JPS59232998A - Susceptor for high pressure crystal pulling up device - Google Patents

Susceptor for high pressure crystal pulling up device

Info

Publication number
JPS59232998A
JPS59232998A JP10867383A JP10867383A JPS59232998A JP S59232998 A JPS59232998 A JP S59232998A JP 10867383 A JP10867383 A JP 10867383A JP 10867383 A JP10867383 A JP 10867383A JP S59232998 A JPS59232998 A JP S59232998A
Authority
JP
Japan
Prior art keywords
susceptor
temp
temperature
control
crystal pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10867383A
Other languages
Japanese (ja)
Inventor
Hisatsune Watanabe
渡辺 久恒
Akio Shimura
志村 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10867383A priority Critical patent/JPS59232998A/en
Publication of JPS59232998A publication Critical patent/JPS59232998A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To enable precision temp. control of a susceptor for a high pressure crystal pressure crystal pulling up device by fixing the temp. sensing part of a temp. sensing element for automatic temp. control into the circumferential wall of a small hole and minimizing the space around the temp. sensing part. CONSTITUTION:A screw 11 is cut at the lower center of a susceptor 4 for a high pressure crystal pulling up device used for production of gallium sulfide crystal, etc. and a susceptor supporting bar 12 in common used as a bar for fixing a thermocouple 6 is screwed into the screw 11. A thermocouple tip 7 is held in place between a protective tube 9 formed on BN and a protective cap 13 formed of BN and is fixed in this state to the susceptor 4. The tip 7 is thus insulated from the susceptor 4 by the cap 13 and since there is practically no surplus space around the tip 7, the accuracy of temp. control is extremely improved with substantially no generation of the heat convection and therefore the precise temp. control of the susceptor 4 is made possible.

Description

【発明の詳細な説明】 本発明は、砒化ガリューム結晶等の製造に用いる高圧結
晶引上装置用サセプターに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a susceptor for a high-pressure crystal pulling apparatus used for producing gallium arsenide crystals and the like.

高圧引上結晶成長法は、砒化ガリウムや燐化ガリウムな
ど電子材料結晶の育成に不可欠な方法であシ、量産装置
としても実用化されている。砒化ガリウムや燐化ガリウ
ムはその融点において砒素あるいは燐の解離圧が大きい
ため液体封止法という方法がとられている。これは、該
半導体材料の融液の表面に透明で液体状の酸化ボロン(
B203)を浮かせ装置内全体を窒素やアルゴンなどの
不活性ガスで加圧する方法である。この際加圧圧力は高
い程融液からの解離飛散が少なく、また引上結晶高温部
からの砒素あるいは燐のM離も少なく抑えることができ
る。ところが、圧力が高いほど装置内の上下温度差のた
め加圧気体自身の熱対流が激しくなり、観察窓からの観
察が困難になるばかりでなく、融液の温度制御が困難に
々る。従って、出来るだけ低い圧力の方が成長の制御と
いう観点からは望ましいが、先述した解離の問題のため
現実的には5〜50気圧の範囲で行なわざるを得ない。
The high-pressure pull-up crystal growth method is an essential method for growing crystals of electronic materials such as gallium arsenide and gallium phosphide, and has also been put to practical use as a mass-production device. For gallium arsenide and gallium phosphide, the dissociation pressure of arsenic or phosphorus is large at their melting point, so a method called liquid sealing is used. This is because transparent, liquid boron oxide (
B203) is floated and the entire inside of the device is pressurized with an inert gas such as nitrogen or argon. At this time, the higher the applied pressure, the less the dissociation and scattering from the melt, and the less M separation of arsenic or phosphorus from the high temperature part of the pulled crystal can be suppressed. However, the higher the pressure, the more intense the thermal convection of the pressurized gas itself becomes due to the temperature difference between the upper and lower parts of the apparatus, which not only makes observation through the observation window difficult, but also makes it difficult to control the temperature of the melt. Therefore, from the viewpoint of growth control, it is desirable to use a pressure as low as possible, but due to the above-mentioned dissociation problem, it is practically necessary to use a pressure in the range of 5 to 50 atmospheres.

しかしながら、この圧力範囲では従来のサセプターは精
密なる温度制御が困難であり、サセプタ温度測定用熱電
対の出力の温度変動は加圧圧力に大きく依存し、圧力が
大きくなる程温度変動が大きくなる。このような温度変
動は、例えコンピュータを用いて自動温度制御を行なう
としても大きな障害となり、引上げ結晶の精密な直径制
御は困難であった。
However, in this pressure range, it is difficult for conventional susceptors to precisely control the temperature, and the temperature fluctuations in the output of the thermocouple for measuring susceptor temperature largely depend on the pressurizing pressure, and the higher the pressure, the larger the temperature fluctuations. Such temperature fluctuations pose a major obstacle even if automatic temperature control is performed using a computer, and it has been difficult to precisely control the diameter of the pulled crystal.

この温度変動の原因を追求した折、サセプタ中にあけら
れた熱電対挿入孔内の微少空間での加圧ガスの熱対流に
基づくものと、機械的振動による接触、非接触の繰シ返
しによることが判明した。
When we investigated the causes of this temperature fluctuation, we discovered that it is due to thermal convection of pressurized gas in the microscopic space inside the thermocouple insertion hole drilled in the susceptor, and that it is due to repeated contact and non-contact caused by mechanical vibration. It has been found.

特に、温度変動の加圧圧力依存性が大きいことから、熱
対流の影響がよシ大きいことが判った。
In particular, it was found that the influence of thermal convection is particularly large because the dependence of temperature fluctuation on pressurization pressure is large.

第1図は従来のサセプターの断面図である。融液1の表
面には液体封止剤2がかぶせてありこの全体を融液貯蔵
ルツボ3が収容している。ルツボ3はカーボン製サセプ
ター4に収納されている。
FIG. 1 is a sectional view of a conventional susceptor. The surface of the melt 1 is covered with a liquid sealant 2, and the whole is housed in a melt storage crucible 3. The crucible 3 is housed in a carbon susceptor 4.

サセプター4の中央下部には下から穴5があけられてお
シ、この中に熱電対6が挿入されている。
A hole 5 is drilled from below in the lower center of the susceptor 4, and a thermocouple 6 is inserted into the hole 5.

熱電対先端部7の周辺には禰ユ→→令空間8があシ、こ
の余裕空間8中で加圧気体(窒素あるいはアルゴンガス
)の熱対流が起こる。また、熱電対先端部7は、サセプ
ター4と軽く接触しているだけなので、機械的振動の外
乱に対し余裕空間8の周壁との接触状態が変動しやすい
。この対流及び接触状態の変動に起因して、サセプタ−
4に温度変化がなくても熱電対6による測定温度に変動
が起こシ、ひいてはサセプター4の温度測定精度が低下
する。
There is a margin space 8 around the thermocouple tip 7, and heat convection of pressurized gas (nitrogen or argon gas) occurs in this extra space 8. Furthermore, since the thermocouple tip 7 is only lightly in contact with the susceptor 4, the state of contact with the peripheral wall of the margin space 8 is likely to fluctuate due to disturbances such as mechanical vibration. Due to this convection and variation in contact conditions, the susceptor
Even if there is no temperature change in the susceptor 4, the temperature measured by the thermocouple 6 will fluctuate, and as a result, the temperature measurement accuracy of the susceptor 4 will decrease.

本発明の目的は、温度制御が精密に行える高圧結晶引上
装置用サセプターの提供にある。
An object of the present invention is to provide a susceptor for a high-pressure crystal pulling apparatus that allows precise temperature control.

本発明の構成は、温度感知素子の温度感知部が小穴に収
容してあり、この温度感知素子で感知した温度に基づき
自動温度制御を受ける高温結晶引上装置用サセプタにお
いて、前記温度感知部の周辺の空間が倣小であシ、前記
温度感知部は前記小穴の周壁に固定しであることを特徴
とする。
The present invention provides a susceptor for a high-temperature crystal pulling apparatus in which a temperature sensing part of a temperature sensing element is accommodated in a small hole, and the temperature is automatically controlled based on the temperature sensed by the temperature sensing element. It is characterized in that the surrounding space is a rectangular hole, and the temperature sensing portion is fixed to the peripheral wall of the small hole.

次に図面を参照して本発明の詳細な説明する。Next, the present invention will be described in detail with reference to the drawings.

第2図(a)は本発明の一実施例の断面図、本図(b)
はこの実施例で用いるサセプター支持棒等の斜視図であ
る。サセプター4の下部中央にはネジ11が切っである
。このネジ11の中に熱電対固定を兼ねたサセプター支
持棒12がねじ込んである。
FIG. 2(a) is a sectional view of an embodiment of the present invention, and FIG. 2(b) is a sectional view of an embodiment of the present invention.
is a perspective view of a susceptor support rod, etc. used in this embodiment. A screw 11 is cut in the center of the lower part of the susceptor 4. A susceptor support rod 12 which also serves to fix the thermocouple is screwed into this screw 11.

第2図(b)では、内部構造を判りやすくするため熱電
対先端部7、BN(窒化硼素)製先端保護キャップ13
.BN製保護管9を支持棒12から若干ひりばりだした
位置で示されている。支持棒12のネジ部10がサセプ
ターネジ部11にねじ込まれる。ねじ込んだ後は第2図
(a)に示すように熱電対先端部7はBN製保護管9と
BNfi保護キャップ13とに挾まれた状態でサセプタ
ー4にしっかシ固定される。BN製保護キャップ13の
ためにカーボン製サセプター4から電気的に絶縁されて
いる。また、熱電対先端部7の周辺には殆んで余分な空
間が々いから熱対流も殆んで起こらない。
In Fig. 2(b), the thermocouple tip 7 and the tip protection cap 13 made of BN (boron nitride) are shown in order to make the internal structure easier to understand.
.. The BN protection tube 9 is shown in a position slightly protruding from the support rod 12. The threaded portion 10 of the support rod 12 is screwed into the susceptor threaded portion 11. After screwing in, the thermocouple tip 7 is firmly fixed to the susceptor 4 while being sandwiched between the BN protection tube 9 and the BNfi protection cap 13, as shown in FIG. 2(a). It is electrically insulated from the carbon susceptor 4 due to the BN protective cap 13. Furthermore, since there is almost no extra space around the thermocouple tip 7, thermal convection hardly occurs.

このような構造のサセプターを用いることによって、温
度測定精度は極めて改善され、第1図の従来のサセプタ
ーを用いると、5気圧の加圧状態で1200C付近で±
2Cの変動があったが、この実施例を用いると同一条件
下で±0.1tl’以下に抑制され、顕著な効果が確認
された。
By using a susceptor with such a structure, temperature measurement accuracy is greatly improved. When the conventional susceptor shown in Fig. 1 is used, temperature measurement accuracy of around 1200C under a pressurized state of 5 atm.
Although there was a fluctuation of 2C, using this example, it was suppressed to below ±0.1 tl' under the same conditions, and a remarkable effect was confirmed.

本発明によれば、以上説明したように、温度制御が精密
に行える高圧結晶引上装置用サセプター5− が提供できる。
According to the present invention, as explained above, it is possible to provide a susceptor 5- for a high-pressure crystal pulling apparatus that allows precise temperature control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高圧結晶引上装置用サセプターの断面図
、第2図(a)は本発明の一実施例の断面図、同図(b
)はこの実施例で用いるサセプター支持棒等の斜視図で
ある。 1・・・・・・融液、2・・・・・・液体封止剤、3・
・・・・・融液貯蔵ルツボ、4・・・・・・サセプター
、5・・・・・・熱電対挿入穴、6・・−・・・熱電対
、7・・・・・・熱電対先端部、8・・・・・・空間、
9・・・・・・BN製保護管、10.11・・・・・・
ネジ部、12・−・・・・支持棒、!3・・・・、−B
 N製保護キャップ。 6一 f 1 回 (秋) 早2徊
FIG. 1 is a sectional view of a conventional susceptor for a high-pressure crystal pulling apparatus, FIG. 2(a) is a sectional view of an embodiment of the present invention, and FIG.
) is a perspective view of a susceptor support rod, etc. used in this example. 1... Melt liquid, 2... Liquid sealant, 3.
... Melt storage crucible, 4 ... Susceptor, 5 ... Thermocouple insertion hole, 6 ... Thermocouple, 7 ... Thermocouple tip, 8...space,
9... BN protection tube, 10.11...
Threaded part, 12... Support rod,! 3..., -B
N protective cap. 61f 1 time (autumn) Early 2 wanderings

Claims (1)

【特許請求の範囲】[Claims] 温度感知素子の温度感知部が小穴に収容してあシ、この
温度感知素子で感知した温度に基づき自動温度制御を受
ける高温結晶引上装置用サセプターにおいて、前記温度
感知部の周辺の空間が微小であシ、前記温度感知部は前
記小穴の周壁に固定しであることを特徴とする高温結晶
引上装置用サセプター。
In a susceptor for a high-temperature crystal pulling device in which a temperature sensing part of a temperature sensing element is accommodated in a small hole and the temperature is automatically controlled based on the temperature sensed by the temperature sensing element, the space around the temperature sensing part is minute. A susceptor for a high-temperature crystal pulling apparatus, wherein the temperature sensing portion is fixed to a peripheral wall of the small hole.
JP10867383A 1983-06-17 1983-06-17 Susceptor for high pressure crystal pulling up device Pending JPS59232998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10867383A JPS59232998A (en) 1983-06-17 1983-06-17 Susceptor for high pressure crystal pulling up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10867383A JPS59232998A (en) 1983-06-17 1983-06-17 Susceptor for high pressure crystal pulling up device

Publications (1)

Publication Number Publication Date
JPS59232998A true JPS59232998A (en) 1984-12-27

Family

ID=14490770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10867383A Pending JPS59232998A (en) 1983-06-17 1983-06-17 Susceptor for high pressure crystal pulling up device

Country Status (1)

Country Link
JP (1) JPS59232998A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490228A (en) * 1990-03-12 1996-02-06 Ngk Insulators, Ltd. Heating units for use in semiconductor-producing apparatuses and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5490228A (en) * 1990-03-12 1996-02-06 Ngk Insulators, Ltd. Heating units for use in semiconductor-producing apparatuses and production thereof

Similar Documents

Publication Publication Date Title
Boyd et al. Effect of pressure on the melting of diopside, CaMgSi2O6, and albite, NaAlSi3O8, in the range up to 50 kilobars
Finger et al. Structure and compression of crystalline argon and neon at high pressure and room temperature
Clayton et al. Temperature and volume dependence of the thermal conductivity of solid argon
US4197273A (en) Apparatus for controlling the directional solidification of a liquid-solid system
Schweizer et al. Measurement of temperature fluctuations and microscopic growth rates in a silicon floating zone under microgravity
US5197531A (en) Method of manufacturing directionally solidified castings
US5723337A (en) Method for measuring and controlling the oxygen concentration in silicon melts and apparatus therefor
Tsukamoto et al. In situ observation of crystals growing in high temperature melts or solutions
JPS59232998A (en) Susceptor for high pressure crystal pulling up device
US5431125A (en) Twin-free crystal growth of III-V semiconductor material
Kakimoto et al. Temperature dependence of viscosity of molten GaAs by an oscillating cup method
Puech et al. Liquid-solid 4He interface: Kapitza resistance
US4847053A (en) Growth of glass-clad single crystal fibers
Nouailhas et al. Development and application of a model for single-crystal superalloys
Hirao et al. Cryostat for semiautomatic measurement of heat capacity and elastic moduli between 1.6 and 400 K
US3275557A (en) Method of making mercury-doped germanium semiconductor crystals
Vinckel et al. Thermopower of pure metals near the melting point as a parameter needed to control the solidification process
Hall et al. Low-temperature specific heat anomalies in polycrystalline α-uranium
Mangum Stability of small industrial platinum resistance thermometers
Shevelev et al. The realization of fixed points of the temperature scale in small-size ampoules
JPS5957984A (en) Method for contacting seed crystal or substrate
JPH0543106Y2 (en)
JPS5927223A (en) Liquid level detecting sensor
Gatos et al. Indium antimonide crystal growth experiment m562
Kern et al. Microgravity silicon zoning investigation