルソアルミネート螢光体の製造方
法において、出発原料の混合物中のAl/(Y+Ce)
値が化学量論比の値1より小さい0.95から0.65
の範囲になるように出発原料を秤量、混合し、この混合
物を1100℃から1400℃の範囲で焼成するように
したもので、発光強度を飛躍的に向上させることができ
る。
The ultraviolet emission intensity of the product is 6.8y-0 in the conventional example of y-1.
.. 78 and 10.3, which was almost the same result as in the case of CeO2. As described above, the present invention provides a method for producing a cerium-activated yttrium orthoaluminate phosphor, in which Al/(Y+Ce) in a mixture of starting materials is
The value is less than the stoichiometric value 1 from 0.95 to 0.65
The starting materials are weighed and mixed so that the starting materials are in the range of 1,100°C to 1,400°C, and the mixture is fired at a temperature of 1,100°C to 1,400°C, thereby dramatically improving the luminescence intensity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第3図はそれぞれ1400℃、1100℃
で焼成された生成物中のYAlO3、Y3Al5Ol2
、Y4Al2O,、Y2O3相の存在量のAl/(Y+
Ce)値依存特性を示す図、第2図および第4図〜第7
図は本発明で製造された螢光体の紫外発光強度のAl/
(Y+Ce)値依存特性を示す図である。
Figures 1 and 3 are at 1400°C and 1100°C, respectively.
YAlO3, Y3Al5Ol2 in the product calcined with
,Y4Al2O,,Y2O3 phase abundance Al/(Y+
Ce) Diagrams showing value-dependent characteristics, Figures 2 and 4 to 7
The figure shows the ultraviolet emission intensity of the phosphor produced according to the present invention.
FIG. 3 is a diagram showing (Y+Ce) value dependence characteristics.

Claims (1)

【特許請求の範囲】 1 Y_2O_3、Al_2O_3およびCeF_3ま
たはCeO_2を出発原料中に含み、出発原料の混合物
中のアルミニウムイオンの数と、イットリウムイオンと
セリウムイオンの数の和との比Al/(Y+Ce)値が
0.95乃至0.65であり、かつイットリウムに対す
るセリウムのモル比が0.01乃至5モル%となるよう
に出発原料を秤量、混合し、この混合物を1100℃か
ら1400℃の範囲の温度で焼成することを特徴とする
セリウム付活イットリウムオルソアルミネート螢光体の
製造方法。 2 出発原料にYF_3を0.010乃至0.050モ
ル含むことを特徴とする特許請求の範囲第1項記載のセ
リウム付活イットリウムオルソアルミネート螢光体の製
造方法。 3 出発原料にAlF_3を含むことを特徴とする特許
請求の範囲第1項記載のセリウム付活イットリウムオル
ソアルミネート螢光体の製造方法。
[Claims] 1 Y_2O_3, Al_2O_3 and CeF_3 or CeO_2 are included in the starting materials, and the ratio of the number of aluminum ions to the sum of the numbers of yttrium ions and cerium ions in the mixture of starting materials Al/(Y+Ce) The starting materials are weighed and mixed so that the value is 0.95 to 0.65 and the molar ratio of cerium to yttrium is 0.01 to 5 mol%, and this mixture is heated at a temperature of 1100°C to 1400°C. A method for producing a cerium-activated yttrium orthoaluminate phosphor, the method comprising firing at a high temperature. 2. The method for producing a cerium-activated yttrium orthoaluminate phosphor according to claim 1, wherein the starting material contains 0.010 to 0.050 mol of YF_3. 3. The method for producing a cerium-activated yttrium ortho aluminate phosphor according to claim 1, characterized in that the starting material contains AlF_3.
JP15076877A 1977-12-14 1977-12-14 Method for producing cerium-activated yttrium orthoaluminate phosphor Expired JPS5923354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15076877A JPS5923354B2 (en) 1977-12-14 1977-12-14 Method for producing cerium-activated yttrium orthoaluminate phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15076877A JPS5923354B2 (en) 1977-12-14 1977-12-14 Method for producing cerium-activated yttrium orthoaluminate phosphor

Publications (2)

Publication Number Publication Date
JPS5482389A JPS5482389A (en) 1979-06-30
JPS5923354B2 true JPS5923354B2 (en) 1984-06-01

Family

ID=15503984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15076877A Expired JPS5923354B2 (en) 1977-12-14 1977-12-14 Method for producing cerium-activated yttrium orthoaluminate phosphor

Country Status (1)

Country Link
JP (1) JPS5923354B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145848U (en) * 1984-03-07 1985-09-27 株式会社東洋クオリティワン cushion body
JPS60145847U (en) * 1984-03-07 1985-09-27 株式会社 ヒユ−マンインダストリ−コ−ポレ−シヨン cushion body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145848U (en) * 1984-03-07 1985-09-27 株式会社東洋クオリティワン cushion body
JPS60145847U (en) * 1984-03-07 1985-09-27 株式会社 ヒユ−マンインダストリ−コ−ポレ−シヨン cushion body

Also Published As

Publication number Publication date
JPS5482389A (en) 1979-06-30

Similar Documents

Publication Publication Date Title
Nakazawa et al. Vacuum ultraviolet luminescence-excitation spectra of RPO4: Eu3+ (R= Y, La, Gd and Lu)
Hewes et al. 4f7-4f7 emission from Eu2+ in the system MF2· AlF3
US4295989A (en) Luminescent hafnia composition
US4110660A (en) Luminescent barium-lithium aluminate phosphors and lamp containing the same
JP2661952B2 (en) Method for manufacturing phosphor
JPH0625356B2 (en) Light emitting screen and low pressure mercury vapor discharge lamp provided with the same
Lin et al. Comparative study of Ca4Y6 (SiO4) 6O: a phosphors prepared by sol-gel and dry methods (A= Pb2+,+ Eu3+, Tb3+,+ Dy3+)
Aitasalo et al. Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates
US2392814A (en) Strontium aluminate phosphor
CA1045807A (en) Method of manufacturing a rare-earth aluminate, particularly a luminescent rare-earth aluminate
JPS5923354B2 (en) Method for producing cerium-activated yttrium orthoaluminate phosphor
JPH0685313B2 (en) Luminescent aluminate for light-emitting screen and method for producing the same
CA1139545A (en) Luminescent aluminate
US3702828A (en) Europium-activated barium and strontium,calcium aluminum fluoride phosphors
US4141855A (en) Method of producing cerium-activated phosphor of improved characteristic
JP3205398B2 (en) Unactivated yttrium tantalate phosphor
US4070301A (en) Method of preparing cerium-activated yttriumaluminate phosphor of improved efficiency
US4014813A (en) Hafnium pyrophosphate phosphors and methods of preparation
US3630945A (en) Divalent europium activated alkaline earth aluminum fluoride luminescent materials and process
JPH07286171A (en) Rare earth metal-aluminum oxide fluorescent material emitting near infrared rays, production of the fluorescent material and cathode-ray tube and liquid crystal light valve produced by using the fluorescent material
JPS6136798B2 (en)
US3684730A (en) Preparation of rare earth oxide phosphors of high brightness and cathodoluminescent efficiency
US5076964A (en) Process for producing cerium activated yttrium gallium aluminate CRT phosphor
NL8601569A (en) PROCESS FOR PREPARING TERBIUM-ACTIVATED YTTRIMUM SILICATE FLUORESCENT SUBSTANCES.
JPS6045676B2 (en) Method for manufacturing phosphor