JPS5940210B2 - Melting method of titanium alloy for hydrogenation - Google Patents

Melting method of titanium alloy for hydrogenation

Info

Publication number
JPS5940210B2
JPS5940210B2 JP8112080A JP8112080A JPS5940210B2 JP S5940210 B2 JPS5940210 B2 JP S5940210B2 JP 8112080 A JP8112080 A JP 8112080A JP 8112080 A JP8112080 A JP 8112080A JP S5940210 B2 JPS5940210 B2 JP S5940210B2
Authority
JP
Japan
Prior art keywords
melting
furnace
hydrogenation
titanium
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8112080A
Other languages
Japanese (ja)
Other versions
JPS575831A (en
Inventor
信一 法野
和昭 山村
静男 桐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Denki Kogyo Co Ltd
Original Assignee
Chuo Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Denki Kogyo Co Ltd filed Critical Chuo Denki Kogyo Co Ltd
Priority to JP8112080A priority Critical patent/JPS5940210B2/en
Publication of JPS575831A publication Critical patent/JPS575831A/en
Publication of JPS5940210B2 publication Critical patent/JPS5940210B2/en
Expired legal-status Critical Current

Links

Classifications

    • Y02E60/327

Description

【発明の詳細な説明】 本発明は、チタンを含有する水素化用合金の溶製法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing hydrogenation alloys containing titanium.

最近、液体水素にかわる水素貯蔵法として金属水素化物
の利用が考えられている。
Recently, the use of metal hydrides has been considered as a hydrogen storage method instead of liquid hydrogen.

実用性の高い水素化合金としてチタン系があり、その他
に、マグネシウム系、希土類系等が知られている。
Titanium-based hydrogenation alloys are highly practical, and magnesium-based and rare earth-based alloys are also known.

チタン系はTiを36〜47%含有し、T1Co、Ti
Mn。
Titanium type contains 36-47% Ti, T1Co, Ti
Mn.

FeTi 、 T1CoO3Mn0.5、T1Co0.
5Fe□、5等の組成につき研究がなされている。
FeTi, T1CoO3Mn0.5, T1Co0.
Research has been conducted on the composition of 5Fe□, 5, etc.

このような水素化用チタン合金は、Tiが融点が高く且
つ活性(酸素や窒素との親和力が大きい)であるので、
特殊な溶解技術によって製される。
Such titanium alloys for hydrogenation have a high melting point and are active (have a high affinity for oxygen and nitrogen), so
Manufactured using special melting technology.

すなわち、一般的には、真空下または不活性ガス雰囲気
下に、スポンジチタンを圧縮成形した電極と水冷銅鋳型
との間に電圧を印加してアークを発生せしめ電極を溶解
するアーク溶解法、または、水冷銅鋳型上に置いたスポ
ンジチタンにプラスマフレームを照射するプラスマ溶解
法が採用されており、この他に、実験室的にはタングス
テンやグラファイトを陰極とした溶解法もある。
That is, in general, the arc melting method involves applying a voltage between a compression-molded titanium sponge electrode and a water-cooled copper mold in a vacuum or an inert gas atmosphere to generate an arc and melting the electrode, or A plasma melting method is used, in which a plasma flame is irradiated onto a titanium sponge placed on a water-cooled copper mold.In addition to this, melting methods using tungsten or graphite as a cathode are also available in the laboratory.

そして、上記のごとき合金とする場合、合金成分間の比
重差が大きく凝固温度範囲が広い為偏析が生じ易く、こ
れを防ぐため2段溶解も行なわれる。
In the case of forming the above alloy, segregation is likely to occur because the difference in specific gravity between the alloy components is large and the solidification temperature range is wide, and to prevent this, two-stage melting is also performed.

しかしながら、これらの溶解法はいずれも大量の電力を
要し費用がかさむ点において不利である。
However, all of these melting methods are disadvantageous in that they require a large amount of electricity and are expensive.

経済的に有利な方法として高周波炉や低周波炉を使用す
る溶解法が考えられるが、この場合には、合金の純度の
観点から問題が生じる。
A melting method using a high frequency furnace or a low frequency furnace can be considered as an economically advantageous method, but in this case, problems arise from the viewpoint of the purity of the alloy.

すなわち、水素化用チタン合金においては、水素貯蔵特
性を保つため、チタンの目標濃度範囲が狭く、かつ、酸
素、アルミニウム、シリコンなど不純物濃度を十分低く
保つ必要があるが、高周波炉や低周波炉によるチタン合
金の溶製に際しては、溶湯と接する耐火炉材による汚染
が特に問題となる。
In other words, in titanium alloys for hydrogenation, in order to maintain hydrogen storage properties, the target concentration range of titanium must be narrow and the concentration of impurities such as oxygen, aluminum, and silicon must be kept sufficiently low. When melting titanium alloys, contamination by refractory furnace materials that come into contact with the molten metal becomes a particular problem.

例えば、水素化用チタン合金の溶製用高周波炉材として
、マグネシア質やグラファイト質の耐火材料が考えられ
ているが、このような材料は下記の式により示されるよ
うにチタン合金中の酸素や炭素の濃度上昇をひき起こす
ので好ましくない。
For example, magnesia and graphite refractory materials have been considered as high-frequency furnace materials for melting titanium alloys for hydrogenation, but such materials do not absorb oxygen or oxygen in titanium alloys, as shown by the formula below. This is not desirable because it causes an increase in carbon concentration.

Mg0(炉材)=Mg(ガス)+0(溶湯中)・・・(
1)C(炉材)=C(溶湯中) ・・・・・・・・
・・・・・・・(2)C+Ti=TiC=・・・・・・
・・・・・・・・・・・・・・・・(3)反応(1)は
、1250℃以上ではすみやかに進行し、溶製に際し合
金中へ大量の酸素が溶解しマグネシウムを生成する。
Mg0 (furnace material) = Mg (gas) + 0 (in molten metal)...(
1) C (furnace material) = C (in molten metal) ・・・・・・・・・
・・・・・・・・・(2)C+Ti=TiC=・・・・・・
・・・・・・・・・・・・・・・・・・(3) Reaction (1) proceeds quickly at temperatures above 1250°C, and a large amount of oxygen dissolves into the alloy during melting, producing magnesium. .

この溶存酸素は凝固に際し金属間化合物となり、水素吸
蔵能低下をひき起す。
This dissolved oxygen becomes an intermetallic compound upon solidification, causing a decrease in hydrogen storage capacity.

また溶解温度が高くなると炉材の損耗が激しくなる。Furthermore, as the melting temperature increases, the wear and tear on the furnace material increases.

チタン合金への炭素溶解度は小さいが、溶解温度の上昇
に伴い増加し一定の組成の合金が得られない。
Although the solubility of carbon in titanium alloys is small, it increases as the melting temperature rises, making it impossible to obtain alloys with a constant composition.

また反応3によりカーバイドを生成して浮上するためチ
タン損失が増加し、両者とも適切な溶製法とはいえなG
)。
In addition, reaction 3 generates carbide and floats, increasing the loss of titanium.
).

以上説明したような状況により、水素貯蔵用チタン合金
については、従来の研究や開発は、経済的に不利にもか
かわらず、殆んどがアーク溶解法によるものにしかなさ
れていない。
Due to the situation described above, most of the conventional research and development of titanium alloys for hydrogen storage has been carried out only by arc melting method, despite the economic disadvantage.

そこで、本発明の目的は、高周波誘導炉を利用して水素
化用チタン合金を溶製するに際して、耐火炉材による汚
染の問題を解決し、かくして、水素吸蔵能の高いチタン
合金を経済的に溶製する方法を提供するにある。
Therefore, the purpose of the present invention is to solve the problem of contamination caused by refractory furnace materials when melting a titanium alloy for hydrogenation using a high-frequency induction furnace, and thus to economically produce a titanium alloy with high hydrogen storage capacity. To provide a method for melting.

本発明者らは、高周波誘導炉により水素化チタン合金を
溶製するに当たり炉の耐火材料や溶解方法について種々
研究した結果、溶解炉のうち少なくとも溶湯と接する個
所の炉材としてCaO質を原料とする耐火材料を使用し
て、Arのごとき不活性ガス雰囲気下に溶解を行なう場
合には該耐火材料による汚染が殆んど生じないことを見
出し本発明を導くに到った。
The present inventors conducted various studies on refractory materials and melting methods for melting titanium hydride alloys using high-frequency induction furnaces, and found that CaO was used as the raw material for at least the parts of the melting furnace that come into contact with the molten metal. The present inventors have discovered that when a refractory material is used and melted in an inert gas atmosphere such as Ar, contamination by the refractory material hardly occurs, leading to the present invention.

かくして、本発明に従えば、溶解炉の溶湯と接する個所
をCaO質耐火材料のクリンカー(粉と粒の混合品)ま
たは成形品(レンガ等)でライニングすることにより、
あるいは、溶解炉全体がそのようなCaO質耐火材料で
作られたものを使用することにより水素化特性の損われ
ないチタン合金が溶製される。
Thus, according to the present invention, by lining the parts of the melting furnace that come into contact with the molten metal with clinker (mixture of powder and granules) or molded products (brick, etc.) of CaO-based refractory material,
Alternatively, by using a melting furnace entirely made of such a CaO-based refractory material, a titanium alloy whose hydrogenation properties are not impaired can be melted.

本発明におけるCaO質原料とする耐火材料としては、
生石灰、石灰石、炭酸カルシウム、胡粉、水酸化カルシ
ウム等を原料として高温に焼成して得られる種々の耐火
材料が使用され得る。
The refractory material used as the CaO raw material in the present invention includes:
Various refractory materials obtained by firing lime, limestone, calcium carbonate, chalk, calcium hydroxide, etc. as raw materials at high temperatures can be used.

特に好ましいのは、築炉が容易であり化学的安定性が大
きい等の理由により、電融カルシア、すなわち、上記の
とときCaO質原料を電気炉内で2500〜3000℃
に加熱溶融して得られるCaOから本質的になる耐火材
料である。
Particularly preferred is fused calcia, i.e., the above-mentioned CaO raw material, heated at 2500 to 3000°C in an electric furnace because it is easy to construct a furnace and has high chemical stability.
It is a refractory material consisting essentially of CaO obtained by heating and melting it.

電融カルシアに一部他のカルシア、例えば生石灰を混合
して使用しても電融カルシアだけの場合と大差ない効果
が得られる。
Even if some other calcia, such as quicklime, is used in combination with fused calcia, the same effect as in the case of fused calcia alone can be obtained.

本発明に従いCaO質耐火材料で構成される炉を利用す
ることにより、炉材による汚染の問題が激減された理由
は、CaOがMgOなどよりも安定であるためと解され
る。
The reason why the problem of contamination due to the furnace material is drastically reduced by using a furnace made of CaO-based refractory material according to the present invention is understood to be that CaO is more stable than MgO or the like.

すなわち、式Cab(炉材)−Ca(ガス)+9(溶湯
中)・・・・・・(4)に従う解離酸素圧は著しく小さ
い(1400℃においてMgOの解離の場合6.3 X
100−25atに対して、CaOの場合2.I X
10−0−29atことから金属間化合物を生成する
溶存酸素の量も少なくなる。
That is, the dissociation oxygen pressure according to the formula Cab (furnace material) - Ca (gas) + 9 (in the molten metal) (4) is extremely small (6.3
100-25at for CaO2. IX
10-0-29at, the amount of dissolved oxygen that forms intermetallic compounds also decreases.

また、CaOは溶融金属とぬれにくい性質を有するため
に上記(4)式で表わされる反応の速度が遅くなり、従
って、チタン合金中へのCaOの溶解も少なくなる。
Furthermore, since CaO has a property of being difficult to wet with molten metal, the rate of the reaction expressed by the above equation (4) is slowed down, and therefore, the amount of CaO dissolved into the titanium alloy is also reduced.

更に、生成するカルシウムの沸点が高い(1440℃)
ので、生成物がマグネシウム(沸点1110℃)である
マグネシア質に比べて炉材の損耗が減少する。
Furthermore, the boiling point of the calcium produced is high (1440°C).
Therefore, wear and tear on the furnace material is reduced compared to magnesia whose product is magnesium (boiling point 1110°C).

以上の説明から明らかなように、本発明の方法に従えば
、炉材の消耗による介在物や溶存酸素の量が少なく、し
たがって、水素吸蔵能の高いチタン合金を経済的に溶製
できる。
As is clear from the above description, according to the method of the present invention, the amount of inclusions and dissolved oxygen due to consumption of the furnace material is small, and therefore a titanium alloy with high hydrogen storage capacity can be melted economically.

かくして、本発明はT1Co、 TiMn、 FeTi
、 T1Co□、5Mng、5、T iCo□、5Fe
O,5のごとき水素化用チタン合金の大量生産を可能
にした点において産業上きわめて有用である。
Thus, the present invention provides T1Co, TiMn, FeTi
, T1Co□, 5Mng, 5, T iCo□, 5Fe
It is extremely useful industrially in that it has enabled mass production of titanium alloys for hydrogenation such as O,5.

次に、本発明を実施例に沿って説明する。Next, the present invention will be explained along with examples.

実施例 1 高周波誘導式真空溶解炉に電融カルシアを破砕した粉と
粒の混合物をルツボ状につき固め溶解炉とした。
Example 1 A mixture of powder and grains obtained by crushing electrified calcia was placed in a crucible shape and solidified into a melting furnace using a high frequency induction vacuum melting furnace.

溶解母材は、スポンジチタン、電解鉄、金属コバルト、
金属マンガンを使用し、目標組成に混合し、電融カルシ
アをつき固めた上記のルツボ内へ入れた。
The melting base materials are sponge titanium, electrolytic iron, metallic cobalt,
Metallic manganese was used, mixed to a target composition, and placed into the above-mentioned crucible in which fused calcia was compacted.

炉内を10mmHg以下の真空に排気したのちArガス
を充満させ1350°Cで上記金属を溶解した。
After the inside of the furnace was evacuated to a vacuum of 10 mmHg or less, it was filled with Ar gas and the metal was melted at 1350°C.

また電融マグネシアライニングについて同様の溶解を行
いカルシアライニングの場合と比較した。
In addition, similar melting was performed for electrofused magnesia lining and compared with calcia lining.

ライニング材にマグネシアを使用すると溶落時よりヒユ
ームが発生し、温度の上昇につれ激しくなる。
When magnesia is used as a lining material, fumes are generated from the time of melting and become more intense as the temperature rises.

溶解終了後ライニングを調べると湯と接する部分が完全
に黒色化し一部金属の浸透がみられる。
When the lining was examined after melting, the parts that came in contact with the hot water turned completely black, and some metal penetration was observed.

カルシア質ライニングを用いた溶解では、溶落、溶融時
ともヒユームの発生は著るしく少い。
In melting using calcia lining, the generation of fume during both burn-through and melting is significantly less.

湯と接する部分のライニングは一部黒色化しているが金
属の浸透はみられない。
Parts of the lining that come into contact with hot water have turned black, but no metal has penetrated.

この試料につき水素吸蔵性を調べたところ、カルシアラ
イニングで溶解した合金■は水素を2.6重量%まで吸
蔵し、アーク溶解品の1.1重量%より多い。
When the hydrogen storage properties of this sample were investigated, alloy (1) melted with calcia lining absorbed up to 2.6% by weight of hydrogen, which was higher than the 1.1% by weight of the arc-melted product.

カルシアライニングで溶解した合金■は、水素を26重
量%まで吸蔵しアーク溶解品の1.7重量%より多い。
Alloy (2) melted with calcia lining absorbs up to 26% by weight of hydrogen, which is higher than the 1.7% by weight of the arc-melted product.

実施例 2 電融カルシアの破砕品を重量で70パーセント、工業用
生石灰の破砕品30パーセントを混合しつき固めて高周
波誘導式真空溶解炉のライニングとした。
Example 2 70% by weight of crushed fused calcia and 30% by weight of crushed industrial quicklime were mixed and compacted to form a lining for a high-frequency induction vacuum melting furnace.

実施例1と同様の操作により合金I、IIを溶解したと
ころ、溶落、溶融時のヒユーム発生が少くライニング黒
色化厚みも約5mmであり完全な融体が得られた。
When Alloys I and II were melted in the same manner as in Example 1, a complete melt was obtained with little burn-through and fume generation during melting, and a blackened lining thickness of approximately 5 mm.

得られた合金I、IIについて水素吸蔵性を調べた所、
合金■、■とも水素含有量2.6重量%で電融カルシア
だけをライニングとした場合と大差ない事がわかった。
When the hydrogen storage properties of the obtained alloys I and II were investigated,
It was found that both alloys ① and ② had a hydrogen content of 2.6% by weight and were not significantly different from those in which only fused calcia was used as the lining.

Claims (1)

【特許請求の範囲】[Claims] 1 不活性ガス雰囲気下に高周波誘導炉により水素化用
チタン合金を溶製するに際して、溶解炉の少なくとも溶
湯と接する個所の炉材として03幅原料を2500〜3
000℃に加熱溶融して得られる電融カルシアを主成分
とする耐火材料を使用することを特徴とする水素化用チ
タン合金の溶製法。
1. When melting a titanium alloy for hydrogenation in a high-frequency induction furnace in an inert gas atmosphere, 03-width raw material is used as the furnace material for at least the part in contact with the molten metal in the melting furnace.
A method for producing a titanium alloy for hydrogenation, characterized by using a refractory material whose main component is fused calcia obtained by heating and melting at 000°C.
JP8112080A 1980-06-16 1980-06-16 Melting method of titanium alloy for hydrogenation Expired JPS5940210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8112080A JPS5940210B2 (en) 1980-06-16 1980-06-16 Melting method of titanium alloy for hydrogenation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8112080A JPS5940210B2 (en) 1980-06-16 1980-06-16 Melting method of titanium alloy for hydrogenation

Publications (2)

Publication Number Publication Date
JPS575831A JPS575831A (en) 1982-01-12
JPS5940210B2 true JPS5940210B2 (en) 1984-09-28

Family

ID=13737515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8112080A Expired JPS5940210B2 (en) 1980-06-16 1980-06-16 Melting method of titanium alloy for hydrogenation

Country Status (1)

Country Link
JP (1) JPS5940210B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045245B2 (en) * 1980-11-05 1985-10-08 日立金属株式会社 Method for refining molten metal
JPS5967332A (en) * 1982-10-07 1984-04-17 Chuo Denki Kogyo Kk Production of shape memory alloy
JPS6081236A (en) * 1983-10-13 1985-05-09 Toyo Soda Mfg Co Ltd Flame-retardant molded article of crosslinked polyofefin resin and its production
US4661317A (en) * 1984-06-28 1987-04-28 Mannesmann Aktiengesellschaft Method for manufacturing a hydrogen-storing alloy
US5942057A (en) * 1994-03-10 1999-08-24 Nippon Steel Corporation Process for producing TiAl intermetallic compound-base alloy materials having properties at high temperatures
CN102660698B (en) * 2012-05-16 2014-01-15 上海大学 Vacuum induction melting method for titanium-containing hydrogen storage alloy

Also Published As

Publication number Publication date
JPS575831A (en) 1982-01-12

Similar Documents

Publication Publication Date Title
Kroll The production of ductile titanium
US7858063B2 (en) High purity metallurgical silicon and method for preparing same
CN111378848B (en) Pre-melted slag for electroslag remelting for improving purity of GH4169 alloy return and preparation method thereof
US4216010A (en) Aluminum purification system
AU647974B2 (en) Method for the treatment of potlining residue from primary aluminium smelters
CN101555011A (en) Silica reduction method for producing silicon
KR19980024214A (en) Process for producing foamed slag on molten stainless steel in an electric furnace
US7175721B2 (en) Method for preparing Cr-Ti-V type hydrogen occlusion alloy
CN102660698B (en) Vacuum induction melting method for titanium-containing hydrogen storage alloy
US4169722A (en) Aluminothermic process
JPS5940210B2 (en) Melting method of titanium alloy for hydrogenation
JP3338701B2 (en) Method for producing chromium-containing metal
US20230043273A1 (en) Manganese aluminum alloy and preparation method therefor
RU2329322C2 (en) Method of producing high titanium ferroalloy out of ilmenite
CN110205652B (en) Preparation method and application of copper-scandium intermediate alloy
US4419126A (en) Aluminum purification system
RU2406767C1 (en) Procedure for metal-thermal metal and alloy melting
CA1220349A (en) Thermal reduction process for production of magnesium using aluminum skim as a reductant
CN109487091B (en) Electroslag remelting arc striking agent and preparation method thereof
JPS55141534A (en) Manufacture of metallic magnesium
US4177059A (en) Production of yttrium
CA1075475A (en) Aluminothermic process
WO2023276057A1 (en) Manganese alloy production method and production device therefor
CN110923482A (en) High-quality high-tungsten high-cobalt-nickel alloy material and preparation method thereof
US3768998A (en) Method of smelting high quality ferrosilicon