JPS59232747A - Tool position data forming method - Google Patents

Tool position data forming method

Info

Publication number
JPS59232747A
JPS59232747A JP10645583A JP10645583A JPS59232747A JP S59232747 A JPS59232747 A JP S59232747A JP 10645583 A JP10645583 A JP 10645583A JP 10645583 A JP10645583 A JP 10645583A JP S59232747 A JPS59232747 A JP S59232747A
Authority
JP
Japan
Prior art keywords
position data
points
tool
point
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10645583A
Other languages
Japanese (ja)
Other versions
JPS6411418B2 (en
Inventor
Hajime Kishi
甫 岸
Maki Seki
関 真樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP10645583A priority Critical patent/JPS59232747A/en
Publication of JPS59232747A publication Critical patent/JPS59232747A/en
Publication of JPS6411418B2 publication Critical patent/JPS6411418B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/4202Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model
    • G05B19/4207Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model in which a model is traced or scanned and corresponding data recorded

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To shorten the position data sampling time and to eliminate the large capacity memory for storing the position data, by measuring the surface position of a cubic and forming the tool position data from the surface position data. CONSTITUTION:A three-dimensional measuring unit 101 having position sensors 101a-101c is provided to measure the position data at three points by means of three sensor output signals. The position data of said three points Pi+1, Qi+1, Ri+1, position data at three points Pi, Qi, Ri measured previously and position data at three points Pi-1, Qi-1, Ri-1 measured further previously are employed to determine the center of tool position. In other word, arches passing through the points Qi-1, Qi, Qi+1 and the points Pi, Qi, Ri are obtained while tangential vectors U1, U2 contacting with each arch at point Qi are obtained to obtain a perpendicular vector (N) of point Qi from the outer product of said vectors U1, U2 to produce NC tape while employing the position departed by the diameter of tool from point Qi as the center of tool.

Description

【発明の詳細な説明】 (M業上の利用分野〉 本発明は立体(モデル)の表面位置を測定し、得られた
表面位置データを用いて工具位置データを作成する工具
位置データ作成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of application in M industry) The present invention relates to a tool position data creation method for measuring the surface position of a solid (model) and creating tool position data using the obtained surface position data. .

〈従来技術〉 6次元測定機により立体形状表面の位置(x。<Conventional technology> The position (x) of the three-dimensional surface is determined by a six-dimensional measuring machine.

y+  z)を測定して、入力することにより該立体の
形状を入力することが従来より行なわれている。
Conventionally, the shape of the three-dimensional object is input by measuring and inputting y+z).

そして、最近か\る3次元測定機を用いてモデルの立体
形状を入力し、該入力された立体形状データにより該モ
デルと同等の物或いはモデルに幻しメス型の物を切削す
るNCテープの作成方法が提案されている。このNCテ
ープ作成方法は、3次元測定機(たとえば商品名”電子
プローグとして市販されている)のセンサをモデルに接
触させ、該センサ出力信号を用いてモデル表面の位置を
測定して記憶し、これら位置データ、工具半径などを用
いて工具中心位置を求めてNCテープを作成するもので
ある。
Then, we input the three-dimensional shape of the model using a recent three-dimensional measuring machine, and use the input three-dimensional shape data to create an NC tape for cutting an object equivalent to the model or a female-shaped object that resembles the model. A method of creation is proposed. This NC tape creation method involves bringing a sensor of a three-dimensional measuring machine (for example, commercially available under the trade name "Electronic Prog") into contact with the model, measuring and storing the position of the model surface using the sensor output signal, Using these position data, tool radius, etc., the tool center position is determined and an NC tape is created.

〈従来技術の欠点〉 しかし、か\る従来の方法においては、(イ)等間隔に
、しかも密に位置データを採取して記憶させなくてはな
らないため位置データ採取時間が長くなり、(ロ)シか
も記憶するデータ量が膨大になるため大容量の処理シス
テムが必要になるという欠点があった。
<Disadvantages of the prior art> However, in the conventional method, (a) location data must be collected and stored at equal intervals and densely, which increases the time required to collect the location data; ) However, it had the disadvantage that it required a large-capacity processing system because the amount of data to be stored was enormous.

〈発明の目的〉 従って、本発明の目的は位置データ採取に要する時間を
短縮でき、しかも大容量のメモリが不用な工具位置デー
タ作成方法を提供することを目的とする。
<Object of the Invention> Accordingly, an object of the present invention is to provide a tool position data creation method that can shorten the time required to collect position data and does not require a large capacity memory.

〈発明の概要〉 本発明は、少なくとも3本のセンサを並設して有する3
次元測定機を設け、該3次元測定機の6本のセンサ出力
信号を用いて近接した3点の位置データを同時に測定し
て記憶し、該測定された6点Pi 十i + Q i 
+1r Ri +1の位置データと、前回測定された3
点P1+ Qi+ itiの位置データと、前々回測定
された6点P i−1+ Qi−4+ R1−1の位置
データとを用いて工具中心位置を以下の(イ)〜に)に
従って求め、すなわち (イ)ポイントQi−j+ Ql、 Q<+1を通る第
1の円弧と、ポイントP L Qi+ ”1を通る第2
の円弧を求め、仲)各円弧にポイントQiで接する接線
ベクトルU、、 tJ2を求め、 (ハ)接線ベクトルU1. LJ2の外積によpポイン
トQ[におけるモデルの法線ベクトルNを求め、に)ポ
イントQtから法線ベクトル方向に工具半径rたけ離れ
たポイントを工具中心位置として求め、NCテープを作
成する。そして、本発明によれば位tftデータ採取に
要する時間を短縮でき、しかも大容量のメモリが不用と
なる。
<Summary of the Invention> The present invention provides a sensor having at least three sensors arranged in parallel.
A dimensional measuring machine is provided, and position data of three nearby points are simultaneously measured and stored using six sensor output signals of the three-dimensional measuring machine, and the measured six points Pi + Q i
+1r Ri +1 position data and previously measured 3
Using the position data of point P1+ Qi+ iti and the position data of six points P i-1+ Qi-4+ R1-1 measured two times before, the tool center position is determined according to (a) to (a) below. ) The first arc passing through the point Qi-j+ Ql, Q<+1 and the second arc passing through the point P L Qi+ ``1
(c) Find the tangent vector U,, tJ2 that touches each arc at point Qi, (c) Find the tangent vector U1. The normal vector N of the model at point p Q is determined by the cross product of LJ2, and a point that is away from point Qt by tool radius r in the direction of the normal vector is determined as the tool center position, and an NC tape is created. According to the present invention, the time required to collect TFT data can be shortened, and a large capacity memory is not required.

〈実施例〉 第1図は本発明の実施例ブロック図である。<Example> FIG. 1 is a block diagram of an embodiment of the present invention.

101は6本の位置センサ101a、 101b、 1
01ci有する3次元測定機であp1従来公知の1本の
位置センサのみ有する3次元測定機に2本の位置センサ
を追加したものである。位置測定はたとえは、モデルに
接触しない状態においてヘッド101dをX−Y平面の
所定位置に位置決めしくX、Y軸方向位置が特定される
)、シかる後ヘツド101diモデル方向に降し6本の
位置センサが全てモデルに接触したときの各センサ出力
に基いて各センサ先端のZ軸方回位111を求め、前記
X、Y軸方向位1dと合せて6本のセンサの先端位置(
3次元位置)”i、Qi、Riを測定する。102はN
Cデータ自動作成装置で必9、プロセッサ102a 、
 l(、AMl 02b 。
101 is six position sensors 101a, 101b, 1
01ci is a three-dimensional measuring machine having two position sensors added to the previously known three-dimensional measuring machine having only one position sensor. For example, in position measurement, the head 101d is positioned at a predetermined position on the The Z-axis rotation 111 of each sensor tip is determined based on the output of each sensor when all the position sensors are in contact with the model, and the tip positions of the six sensors (
3-dimensional position)" i, Qi, Ri. 102 is N
C data automatic creation device must have 9, processor 102a,
l(, AMl 02b.

制御プログラムを記憶するROM1o2c、算出された
工具中心位置を記憶す几AM102d、入出力ボート1
02e〜102h、バス1102iを有している。10
3はキーボード、104はディスプレイ装ft 、10
5はテープパンチャ、106はNCテープである。
ROM1o2c that stores the control program, AM102d that stores the calculated tool center position, input/output boat 1
02e to 102h, and a bus 1102i. 10
3 is a keyboard, 104 is a display device, 10
5 is a tape puncher, and 106 is an NC tape.

次に、第2図に示す処理の流れ図に徒って木兄I!IJ
に係る工具位置データ作成方法を説明する。
Next, follow the process flowchart shown in Figure 2 and follow the process flowchart shown in Figure 2. I.J.
A method for creating tool position data will be explained.

(イ)位置データ測定の起動がが\ると3次測定機10
1は前述の如くモデルに対しヘッド101dの位置制御
′f:′6なうと共に、位置センサ出力を用いて各位置
センサ先端位置(6次元位1’l)”+−1+QI−+
+”i−1を求める(第6図参照)。
(a) When the position data measurement starts, the tertiary measuring device 10
1 controls the position of the head 101d with respect to the model as described above 'f:'6, and also uses the position sensor output to control the tip position of each position sensor (6-dimensional position 1'l)"+-1+QI-+
+"i-1 (see Figure 6).

(ロ)シかる後、NCテデー自動作成装随102のプロ
セッサ102aは6次元測定機101がらポイントPI
−、+ Q 1= + + 1もi−1の位置データを
読みとって几AM102bノ第1・記憶域102b−1
ニ記憶スル(第4図(A)#照)。
(b) After the measurement, the processor 102a of the NC data automatic creation device 102 uses the six-dimensional measuring machine 101 to measure the point PI.
-, +Q 1= + + 1 also reads the position data of i-1 and stores it in the first storage area 102b-1 of AM 102b.
2 memory (See Figure 4 (A) #).

(ハ)ついで3次元11111定機101は”1−1+
 Qi−+ +几i−1に近接した6点Pi+ QL 
R1<第6図)の位置を測定する。プロセッサ101a
けRAM1o1の第1記憶域101b−1ノ内容を第2
記恒域101b−2に転送すると共に、ポイントPL 
Qi+ R;の位置データを読みとって第1記憶域10
1b−1に記憶する(第4図0参照)。
(c) Next, the three-dimensional 11111 fixed machine 101 is “1-1+
Qi-+ + 6 points Pi+ QL near i-1
Measure the position of R1<Figure 6). Processor 101a
The contents of the first storage area 101b-1 of RAM1o1 are stored in the second memory area 101b-1.
Transfer to the memory area 101b-2 and point PL
Read the position data of Qi+R; and store it in the first storage area 10.
1b-1 (see FIG. 4 0).

に)しかる後、3次元測定機101はP++Qi+几i
に近接した3点”i+1+Q皿+1r ”i+1(第5
し1参庄))の位置を測定する。プロセッサ101aは
RAM101の第2記憶域101b−2の内容を第6記
憶域101b−3に、′iA1記憶域101b−1の内
容を第2記憶域101b−2にそれぞれ転送し、ポイン
トPj+1+Qi+1. Pi++の位置データを第1
記憶域101b−1に記憶する(第4図(Q)。
) After that, the three-dimensional measuring machine 101 calculates P++Qi+几i
3 points close to ``i+1+Q plate+1r''i+1 (5th
Measure the position of Shi1 Sansho)). The processor 101a transfers the contents of the second storage area 101b-2 of the RAM 101 to the sixth storage area 101b-3 and the contents of the iA1 storage area 101b-1 to the second storage area 101b-2, and transfers the contents of the second storage area 101b-2 of the RAM 101 to the second storage area 101b-2, and transfers the contents of the second storage area 101b-2 to the second storage area 101b-2. The first position data of Pi++
It is stored in the storage area 101b-1 (FIG. 4(Q)).

(ホ)以上によりモデル上の9点の位置データがRAM
101に記憶され\ば、プロセッサ102aは制御プロ
グラムに従ってポイントQIにおける法線ベクトルを求
める。すなわち、 (ホー1)ポイントQi−i1 Qi、 Qt+1を通
る第1の円弧cviと、ポイントP i+ Qi、 R
iを通る第2の円弧CV2を求める(第5図参照)。
(E) With the above, the position data of the 9 points on the model is stored in RAM.
101, the processor 102a determines the normal vector at the point QI according to the control program. That is, (Ho 1) The first arc cvi passing through the point Qi-i1 Qi, Qt+1 and the point P i+ Qi, R
Find the second circular arc CV2 passing through i (see Figure 5).

(ホー2)ついで、円弧CV1を含む平面上に存在し、
且つポイントQiで円弧CV1に接する接線ベクトルU
1と、円弧CV2を含む平面上に存在し、且つポイント
Qiで円弧CV2に接する接線ベクトルU2をそれぞれ
求める。
(Ho 2) Then, it exists on a plane containing the arc CV1,
And the tangent vector U that touches the arc CV1 at the point Qi
1 and a tangent vector U2 that exists on a plane including the arc CV2 and is in contact with the arc CV2 at a point Qi.

(ホーロ)接線ベクトルU1+U2  <用いて次式の
外積演算によジ N = U、X U2             (1
)ポイントQiにおけるモデルの法線ベクトルに合求め
る(第6図)。
(Hollow) tangent vector U1+U2
) Find the normal vector of the model at point Qi (Figure 6).

(へ)工具先端が第7図に示すように半径rの半球状に
丸くなっているものとすればグロ→ニツサ102aは次
式 により工具オフセットベクトルTを求める。
(f) Assuming that the tip of the tool is rounded into a hemispherical shape with radius r as shown in FIG.

(ト)しかる後、モデル形状通りの加工物を得るる(尚
、か\る情報はキーボード103から予め入力されてい
る)0 けうモデルと同形の加工物を得るNCテープ金作成する
ものであれば、ポイントQiの位置ベクI・ルをQiと
して、工具オフセット位置Q’i <第8図参照)の位
置ベクトルQ’iを によυ求める。
(g) After that, obtain a workpiece with the same shape as the model (the information has been entered in advance from the keyboard 103) 0. Obtain a workpiece with the same shape as the model. For example, by setting the position vector I of point Qi to Qi, find the position vector Q'i of the tool offset position Q'i (see FIG. 8).

(す)一方、モデルに対し、メス型の加工物を得るNC
テープを作成しなければならないのであれば、工具オフ
セット位置Q1の位置ベクトルQiをQi=Qi   
T             (Jによシ求める。
(S) On the other hand, for the model, NC is used to obtain a female-shaped workpiece.
If a tape must be created, the position vector Qi of the tool offset position Q1 should be set as Qi=Qi
T (I ask J.

(ヌ)(3)式又は(4)式によシ工具オフセット位置
が求まればこれをfLAM102dに記憶すると共に全
ポイントの工具オフセット位置が求まったかを判別し、
求まっていれば処理経了とし、求まっていなければ1−
4−1→iとしてステップに)に戻υ、以降のステップ
を繰返えす。
(n) If the tool offset position is determined by the formula (3) or (4), it is stored in the fLAM 102d, and it is determined whether the tool offset position of all points has been determined,
If it is found, the process is completed, and if it is not found, it is 1-
Return to step 4-1→i) and repeat the subsequent steps.

〈発明の効果〉 以上詳細に説明したように、本発明は、少なくとも3本
のセンサを並設して有する3次元測定機を設け、該3次
元測定機の6本のセンサ出力信号を用いて近接した6点
の位置データを同時に測定して1)己1怠し、該泪II
定された6点PL+1+ Qi+1+R1+1の位置デ
ータと、前回測定された3点Pi。
<Effects of the Invention> As explained in detail above, the present invention provides a three-dimensional measuring machine having at least three sensors arranged in parallel, and uses the six sensor output signals of the three-dimensional measuring machine. Simultaneously measure the position data of 6 points in close proximity to
The position data of the determined six points PL+1+Qi+1+R1+1 and the previously measured three points Pi.

Q i r几lの位置データと、前々回測定された6点
P i −1+ Qi −1+ ”+−1ノ位1ttデ
ータとe用いて工具中心位1汽を求めるように構成した
から、位置データ採取に要する時間は著しく短縮され、
しかも位装 置データを記憶するメモリの容量を大容量にする必要が
ない。
Since the configuration is such that the tool center position 1 is calculated using the position data of Q i r 1, the 6 points P i -1+ Qi -1+ "+-1 position 1tt data measured two days ago, and e, the position data The time required for collection is significantly reduced,
Furthermore, there is no need to increase the capacity of the memory for storing device data.

【図面の簡単な説明】[Brief explanation of drawings]

第11i4は本発明の実施例ブロック図、第2図は本発
明に係る処理の流れ図、第6図はモデル表面上の9点の
位置データ採取説明図、第4図は位置データ記憶状説明
図、第5図乃至第7図は工具オフセットベクトル算出状
説明図、第8図は]:具オフセット位h′(算出説明図
である。 101・−3次元測定機、101a、 101b、 1
01c −・位置センサ、101d・・・ヘッド、10
2・・・自FAJNCデータ作成装置、102a・・・
プロセッサ、102b・・・RAM。 特許L11願人  ファナック株式会社代理人 弁理士
   辻   實(外1名)第2図 第5 図
Fig. 11i4 is a block diagram of an embodiment of the present invention, Fig. 2 is a flowchart of processing according to the present invention, Fig. 6 is an explanatory diagram of collecting position data at 9 points on the model surface, and Fig. 4 is an explanatory diagram of position data storage state. , FIG. 5 to FIG. 7 are explanatory diagrams of tool offset vector calculation, and FIG. 8 is an explanatory diagram of tool offset position h' (calculation. 101・-3D measuring machine, 101a, 101b, 1
01c--Position sensor, 101d--Head, 10
2... Own FAJNC data creation device, 102a...
Processor, 102b...RAM. Patent L11 applicant Fanuc Co., Ltd. agent Patent attorney Minoru Tsuji (1 other person) Figure 2 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)モデルの表m1位置を測定し、該表面位置データ
を用いて工具位置データを作成する工具位置データ作成
方法において、少なくとも6本のセンサを並設して有す
る6次元測定機を設け、該3次元測定機の3本のセンサ
出力信号を用いて近接した3点の位置データを同時に測
定して記憶し、該測定された3点Pi+1+ Qi−z
+ Ri+1の位置データと、前回測定された3点Pi
、Qi、)Liの位置データと、前々回測定でれた6点
Pi−1+ Q + −1+ Rr−1の位置データと
を用いてポイントQiに対する工具中心位置を演算して
記憶し、以後同様にQi−z、 Qi+2・・・に対す
る工具中心位置を演算して記憶することを特徴とする工
具位置データ作成方法。
(1) In the tool position data creation method of measuring the surface m1 position of the model and creating tool position data using the surface position data, a six-dimensional measuring machine having at least six sensors arranged in parallel is provided, The three sensor output signals of the three-dimensional measuring machine are used to simultaneously measure and store the position data of three nearby points, and the three measured points Pi+1+Qi-z
+ Ri+1 position data and the previously measured 3 points Pi
, Qi, )Li and the position data of the 6 points Pi-1+Q+-1+Rr-1 measured the day before last, the tool center position for point Qi is calculated and stored, and the same process is performed thereafter. A tool position data creation method characterized by calculating and storing tool center positions for Qi-z, Qi+2, . . .
(2)ポイントQi−1+ Qi+ QL4−1を通る
第1の円弧と、ポイントP i+ Qi+ Riを通る
第2の円弧を求め、各円弧にポイントQiで接する接線
ベクトルU1.U2を求め、接線ベクトルU、、 U2
の外積によりポイントQiにおけるモデルの法線ベクト
ルマを求め、ポイントQiから法線ベクトル方向に工具
半径rだけ離れたポイントを工具中心位置とすることを
特徴とする特#’F ′##求の範囲第(1)項記載の
工具位置データ作成方法。
(2) Find the first circular arc passing through point Qi-1+Qi+QL4-1 and the second circular arc passing through point P i+ Qi+ Ri, and find the tangent vector U1. which touches each circular arc at point Qi. Find U2 and calculate the tangent vector U,, U2
The normal vector of the model at point Qi is determined by the cross product of The tool position data creation method described in paragraph (1).
JP10645583A 1983-06-14 1983-06-14 Tool position data forming method Granted JPS59232747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10645583A JPS59232747A (en) 1983-06-14 1983-06-14 Tool position data forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10645583A JPS59232747A (en) 1983-06-14 1983-06-14 Tool position data forming method

Publications (2)

Publication Number Publication Date
JPS59232747A true JPS59232747A (en) 1984-12-27
JPS6411418B2 JPS6411418B2 (en) 1989-02-23

Family

ID=14434063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10645583A Granted JPS59232747A (en) 1983-06-14 1983-06-14 Tool position data forming method

Country Status (1)

Country Link
JP (1) JPS59232747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102864A (en) * 1986-10-17 1988-05-07 Ngk Insulators Ltd Grinding method for uniaxial eccentric rotor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622105A (en) * 1979-08-01 1981-03-02 Hitachi Ltd Control device for numerical control machine tool

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622105A (en) * 1979-08-01 1981-03-02 Hitachi Ltd Control device for numerical control machine tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102864A (en) * 1986-10-17 1988-05-07 Ngk Insulators Ltd Grinding method for uniaxial eccentric rotor

Also Published As

Publication number Publication date
JPS6411418B2 (en) 1989-02-23

Similar Documents

Publication Publication Date Title
Liu et al. Isoplanar-based adaptive sampling for model-unknown sculptured surface coordinate metrology using non-contact probe
JPH0565886B2 (en)
JPS59232747A (en) Tool position data forming method
JPS62272366A (en) Graphic information processor
JPS6057521B2 (en) Measuring device with recording device
JPH06238582A (en) Device for measuring robot moving path
JP2662540B2 (en) 3D distance measuring device
JPH05108130A (en) Nc device and nc program preparing method
JPS6123906A (en) Method and device for measuring deviation of work
JPH0397489A (en) Sewing data producing device for sewing machine
JPS6031611A (en) Method for testing working trace control program
JPH08338717A (en) Three-dimensional coordinates measuring device
CN116502313A (en) Three-dimensional arch dam coordinate acquisition method
JPH1183468A (en) Apparatus and method for measuring coordinates for pressing mold
JPS598841B2 (en) How to create NC data for mold processing
JPH01221609A (en) Measuring instrument for three-dimensional composite free curved surface shape
JP3711711B2 (en) 3D shape measurement method
JPS5855548B2 (en) I&#39;m not sure what to do.
JPS60160408A (en) Control method of robot
JPS63236915A (en) Movement controller for coordinate measuring instrument
JPH08161018A (en) Machining simulation system
JPS60136805A (en) Robot control device
JPH01306189A (en) Profile teaching method for robot
JPS63123658A (en) Route data making method for form processing tool
JP2698977B2 (en) Program creation method and program data input device