JPS59232250A - High purity ferroboron and its production - Google Patents

High purity ferroboron and its production

Info

Publication number
JPS59232250A
JPS59232250A JP58106220A JP10622083A JPS59232250A JP S59232250 A JPS59232250 A JP S59232250A JP 58106220 A JP58106220 A JP 58106220A JP 10622083 A JP10622083 A JP 10622083A JP S59232250 A JPS59232250 A JP S59232250A
Authority
JP
Japan
Prior art keywords
ferroboron
temperature
less
low carbon
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58106220A
Other languages
Japanese (ja)
Other versions
JPS6151020B2 (en
Inventor
Yasunari Seki
関 康也
Toshio Takahashi
利雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denko Co Ltd
Original Assignee
Nippon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denko Co Ltd filed Critical Nippon Denko Co Ltd
Priority to JP58106220A priority Critical patent/JPS59232250A/en
Publication of JPS59232250A publication Critical patent/JPS59232250A/en
Publication of JPS6151020B2 publication Critical patent/JPS6151020B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To form ferroboron having high purity by reducing a mixture composed of a boron source, iron source and reducing agent under specific conditions to produce low carbon ferroboron and remelting the ferroboron under specific conditions then cooling and holding the same. CONSTITUTION:A boron source such as boron oxide or the like, an iron source such as electrolytic iron or the like and a reducing agent such as charcoal are mixed and are charged into an electric furnace, by which the mixture is melted and reduced with <=0.5kW/cm<2> electrode power density and low darbon ferroboron contg. <=1.0% C and >=10% B is produced. The low carbon ferroboron is then thoroughly remelted in a temp. range of the m.p. +150-200 deg.C to remove Al then the molten ferroboron is cooled to the temp. just above the m.p. and is held at said temp. for a specified time to precipitate and separate C. The high purity ferroboron contg., by weight, >=10% B, <=0.5% C and <=0.05% Al and consisting of the balance Fe and inevitable impurities is thus obtd.

Description

【発明の詳細な説明】 本発明は高純度フェロボロンおよびその製造方法に係p
1特に電気炉法によるC、Al、含有量の低い高純度フ
ェロボロンおよびその製造方法に関するものである。
[Detailed Description of the Invention] The present invention relates to high purity ferroboron and a method for producing the same.
1. Particularly relates to high purity ferroboron with a low content of C, Al, and a method for producing the same produced by an electric furnace method.

従来、フェロボロンの製造法としては酸化はう素、はう
酸等のほう素化合物をアルミニウム粉により還元するテ
ルミット法、およびほう素化合物を電気炉にて炭素質還
元剤で還元する電炉法が行なわれてきたが、テルミット
法によるものはCは低いがAlが高く、高炉法によるも
のはAlは比較的低いがCが高いという問題があった。
Conventionally, methods for producing ferroboron include the thermite method, in which boron compounds such as boronic oxide and halonic acid are reduced with aluminum powder, and the electric furnace method, in which boron compounds are reduced with a carbonaceous reducing agent in an electric furnace. However, the problem has been that the thermite method has low C but high Al, and the blast furnace method has relatively low Al but high C.

フエロボロンのJIS規格を第1表に、実際に流通して
いる製品の組成例を第2表に示した。
Table 1 shows the JIS standards for ferroboron, and Table 2 shows composition examples of products that are actually on the market.

第2表 フェロボロン製品組成例(重量係)ボロンは鋼
の焼入性を著しく高め、高温強度の改善、中性子の高吸
収能などの効果があるので、フェロボロンは構造用鋼、
高張力鋼、耐熱合金鋼等のボロン添加用として主に使用
されているが、この場合は添加量が比較的少量であるか
ら、前記のような不純物の多いフェロボロンであっても
、用途によりフェロボロンの種類を使い分けることによ
り何とかしのいでこれたというのが実状である。
Table 2 Ferroboron product composition examples (by weight) Boron significantly increases the hardenability of steel, improves high-temperature strength, and has high neutron absorption capacity.
It is mainly used to add boron to high-strength steel, heat-resistant alloy steel, etc., but in this case, the amount added is relatively small, so even if ferroboron has a lot of impurities as mentioned above, ferroboron may be used depending on the application. The reality is that they were able to somehow get by by using different types.

近年アモルファス合金がその特徴的な各種性質から注目
されるようにな9、特にFe  B  Si系のアモル
ファス合金は変圧器用鉄心拐料として現用の珪素鋼板に
比較して鉄損が大幅に少ないことから、省エネルギ一時
代にふされしい鉄心材料にηすうる可能性があるので、
アモルファス合金薄板の工業的生産方法の開発研究が活
発に行なわれている。
In recent years, amorphous alloys have attracted attention due to their various characteristic properties.9 In particular, FeBSi-based amorphous alloys are used as core materials for transformers because they have significantly lower iron loss than silicon steel sheets currently in use. , since it has the potential to become an energy-saving iron core material suitable for this era,
Research and development of industrial production methods for amorphous alloy thin sheets is being actively conducted.

アモルファス合金中の不純物、 特KAl、 Ti 、
 P 。
Impurities in amorphous alloys, especially KAl, Ti,
P.

S等は微量でも、アモルファス合金の電磁特性を著しく
悪化させる゛ので、その含有量を極めて低くする必要が
ある。またC含有量が高いとアモルファス合金を製造す
る際、その他の原料に大きな制約があるためCはできる
だけ少いことが望まれる。
Even a small amount of S and the like significantly deteriorates the electromagnetic properties of the amorphous alloy, so it is necessary to keep the content extremely low. Furthermore, if the C content is high, there are major restrictions on other raw materials when producing an amorphous alloy, so it is desirable that the C content be as low as possible.

ところで従来市場に流通しているフェロボロンは上記の
とお9これら不純物含有量が高く、従ってかかるフェロ
ボロンはアモルファス用原料として使用することはでき
ない。従って、変圧器用鉄心材料としてFe −B −
Si系アモルファス合金が使用可能となるかどうかは高
純度で安価なフェロボロンが提供されるかどうかにかか
つているといっても過言ではない。
By the way, the ferroboron currently available on the market has a high content of these nine impurities as mentioned above, and therefore, such ferroboron cannot be used as a raw material for amorphous materials. Therefore, Fe −B − is used as a transformer core material.
It is no exaggeration to say that whether Si-based amorphous alloys can be used depends on whether highly purified and inexpensive ferroboron is available.

本発明の目的は上記アモルファス合金研究の現状より、
アモルファス合金用原料その他高純度が要求される用途
に好適に使用し得る高純度フェロボロンおよびその製造
方法を提供するにある。
The purpose of the present invention is to:
The present invention provides a high purity ferroboron that can be suitably used as a raw material for amorphous alloys and other applications requiring high purity, and a method for producing the same.

本発明のこの目的は下記要旨の2発明によって達成され
る。
This object of the present invention is achieved by the following two inventions.

第1発明の高純度フェロボロンの要旨とするところは次
の如くである。
The gist of the high purity ferroboron of the first invention is as follows.

すなわち、重量比にて B:10%以上C:0.5係以
下 AA:0.05チ以下 を含有し残部はFeおよび不可避的不純物よシ成ること
を特徴とする高純度フェロボロンである。
That is, it is a high-purity ferroboron characterized by containing B: 10% or more, C: 0.5% or less, AA: 0.05% or less, and the remainder consisting of Fe and unavoidable impurities.

この高純度フェロボロンの製造方法である第2発明の要
旨とするところは次の如くである。
The gist of the second invention, which is a method for producing high-purity ferroboron, is as follows.

すなわち、酸化はう素、はう酸等のほう素源と、電解鉄
、けい素鉄等の鉄源と、木炭、低灰分石炭等の還元剤を
混合し2電気炉に装入して溶融還元する低炭素フェロボ
ロンの製造方法において、前記溶融還元における電極電
力密度を0.5 KW / c++’を以下としてC:
1.C1以下、B:10%以上の低炭素フェロボロンを
製造する第1工程と、前記第1工程にて得た低炭素フェ
ロボロンを融点+150〜200℃の温度範囲で完全に
再溶解した後融点直上まで冷却し該温度に保持する第2
工程と、を有して成ることを特徴とする高純度フェロボ
ロンの製造方法である。
That is, a boron source such as boronic oxide or halonic acid, an iron source such as electrolytic iron or silicon iron, and a reducing agent such as charcoal or low ash coal are mixed and charged into an electric furnace and melted. In the method for producing low-carbon ferroboron by reducing, the electrode power density in the smelting reduction is set to 0.5 KW/c++' as below: C:
1. C1 or less, B: A first step of producing low carbon ferroboron of 10% or more, and completely remelting the low carbon ferroboron obtained in the first step at a temperature range of +150 to 200 ° C. to just above the melting point. the second to cool and maintain at the temperature;
A method for producing high-purity ferroboron, comprising the steps of:

従来市場に流通している電炉法のフェロボロンのC含有
量は最も低いものでも1チ程度であり、これよシ低いも
のを電炉法で安定的に製造することは不可能であると考
えられていたが、本発明者等は電炉の操業条件を種々変
化させて実験を行っている際、ある条件の時にCの非常
に低いものが得られるという知見を得た。そこでその原
因について検討した結果、C含有量は電気炉の電極電流
密度に関連すると思われたので、100 KVAジロ一
式電気炉を用いて電極電力密度とフェロボロン中のC含
有量の関係について調査し第3表の結果を得た。
The C content of conventional electric furnace ferroboron currently available on the market is about 1 H at the lowest, and it is thought that it is impossible to stably produce something lower than this using the electric furnace method. However, while conducting experiments with various operating conditions of the electric furnace, the present inventors found that a very low C value could be obtained under certain conditions. As a result of investigating the cause, we found that the C content was related to the electrode current density of the electric furnace, so we investigated the relationship between the electrode power density and the C content in ferroboron using a 100 KVA Giro complete electric furnace. The results shown in Table 3 were obtained.

電極電力密度が変化すれば電極近辺の温度が変化するか
ら上記の結果は結局反応圏の温度変化が原因であろうと
の推定を下し、次にフェロボロン中のCの溶解度につい
て調査し第4表の結果を得た。
If the electrode power density changes, the temperature near the electrode changes, so we inferred that the above result was ultimately caused by a change in the temperature of the reaction sphere.Next, we investigated the solubility of C in ferroboron, and the results are shown in Table 4. I got the result.

第3表、第4表に示す如き実験結果から次の事実が明ら
かとなった。
The following facts became clear from the experimental results shown in Tables 3 and 4.

(イ)電極電力密度が犬となれば反応圏の温度力;上昇
する。
(a) If the electrode power density increases, the temperature force in the reaction sphere increases.

(ロ)反応圏の温度が上昇すると、フェロボロン溶湯中
へのCの溶解度が増加する。
(b) As the temperature of the reaction zone increases, the solubility of C in the molten ferroboron increases.

而して第3表の実験結果よシフエロボロン溶湯中のCを
常に安定して1.0チ以下に維持するためには電極電力
密度を0.5 )CW / rJ以下に抑制すべきであ
ることが判明した。従って本発明における第1工程にお
ける溶融還元時の電極電力密度を0.5KW / aA
以下に限定した。
According to the experimental results in Table 3, the electrode power density should be suppressed to 0.5) CW/rJ or less in order to constantly maintain the C content in the molten Schifferoboron at 1.0 cm or less. There was found. Therefore, the electrode power density during melting reduction in the first step in the present invention is set to 0.5KW/aA.
Limited to the following.

次にフェロボロン中のCの溶解度はBの含有量と逆相関
関係にあυ、Bの含有量が低くでるとCの溶解度が上昇
する。本発明においてはC含有量の上限を第1工程の低
炭素フェロボロンで1.0 %。
Next, the solubility of C in ferroboron has an inverse correlation with the content of B, and as the content of B becomes low, the solubility of C increases. In the present invention, the upper limit of the C content is 1.0% for the low carbon ferroboron in the first step.

第2工程における再溶解終了後にて0.5%を目標とし
ている。従って第1工程においてC:1.0%以下を安
定して確保するためにはBの含有量は少くとも10%以
上であることが必要であって、Bが10係未満の場合に
はCは安定して1.0チ以下を保証できない。
The target is 0.5% after the re-dissolution in the second step. Therefore, in order to stably ensure C: 1.0% or less in the first step, the B content must be at least 10% or more, and if B is less than 10%, C: cannot guarantee a stable value of 1.0 or less.

また、第1工程において製造されるフェロボロンのC含
有量が高いと第2工程で生成されるスラグ量が多くなり
、結果として炭化物として分離されるBおよびスラグ層
にまきこまれてロスするフェロボロンメタル量が増大し
、Bの収率を低下させる。従って、第1工程では可能な
限りC含有量を低下させておくことが、収率向上のため
にも必要である。
In addition, if the C content of the ferroboron produced in the first step is high, the amount of slag produced in the second step will increase, resulting in B separated as carbide and ferroboron metal lost by being mixed into the slag layer. The amount increases, reducing the yield of B. Therefore, in the first step, it is necessary to reduce the C content as much as possible in order to improve the yield.

そのため本発明においては第1工程にて製造する低炭素
フェロボロンの成分目標を次の如く限定した。
Therefore, in the present invention, the target components of the low carbon ferroboron produced in the first step are limited as follows.

B:10係以上 C:1.0チ以下 次に本発明における第2工程の再溶解の目的と効果につ
いて説明する。
B: 10 or more C: 1.0 or less Next, the purpose and effect of the second step of remelting in the present invention will be explained.

再溶解工程の目的はCの安定的低下とAlの低減にある
。Alは主として還元剤中に含まれているが、その含有
量も高く、しかも、還元雰囲気である第1工程の電気炉
中では除去されずに全量製品中に移行するため、いかに
原料を厳選しても0.2%以下にすることは不可能であ
る。一方、第1工程におけるフェロボロンの電気炉にお
ける製錬は炉況が不安定であって、一定の操業条件を維
持することが困難であり、従ってフェロボロン中のCの
含有量も第3表に示したようにある程度ばらつくことは
避けられ万いから、第1工程の電気炉による製錬のみで
は、C含有量を安定的に低下させることは困難である。
The purpose of the remelting step is to stably lower C and reduce Al. Al is mainly contained in the reducing agent, and its content is high, and it is not removed in the electric furnace of the first step, which is a reducing atmosphere, but the entire amount is transferred into the product, so it is important to carefully select the raw materials. However, it is impossible to reduce the amount to 0.2% or less. On the other hand, in the first step of smelting ferroboron in an electric furnace, the furnace conditions are unstable and it is difficult to maintain constant operating conditions. Therefore, the C content in ferroboron is also shown in Table 3. Since some degree of variation as described above is unavoidable, it is difficult to stably lower the C content only by smelting using an electric furnace in the first step.

上記の理由によって本発明においては、第1工程で得た
低炭素フェロボロンを大気中で再溶解する。再溶解に使
用す′る溶解炉は特に限定の要がないが、高周波電気炉
、低周波電気炉等の如く溶湯が循環して大気と接触する
機会が多いものが好適である。
For the above reasons, in the present invention, the low carbon ferroboron obtained in the first step is redissolved in the atmosphere. The melting furnace used for remelting is not particularly limited, but one in which the molten metal circulates and has many opportunities to come into contact with the atmosphere, such as a high-frequency electric furnace or a low-frequency electric furnace, is preferable.

第1工程で得た低炭素フェロボロンを大気中で再溶解す
る目的は不純物、特にAlとCを析出分離するためであ
って、そのため!It度東件が極めて重量である。先ず
第1工程で得た低炭素フェロボロンを高周波電気炉等に
装入して該合金の融点+150〜200℃の最高温度で
完全に溶解する。
The purpose of redissolving the low carbon ferroboron obtained in the first step in the atmosphere is to precipitate and separate impurities, especially Al and C. It is extremely heavy. First, the low carbon ferroboron obtained in the first step is charged into a high frequency electric furnace or the like and completely melted at a maximum temperature of 150 to 200° C. above the melting point of the alloy.

この高温再溶解によって含有される不純物中のAlは酸
化されてAIt 20 aとなって浮上分離する。再溶
解の最高温度を融点+150〜2oo℃と限定した理由
は次の如くである。すなわち、Ad除去の目的のみから
は高温であるほど効果が犬であるが、同時に主成分であ
るBも酸化し収率が減少する。
By this high-temperature remelting, Al contained in the impurities is oxidized and becomes AIt 20 a, which floats and separates. The reason why the maximum temperature for remelting was limited to melting point +150 to 200°C is as follows. That is, the higher the temperature, the more effective it is for the purpose of removing Ad, but at the same time B, the main component, is also oxidized and the yield is reduced.

そのためAdを酸化除去するが、Bの収率が余り減少し
ない温度範囲として融点+150〜200B:10〜1
6ヂ Calヂ以下 ロンの場合は1550〜1750℃の温度範囲である。
Therefore, Ad is removed by oxidation, but the temperature range where the yield of B does not decrease much is melting point +150 to 200B: 10 to 1
In the case of less than 6 Cal diron, the temperature range is 1550 to 1750°C.

上記高温再溶解によって不純物中のAlが除去されるが
、Cは除去されない。そこで本発明では」二記最高温度
で完全に再溶解した溶湯を当該合金の融点直上まで冷却
口、その温度で一定時間保持する。融点直上の保持温度
は融点+30〜50℃が望ましく、上記B:10〜16
チ、C:1チ以下の低炭素フェロボロンの場合は135
0〜1600℃の温度範囲が好適であり、保持時間は約
5分間でよい。この最高温度にて再溶解後融点直上まで
冷却する目的は含有Cを析出分離させるためである。
Although Al among impurities is removed by the above-mentioned high-temperature remelting, C is not removed. Therefore, in the present invention, the molten metal completely remelted at the maximum temperature in the above 2 is held in the cooling port at that temperature for a certain period of time until it reaches just above the melting point of the alloy. The holding temperature just above the melting point is preferably melting point +30 to 50°C, and the above B: 10 to 16
Chi, C: 135 for low carbon ferroboron of 1 chi or less
A temperature range of 0 to 1600<0>C is preferred and a holding time of about 5 minutes may be used. The purpose of cooling to just above the melting point after remelting at this maximum temperature is to precipitate and separate the contained C.

第1工程で製造された低炭素フェロボロン中ではCは遊
離炭素もしくはB+Siの炭化物の形で存在するが、こ
れらのCは溶湯温度の低下により溶解度を減少し析出分
離される。而して保持時間はCの析出分離に必要η時間
的余裕を与えるためで約5分間の保持時間でほぼ析出分
離が完了し、C含有量が0.5%以下となる。かくの如
くして再溶解によって不純物のAd、Cが分離除去され
た高純度フェロボロンは鋳型に鋳込まれて成品となる。
In the low carbon ferroboron produced in the first step, C exists in the form of free carbon or B+Si carbide, but as the molten metal temperature decreases, the solubility of this C decreases and the C is precipitated and separated. The holding time is set to provide a time margin of η necessary for the precipitation separation of C, and the precipitation separation is almost completed in a holding time of about 5 minutes, and the C content becomes 0.5% or less. The high-purity ferroboron from which the impurities Ad and C have been separated and removed by remelting in this manner is cast into a mold to become a finished product.

かくして得られた高純度フェロボロンは次の組成を有し
不純物の極めて少いものであった。すなわち、 B: 10チ以上 C: 0.5チ以下 Al:  0.05チ以下 を含有し残部はFeおよび不可避的不純物よシ成るもの
である。
The high purity ferroboron thus obtained had the following composition and contained extremely few impurities. That is, B: 10 or more, C: 0.5 or less, Al: 0.05 or less, and the remainder consists of Fe and unavoidable impurities.

本発明の第1工程、第2工程の実施例を下記に説明する
Examples of the first step and second step of the present invention will be described below.

実施例1 酸化はう素10.2蛇、電解鉄10.8#、木炭4、0
 kg 1コークス0.8#、石炭0.6#の割合で予
め混合し、これを100 KVA単相単相ジ−ロ一式電
気炉入し電極電力密度を変化させて操業を行った結果第
5表の結果を得た。
Example 1 Boron oxide 10.2#, electrolytic iron 10.8#, charcoal 4.0
kg 1 coke 0.8# and coal 0.6# were mixed in advance in a ratio of 100 KVA single-phase single-phase giro set electric furnace, and operation was performed by changing the electrode power density. Obtained the results in the table.

第5表より明らかな如く、第1工程における低炭素フェ
ロボロン製造時KB:10%以上としても、平均電力密
度がo、5KW/−を越える場合は1吹成品のC含有量
が高くなりC:1.0%以下の確保が困難と々す、かつ
Al含有量も高い。
As is clear from Table 5, even if KB is 10% or more during the production of low carbon ferroboron in the first step, if the average power density exceeds 0.5 KW/-, the C content of one blowing product becomes high. It is difficult to maintain an Al content of 1.0% or less, and the Al content is also high.

実施例2 はう酸10.2汀、けい素鉄屑10.77+?、木炭4
.0に?、石炭i、oh、コークス0.8 kgの割合
で予め混合し、これを100 KVA単相ジロ一式電気
炉に装入し電極平均電力密度0.5KW/−で操業を行
った結果、次の組成を有するすぐれた1吹成品である低
炭素フェロボロンを得ることができた。
Example 2 Hydrolic acid 10.2 slag, silicon iron scrap 10.77+? , charcoal 4
.. To 0? , coal i, oh, and coke 0.8 kg were mixed in advance and charged into a 100 KVA single-phase Giro electric furnace and operated at an average electrode power density of 0.5 KW/-. As a result, the following results were obtained. It was possible to obtain a low carbon ferroboron having an excellent composition.

B : 15〜16 チ C:0,3〜0.7 係 Al:0.02〜0.19チ 実施例3 実施例1および2の1次工程で得られたCおよびAl含
有量の異なる6種類の低炭素フェロポロン供試材各20
館を30Aiilの高周波電気炉で2次工程の再溶解試
験を実施し、C,Al の除去率とBの収率との関係を
比較試験した。再溶解比較試験は次の方法によった。す
なわち、各供試材低炭素フェロボロンを炉に装入し通電
して完全に溶解した後頁に温度を上げ溶湯温度1700
〜175゜℃に5分間保持し、次に1600℃まで温度
を低下させ1550−1600℃に5分間保持した後鋳
型に鋳造し放冷し高純度フェロボロンを得た。
B: 15-16 C: 0.3-0.7 Al: 0.02-0.19 Example 3 6 with different C and Al contents obtained in the primary step of Examples 1 and 2 20 types of low carbon ferroporon test materials each
A secondary process remelting test was conducted in a 30Aiil high-frequency electric furnace, and the relationship between the removal rate of C and Al and the yield of B was compared. The redissolution comparative test was carried out in the following manner. That is, after each low-carbon ferroboron sample material was charged into the furnace and energized until it was completely melted, the temperature was raised until the molten metal temperature was 1700.
The temperature was maintained at ~175°C for 5 minutes, then the temperature was lowered to 1600°C, and the temperature was maintained at 1550-1600°C for 5 minutes, after which it was cast into a mold and left to cool to obtain high purity ferroboron.

再溶解前後のC,Al 含有量の変化およびBの収率は
第6表のとおりである。
Changes in C and Al contents before and after redissolution and the yield of B are shown in Table 6.

第6表より明らかηとおり、C含有量については1次工
程の低炭素フェロボロンのC量が高いほど除去率が良好
であって再溶解前のCがi、os以お 上の場合には70%以上の除去率各示すが、Bの収率が
再溶解前のCが高いほど悪化する傾向を示している。
As is clear from Table 6, as for the C content, the higher the amount of C in the low-carbon ferroboron in the primary step, the better the removal rate. % or more, the yield of B tends to worsen as C before redissolution increases.

また、A7含有量については、特に顕著な傾向を示さな
いが、いずれも75チ以上のすぐれた除去率を示すこと
が判明した。かくの如く、1次工程の低炭素フェロボロ
ン中のC含有量が1.0チを越すとBの収率が減少する
ので、本発明では1次工程の低炭素フェロボロンのC含
有量の目標をBの収率を重視してc’:1.Q%以下、
B:109!1以上とした。1従ってこの限定条件では
Bの収率95俤以上を確保することができることが判明
した。
Furthermore, although no particular tendency was observed regarding the A7 content, it was found that all showed excellent removal rates of 75 inches or more. As described above, if the C content in the low carbon ferroboron in the first step exceeds 1.0, the yield of B decreases, so in the present invention, the target C content in the low carbon ferroboron in the first step is Considering the yield of B, c': 1. Q% or less,
B: 109!1 or more. 1. Therefore, it has been found that a yield of B of 95 yen or more can be secured under these limiting conditions.

実施例4 実施例1,2と同一の原料および装置を用い、電極電力
密U 0.4〜0.51へV / cnキとし−C還元
溶解しB:10〜11係 C:0,3〜0.8係 A1:0.07〜0.工5チ の1吹成品の低炭素フェロボロンを得た。
Example 4 Using the same raw materials and equipment as in Examples 1 and 2, reduce and dissolve -C with V/cn key to electrode power density U 0.4 to 0.51 B: 10 to 11 C: 0,3 ~0.8 Section A1: 0.07~0. A low carbon ferroboron of 5 cm was obtained.

各供試材を実施例3と同一の3okg高周波電気炉を用
イ融点+15o〜2oo℃の1550〜1600℃で再
溶解しAlを析出分離した後、溶湯温度を1400℃ま
で低下させ、1350〜1400℃の温度範囲に5分間
保持しCを析出分離させた後鋳型に鋳造した。かくして
最終成品は次の組成のC,Alの低いすぐれた高純度フ
ェロボロンを得ることができた。
Each test material was remelted in the same 3 kg high frequency electric furnace as in Example 3 at a temperature of 1550 to 1600°C with a melting point of +15°C to 200°C to precipitate and separate Al, then the molten metal temperature was lowered to 1400°C, and the melt temperature was lowered to 1350°C. The mixture was maintained at a temperature of 1400° C. for 5 minutes to precipitate and separate C, and then cast into a mold. In this way, a final product of excellent high purity ferroboron having the following composition and low C and Al contents could be obtained.

B:10〜11係 C:0.2〜0.4係 1’:0.01〜0.03% 上記各実施例より明らかな如く、本発明はほう素源と、
低炭素鉄源および木炭等の還元剤を混合装入して電気炉
で溶融還元する低炭素フェロボロンの製造方法において
、先ず電極電力密度を0.5KW / cn”以下に調
整して反応圏の温度を比較的低く抑えることによってC
:1.0%以下、B:10%以上の1次低炭素フェロボ
ロンを製造し、次いでこの1吹成品を大気中で再溶解す
る方法をとった。
B: 10-11 coefficient C: 0.2-0.4 coefficient 1': 0.01-0.03% As is clear from the above examples, the present invention provides a boron source,
In a method for producing low-carbon ferroboron in which a low-carbon iron source and a reducing agent such as charcoal are mixed and charged and melted and reduced in an electric furnace, the electrode power density is first adjusted to 0.5 KW/cn'' or less to lower the temperature of the reaction zone. By keeping C relatively low
A method was adopted in which a primary low carbon ferroboron having a content of B: 1.0% or less and B: 10% or more was produced, and then this single blown product was redissolved in the atmosphere.

而して再溶解に際しては先ず当該合金の融点+150〜
200℃の最高温度に上昇させて1吹成品を完全に溶解
すると共にAlを除去し、次いで融点直上の温度まで冷
却しその温度に約5分間保持することによってCを析出
分離させる方法をとったので次の効果を収めることがで
きた。
Therefore, when remelting, first the melting point of the alloy is +150~
A method was adopted in which C was precipitated and separated by raising the temperature to a maximum temperature of 200°C to completely melt one blowing product and removing Al, then cooling to a temperature just above the melting point and holding at that temperature for about 5 minutes. Therefore, we were able to achieve the following effects.

(イ)再溶解処理によって1吹成品中のCを30〜70
%、AIKついては80チ以上の除去率をもって析出分
離させることができた。
(b) C in one blowing product is 30 to 70 by remelting treatment.
%, AIK was able to be separated by precipitation with a removal rate of 80 cm or more.

(ロ)本発明の限定範囲においては再溶解工程でBの収
率95%以上のすぐれた収率をあけることができた。
(b) Within the limited range of the present invention, an excellent yield of 95% or more of B could be achieved in the redissolution step.

(/→ 本発明によりB:10%以上 C二0.5係以下 i:o、05係以下 の従来市場で見られなかった不純物の極めて低い高純1
!(フェロポロンを安価で得ることができIi’e−B
 −Si 系アモルファス合金等の需要に十分の対応が
可能となった。
(/→ With the present invention, B: 10% or more, C2, 0.5 or less i: o, 05 or less, high purity 1 with extremely low impurities that have not been seen in the conventional market.
! (Feropolone can be obtained at low cost.Ii'e-B
-It has become possible to fully meet the demand for Si-based amorphous alloys, etc.

代理人 弁理士 中 路 武 雄Agent: Patent Attorney Takeo Nakaji

Claims (3)

【特許請求の範囲】[Claims] (1)重量比にて B:10チ以上 C:0,5%以下 A4:0.05%以下 を含有し残部はFeおよび不可避的不純物よシ成ること
を特徴とする高純度フェロボロン。
(1) A high-purity ferroboron characterized by containing B: 10% or more, C: 0.5% or less, A4: 0.05% or less, with the remainder consisting of Fe and inevitable impurities.
(2)酸化はう素、はう酸等のほう素源と、電解鉄、け
い素鉄等の鉄源と、木炭、低灰分石炭等の還元剤を混合
し電気炉に装入して溶融還元する低炭素フェロボロンの
製造方法において、前記溶融還元における電極電力密度
を0.5裂/−以下としてC:l、Q%以下、B:10
%以上の低炭素フェロボロンを製造する第1工程と、前
記第1工程にて得た低炭素フェロボロンを融点+150
〜200℃の温度範囲で完全に再溶解した後融点直上ま
で冷却し該温度に保持する第2工程と、を有して成るこ
とを特徴とする高純度フェロボロンの製造方法。
(2) Boron sources such as boron oxide and halonic acid, iron sources such as electrolytic iron and silicon iron, and reducing agents such as charcoal and low ash coal are mixed and charged into an electric furnace and melted. In the method for producing low carbon ferroboron by reducing, the electrode power density in the melting reduction is 0.5/- or less, C: l, Q% or less, B: 10
% or more of low carbon ferroboron, and the low carbon ferroboron obtained in the first step is heated to a melting point of +150
A method for producing high-purity ferroboron, comprising a second step of completely remelting in a temperature range of ~200°C, cooling to just above the melting point, and maintaining at that temperature.
(3)前記第2工程の再溶解はB:IO〜16係の場合
において、 最高温度 1550〜1750℃ 保持温度 1350〜1600℃ 保持時間  約5分間 である特許請求の範囲の第2項に記載の高純度フェロボ
ロンの製造方法。
(3) In the case of B:IO to 16, the remelting in the second step is performed at a maximum temperature of 1550 to 1750°C, a holding temperature of 1350 to 1600°C, and a holding time of about 5 minutes, as set forth in claim 2. A method for producing high-purity ferroboron.
JP58106220A 1983-06-14 1983-06-14 High purity ferroboron and its production Granted JPS59232250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58106220A JPS59232250A (en) 1983-06-14 1983-06-14 High purity ferroboron and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58106220A JPS59232250A (en) 1983-06-14 1983-06-14 High purity ferroboron and its production

Publications (2)

Publication Number Publication Date
JPS59232250A true JPS59232250A (en) 1984-12-27
JPS6151020B2 JPS6151020B2 (en) 1986-11-07

Family

ID=14428058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58106220A Granted JPS59232250A (en) 1983-06-14 1983-06-14 High purity ferroboron and its production

Country Status (1)

Country Link
JP (1) JPS59232250A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281847A (en) * 1985-06-06 1986-12-12 Power Reactor & Nuclear Fuel Dev Corp Ferroboron to be added to iron and steel materials
CN100451155C (en) * 2002-03-28 2009-01-14 新日本制铁株式会社 High-purity ferroboron

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200924U (en) * 1986-06-12 1987-12-21

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61281847A (en) * 1985-06-06 1986-12-12 Power Reactor & Nuclear Fuel Dev Corp Ferroboron to be added to iron and steel materials
JPH0369978B2 (en) * 1985-06-06 1991-11-06 Doryokuro Kakunenryo Kaihatsu Jigyodan
CN100451155C (en) * 2002-03-28 2009-01-14 新日本制铁株式会社 High-purity ferroboron

Also Published As

Publication number Publication date
JPS6151020B2 (en) 1986-11-07

Similar Documents

Publication Publication Date Title
CN101525709B (en) High-elongation aluminum alloy material and preparation method thereof
JP5170975B2 (en) Manufacturing method of iron-based amorphous material
US4786319A (en) Proces for the production of rare earth metals and alloys
CN113278830A (en) Preparation method of high-uniformity copper-iron alloy
JPS59232250A (en) High purity ferroboron and its production
CN112410573A (en) Slag system for smelting Ce-containing Fe-Ni soft magnetic alloy and use method thereof
US3052576A (en) Metal composition having improved oxidation- and corrosion-resistance and magnetic characteristics, and method of preparing same
JPH0790411A (en) Production of high-purity rare earth metal
JP2003286533A (en) Processes for producing highly pure ferroboron, mother alloy for iron-based amorphous alloy and iron-based amorphous alloy
CN114277215A (en) Method for smelting low-manganese steel by using high-manganese scrap steel in medium-frequency induction furnace
EP0235291A4 (en) Method for obtaining vanadium slag.
JP3105525B2 (en) Melting method of silicon steel material
US2373515A (en) Purification of magnesium
CN1047632C (en) Amorphous metal alloy and method of producing same
JPS5940210B2 (en) Melting method of titanium alloy for hydrogenation
US3329497A (en) Process for the manufacture of ferromanganese-silicon
JPH0790410A (en) Production of low-oxygen rare earth metal
US3768998A (en) Method of smelting high quality ferrosilicon
CN114703374B (en) Medium-fluorine high-efficiency desulfurization slag system for electroslag remelting C-HRA-3 alloy and use method thereof
CN116287812B (en) Smelting method of aluminum-free high-temperature alloy
JPH0657866B2 (en) High-purity phosphorus iron purification method
CN117403077A (en) Pure magnesium and purifying method thereof
JPS6247437A (en) Manufacture of metallic chromium with very low nitrogen content
US4661317A (en) Method for manufacturing a hydrogen-storing alloy
JP3023786B1 (en) Manufacturing method of stainless steel with excellent corrosion resistance