JPS5923221A - Scale accumulated quantity detecting method in nonmagnetic steel pipe, and device used for said method - Google Patents

Scale accumulated quantity detecting method in nonmagnetic steel pipe, and device used for said method

Info

Publication number
JPS5923221A
JPS5923221A JP13332982A JP13332982A JPS5923221A JP S5923221 A JPS5923221 A JP S5923221A JP 13332982 A JP13332982 A JP 13332982A JP 13332982 A JP13332982 A JP 13332982A JP S5923221 A JPS5923221 A JP S5923221A
Authority
JP
Japan
Prior art keywords
scale
steel pipe
probe
magnetic
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13332982A
Other languages
Japanese (ja)
Inventor
Kazuo Iwasaki
一雄 岩崎
Shigeki Hirakawa
平川 重貴
Hiromi Abe
安部 弘美
Shinichi Nishino
西野 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Nondestructive Inspection Co Ltd
Denshijiki Industry Co Ltd
Original Assignee
Shin Nippon Nondestructive Inspection Co Ltd
Denshijiki Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Nondestructive Inspection Co Ltd, Denshijiki Industry Co Ltd filed Critical Shin Nippon Nondestructive Inspection Co Ltd
Priority to JP13332982A priority Critical patent/JPS5923221A/en
Publication of JPS5923221A publication Critical patent/JPS5923221A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F17/00Methods or apparatus for determining the capacity of containers or cavities, or the volume of solid bodies

Abstract

PURPOSE:To execute safely a quantitative detection of accumulated scale quantity, bt detecting magnetically the accumulated scale quantity by a probe by utilizing magnetism of the scale accumulated in nonmagnetic austenite stainless steel pipe. CONSTITUTION:A probe body 3 which contains a magnetic field generating magnet, a high sensitivity magnetism detecting element for detecting a magnetic flux variation, etc., and is capable of adjusting freely a gap to a stainless steel pipe by an adjusting bolt 5 is provided in a housing 2 which is freely movable in the axial direction of a nonmagnetic austenite stainless steel pipe of a superheater pipe, etc. of a steam boiler through a wheel 4. Also, a notch provided on a rim 4a of the wheel 4 is detected by an optical sensor 8 and a moving distance of the probe 3 is detected. When scale adheres to the inside of the stainless steel pipe, an output of the probe 3 by the high sensitivity magnetism detecting element is varied by magnetism of the scale. When a gauging diagram based on the scale quantity of a known quantity is referred to by this output, a quantitative detection of estimated quantity of scale can be executed safely without using a radiant ray, etc.

Description

【発明の詳細な説明】 本発明は、例えば火力発電用蒸気ボイラの過P1器およ
び再熱器のチューブとして用いられている非磁性のオー
ステナイト系ステンレス鋼管内に堆積するSUSスケー
ルを定m的に検出する方法及びこれに用いる装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention aims to eliminate SUS scale deposited in non-magnetic austenitic stainless steel tubes, which are used, for example, as tubes in P1 and reheaters of steam boilers for thermal power generation. The present invention relates to a detection method and a device used therefor.

蒸気ボイラ等の過!j11器管や百FHjH器管内にス
ケールが何着すると伝熱が不良となったり、局所的にり
11応力が増大して破裂したり、またタービン室へスケ
ールが入り込むとタービンプレー1−がtfi壊したり
ノスルを閉塞する等の49と害を生じ最終的には発電殿
能をス1−ノブしなければならないような問題が生ずる
Failure of steam boilers, etc.! If scale is deposited in the J11 vessel or FHjH vessel, heat transfer will be poor, local stress will increase and rupture may occur, and if scale enters the turbine chamber, the turbine play 1- will become tfi. Problems such as damage or blockage of the nostle may occur, and ultimately the power generation capacity must be snubbed.

その幻策とし゛ζスケール堆禎量を検出して管内をクリ
ーニングするよ・)にしている。従来ば、このスう゛−
ル堆積Ho)検出調査日放射線透過試験により1jわれ
ているが、この放71J線を用いる方法では故!14線
被ばくの危険があることと、管I本当りの調査費用が高
(、従って全゛この管を調査できない場合には抜き取り
検査方法をInらなりればならず、スケール検出が完全
に行えないという欠点がある。
The trick is to detect the amount of ζ scale sediment and clean the inside of the pipe. Conventionally, this screen
However, this method using radioactive 71J radiation was found to be 1J by radiographic examination on the day of the detection investigation. There is a risk of exposure to 14-ray radiation, and the inspection cost per tube is high (therefore, if it is not possible to inspect all the tubes, a sampling inspection method must be used, and scale detection cannot be completely performed. There is a drawback that there is no

本発明は以上のよ・うな問題を解消しようとするもので
、鋼管内のスケール堆積mを定量的に求めることができ
るスケール堆積m検出方法及びその5検出方法に用いる
装置を提供することを目的とするものである。
The present invention aims to solve the above-mentioned problems, and aims to provide a method for detecting scale deposit m that can quantitatively determine scale deposit m in a steel pipe, and an apparatus used in the fifth detection method. That is.

以下、本発明を実施例に基づいて説明する。Hereinafter, the present invention will be explained based on examples.

第1図にスケール堆積量検出装置(以−「「検出装置」
という。)(1)の一部切欠側面図が示されてJ9す、
同検出装置は略方形中空断面を有する筐体(2)内にプ
ローブ本体(3)を内蔵する構成であり、プローブ本体
431 fullのiE体+21には車輪(4)が回転
自在に取りイ:Jりられている。プローブ本体(3)は
、被検査管の外径に応してその検出f+1i(3a)が
検出に最適な位置に調節できるようにプローブ位置調整
用のホル1−(5)がプローブ本体(3)に連結され筐
体(2)外部のダイヤル(6)操作によりプローブ本体
(3)は筐体(2)内を自在に移動することができるよ
うに溝底されている。
Figure 1 shows a scale accumulation amount detection device (hereinafter referred to as “detection device”).
That's what it means. ) (1) A partially cutaway side view of J9 is shown.
The detection device has a configuration in which a probe body (3) is built into a housing (2) having a substantially rectangular hollow cross section, and a wheel (4) is rotatably mounted on the probe body 431 full iE body +21. J has been written. The probe body (3) has a hole 1-(5) for adjusting the probe position so that the detection f+1i (3a) can be adjusted to the optimal position for detection according to the outer diameter of the tube to be inspected. ) and has a grooved bottom so that the probe body (3) can be freely moved within the housing (2) by operating a dial (6) outside the housing (2).

この検出装置には、検査時の移動距離を検知するだめに
、IF体(2)の−測にむンリ゛−取1τjり枠(7)
を設り、ごの枠(7)に発光素子と受光試・ilとから
なるセンリ゛−(81を取りイ;jす、車輪(4)のリ
ム(4a)外周に設りたりJ欠i(1’j (411と
により移動圧器l検出を行うよ・)に構成する。即ち、
リム(4a)の外周面を、切欠’/??j f91を除
いて黒色に塗り、切欠溝(9)は発展1.1面とするこ
とにより車輪1回転につきIパルスの信号を出力するよ
うに構成する。図rl]ft1llはプローブ本体(3
)としンリ′−([1の出力を取り出す信号ケーブルで
ある。
In order to detect the moving distance during inspection, this detection device is equipped with a frame (7) that is designed to measure the distance traveled by the IF body (2).
A sensor (81) consisting of a light-emitting element and a light-receiving sample is installed in the frame (7), and a sensor (81) is installed on the outer periphery of the rim (4a) of the wheel (4). (1'j (411 is used to detect the moving pressure vessel l). In other words,
Cut out the outer peripheral surface of the rim (4a). ? j Except for f91, the wheels are painted black, and the cutout grooves (9) are made to have a 1.1 plane of development, so that an I-pulse signal is output per rotation of the wheel. Figure rl] ft1ll is the probe body (3
) and shinri'-([This is a signal cable that takes out the output of 1.

第2図にスケール検出回路が示されており、検出装置(
11からの出力信号と、レンジ”−(8)からの信舅が
例えば2ペンのレコーダに送′られ、記録紙に走査位置
とスケール堆積■に括づく電圧が記録される。
Figure 2 shows the scale detection circuit, and the detection device (
The output signal from 11 and the signal from range 11 (8) are sent to a two-pen recorder, for example, and the voltages associated with the scanning position and scale deposition are recorded on a recording paper.

本発明によるスケール検出装置は高、感度磁気検出装置
であり、その動作原理を第3図に示した。
The scale detection device according to the present invention is a highly sensitive magnetic detection device, the operating principle of which is shown in FIG.

第3図において、プローブ本体内のマグネットが空気中
にある場合、即しマグネットに調査対象)]が1妾して
いない場合、マグネットより先住する磁力線はマグネッ
トの中心点に於いてはほは零であり、a、a’には出力
は生じない。この場合、a、a’に出力が生じる場合は
検出素子の位置又は特性バランスがくずれているので、
零点調整ホリュームにて零になるように調整する。次に
マグネットに調査対象(71を接すると零点位置がずれ
、検出素子a、a’に磁束φ1が作用し出力が生じる。
In Fig. 3, if the magnet inside the probe body is in the air, and the magnet does not have a single target (object to be investigated), then the magnetic field lines that are native to the magnet will be zero at the center point of the magnet. Therefore, no output is generated at a and a'. In this case, if output occurs at a or a', the position or characteristic balance of the detection element is out of balance, so
Adjust so that it becomes zero using the zero point adjustment volume. Next, when the magnet is brought into contact with the object to be investigated (71), the zero point position shifts and magnetic flux φ1 acts on the detection elements a and a', producing an output.

また、この変化は調査対象月の体積にても同1mの出力
を生しる。
Moreover, this change produces the same output of 1 m in the volume of the surveyed moon.

以上の検出装置(1)及び酸1路構成によるスケール測
定方法について説明する。
The scale measuring method using the above detection device (1) and acid one-path configuration will be explained.

−711に、非磁性のオーステナイ1系ステンレス鋼管
内にスケールが堆「1する場合、このスケールは磁性体
となることが知られており、スケール検出装置のプロー
ブを接近させるとスケール堆、偵■に応じた出力変化を
ilることができる。この出力は管内のスケールの量、
プローブの接触値(a、接触の程度により影響を受り”
るので、スケールMをtff度良く測定するために以下
のような方法を用いる。
-711, it is known that when scale is deposited inside a non-magnetic Austenite 1 stainless steel pipe, this scale becomes magnetic, and when the probe of a scale detection device approaches it, the scale deposits and detects it. It is possible to change the output according to the amount of scale in the pipe,
Probe contact value (a, affected by the degree of contact)
Therefore, the following method is used to measure the scale M with good tff accuracy.

即もλ、本発明による検出方法では被検査管と同形状の
テスtVをf−tf′、備し、既知Mのスケール(又は
鉄t5) )を充填してプローブによる出力指示値をプ
ロノ1した検量線図を予め作成し、被検査管の指示If
fをこの検量線図にあてはめ、スケール堆積■を定量的
に11定しようとするものである。
In the detection method according to the present invention, a test tV having the same shape as the tube to be inspected (f-tf') is provided, filled with a scale of known M (or iron t5)), and the output indicated value by the probe is measured by the probe. Create a calibration curve diagram in advance and use the instructions If
By applying f to this calibration curve, it is intended to quantitatively determine the scale deposition (1).

以下、その手順について述べると、第4図に示すような
、調査列象仙゛とり11子(D)5肉厚(1)が同しナ
ス1竹(′r)を、その管長が約50 +u+程度とな
して少なくとも4閲以」−作成する。そして、内部にス
ケール(又は鉄15) )  (S )を加えるが、本
実施例の場合第5図のよ・うに重臣!I((第5図(a
lの仝充j首状態を1009石とする。)を] 00 
、75 、50 。
The procedure will be described below. As shown in Figure 4, we will take one eggplant bamboo ('r) with 11 eggs (D), 5 wall thicknesses (1), and the pipe length of about 50. +U+ degree and at least 4 reviews"-Create. Then, a scale (or iron 15) (S) is added inside, but in this example, as shown in Figure 5, it is a senior minister! I((Figure 5(a)
The full state of l is 1009 stones. )] 00
, 75 , 50 .

2596となるよ・)に充1芭し、充填状態が外部より
口説できるように両α1j11を透明なビニル等で閉じ
て1?く。
It will be 2596.) Fill it with 1, and close both α1j11 with transparent vinyl etc. so that the filling state can be seen from the outside. Ku.

以上のケス1管(T)に列し、第6図で示ずΔ又はC方
向にスケール検出装置(1)のプロ−ブ本体(3)をI
妄近又は接触させて同プ1;1−ブオ体(3)の出力の
指示1直を読む。この作業を全ナス1竹に行い、その指
示値をプロン1し第7図に示ずようにmm%と指示値と
の対比線を陥き、これを検量線図とすることができる。
Arrange the probe body (3) of the scale detection device (1) in the ∆ or C direction (not shown in Figure 6) by aligning it with the above case 1 tube (T).
Read the instructions for the output of the same program 1; 1-buo body (3) by getting close to it or touching it. This operation is performed on all eggplants, one bamboo shoot, and the indicated value is plotted as shown in FIG. 7, and a comparison line between mm% and the indicated value is plotted, and this can be used as a calibration curve.

上記において、プローブ本体(3)を管に対して八また
はC方向より走査するのは、管内スケール量の変化、特
に重量%が50%(=J近の変化に則して最も直線性が
良いためである。
In the above, scanning the probe body (3) with respect to the tube from the 8 or C direction provides the best linearity according to the change in the amount of scale in the tube, especially the change in weight % near 50% (= J). It's for a reason.

なお、m6図において、D方向からの走査はスケールが
100%近い充填状態にならないと指示が得られず(第
8図参照)、更に同図のB方向からではスケール堆積量
が増えると指示が飽和しく第9図参照)、いずれもスケ
ール量を定量的に把握するにはJ9Jでばないからであ
る。
In addition, in the m6 diagram, when scanning from the D direction, instructions cannot be obtained unless the scale is nearly 100% filled (see Figure 8), and furthermore, when scanning from the B direction of the same diagram, the indication is not obtained when the amount of scale accumulation increases. This is because J9J cannot be used to quantitatively grasp the amount of scale (see FIG. 9).

検量線図作成後、現場において被検査管のスケール検出
調査を行うが、プローブオ一体(3)の態度調整はテス
ト管(′F)を基Y(仁として行うものとする。
After creating the calibration curve, a scale detection investigation of the tube to be tested is carried out on site, and the adjustment of the attitude of the probe unit (3) is carried out with the test tube ('F) as the basis.

現場調査はスケール存在の有無のめをチェックする1■
調査、及び粗調査後の梢密調査を行い、このtfj密調
査の指示値から検量線図を用い−ζスケール堆積量に換
W−(推定)するという段階を踏む。
On-site investigation to check for presence of scale 1■
A survey is conducted, and a tree density survey is conducted after the rough survey, and the indicated value of the tfj fine survey is converted into a -ζ scale deposition amount W- (estimated) using a calibration diagram.

111調査はスう一−ルの存在のチェックののを行うの
で、スう゛−ル+F1示の最も大きく肖られる第6図B
方向に検出!ji ii’i’、 (11を走査さl!
ることが良く、この調査でプローブ本体(3)の出力指
示値がOの場合は4″11j密調311:は不要である
Since the 111 investigation checks the existence of a pool, Figure 6B, which shows the wall + F1 most clearly,
Detection in direction! ji ii'i', (scan 11!
In this investigation, if the output instruction value of the probe body (3) is O, 4″11j dense adjustment 311: is not necessary.

オ゛11高j査1多のIt’/j密E周査は、Bl l
以信号UtfH忍と堆程1■IlF定のためのデータ採
取とを行・)必要がある。擬(以信号確認は被検査管内
の湯垢、ステンレスの絹織変1しによる磁性化及び管外
面にf」着した鉄わ)等の磁性を確認するためのもので
、第6図のA、  B。
O 11 High J Exam 1 Many It'/j Close E Examination is Bl l
It is necessary to collect data for the signal UtfH signal and the IIF determination in step 1). This signal is used to confirm the presence of magnetism such as limescale inside the pipe to be inspected, magnetization due to stainless steel silk deformation, and iron deposits on the outside surface of the pipe.A in Figure 6. B.

C,D方向又は他のta−意の方向から走査するごとに
より行う。
This is performed every time scanning is performed from the C, D direction or any other desired direction.

11fl 症ffl If定のデータ採取は、検m線作
成時と同一・方向、即し第6図の八又は13方向の走査
を行うことによりl’7るが、こごで検出装置(1)の
走査状態を第1O図を参照して述べる。スケールSが堆
積した被検M管′1゛に列し第6図のテスト管(′F)
に対するA方向と開力向側に検出装置(1)を位置さ−
U、同検出装置を手で持って被検査管Tの軸線方向に移
動させる。これにより記録紙に指示値が描かれ、かつ車
輪(4)の回転に伴って発生ずるセンサー(8)による
一定移動距離毎のパルスが同様に記録紙に記録される。
11fl Symptomffl If data can be collected by scanning in the same direction as when creating the inspection m line, that is, in the 8 or 13 direction shown in Figure 6, but with the detection device (1) The scanning state will be described with reference to FIG. 1O. The test tube ('F) in Fig. 6 is aligned with the test tube '1' on which scale S is deposited.
The detection device (1) is located in the A direction and the opening force direction side.
U. Hold the detection device by hand and move it in the axial direction of the tube T to be inspected. As a result, the indicated value is drawn on the recording paper, and the pulses generated by the sensor (8) at every fixed distance of movement generated by the rotation of the wheel (4) are also recorded on the recording paper.

従って竹軸方向の走査ポイントが示されるので被検査管
のどの位置に堆積スケールが存在するかを知ることがで
きる。
Therefore, since the scanning point in the direction of the bamboo axis is shown, it is possible to know where the deposited scale is present in the tube to be inspected.

以上得られた指示値データを基にして第7図の検量線図
によりスケール堆積量を、ナス1管(T)で行った重量
%を表すことになり、これによって堆積スケールの量を
flul検定するごとができるものである。
Based on the indicated value data obtained above, the amount of scale deposited is expressed in weight % using the calibration curve shown in Figure 7 using one eggplant tube (T), and the amount of deposited scale is determined by full verification. It's something you can do.

上記のように本発明は、第1には磁界を発生させる磁石
と、磁束の変化を検出する高感度磁気検出素子とを内蔵
したプローブを非磁性鋼管の長手方向に沿って移動させ
、上記プローブの出力によって開用1管内のスケール堆
積■を検出することを特徴とする非磁性鋼管におりるス
ケール堆積量検出力法であるので、堆積スケールの検出
が安全に行え、かつ堆積スケール量を定量的にIIn定
できるという優れた効果を有し、第2には磁界を発生さ
せる磁石と、磁束の変化を検出する高感度磁気検出素子
とを備えたプローブ本体を筐体に取り伺り?Jと共にそ
の高感度磁気検出素子側である検出端が筐体の開放品)
から突出する■を1Jlil 整できるように購成し、
同筐体のプ11−ブ本体検出端測の両側に車輪を設り、
かつ同車輪の回転回数に応じた信号を出力するUン・す
′−を設りたごとを特徴とする非にり性鋼ヤ[におりる
スケール堆積m検出装置であるので、−・旦プローブ本
体の進出mを調整した後に検出を行う場合に被検査管の
表面に列する検出O1:+からのギャップを一定に保っ
た状態で管の長手方向に沿って移動しながらの測定を行
うことができるという効果を奏するものである。
As described above, the present invention firstly moves a probe having a built-in magnet that generates a magnetic field and a high-sensitivity magnetic detection element that detects changes in magnetic flux along the longitudinal direction of a non-magnetic steel pipe; This method detects the amount of scale deposited in a non-magnetic steel pipe by detecting scale deposits in an open pipe by the output of It has the excellent effect of being able to accurately determine the IIn, and secondly, the probe body is housed in a housing that is equipped with a magnet that generates a magnetic field and a highly sensitive magnetic detection element that detects changes in magnetic flux. (Along with J, the detection end, which is the side of the high-sensitivity magnetic detection element, is an open case)
I bought it so that I could adjust the ■ protruding from it by 1 Jlil,
Wheels are installed on both sides of the detection end of the main body of the same housing,
Moreover, since it is a scale accumulation detection device that detects scale deposits on non-stick steel wheels, it is equipped with a unit that outputs a signal according to the number of rotations of the wheel. When performing detection after adjusting the advance m of the probe body, the measurement is performed while moving along the length of the tube while keeping the gap from the detection O1:+ aligned on the surface of the tube to be inspected constant. This has the effect of being able to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスケール堆積用検出装置の一部切欠測面図、第
2図は同検出装置の出力を処理する電気10印δのブロ
ック図、第3図は磁気検出装置の動作原理説明図、第4
図はテスト狛の正面図及び側面図、第5図はテスト管内
にスケール又は鉄わ)を所定のfl’[%充填した状態
の模式図、第6図はテス111゛に幻するプローブ本体
の接近方向を示す説明図、第7図はテスト管により得ら
れる検量線図、第8図及び第9図はそれぞれプローブの
接近方向を変えた時の検量線図、第10図は被検査管に
検出装置をセソトシた状態を示す正面図である。 (1)−スケールjlfi稍■検出装置(2)−筐体 (3)  プローブ本体 (3a)−検出酩、1 (4)−車輪 (4a)−−切欠溝伺きリム (5)−ブローフ゛位置叢周整用ポル1(6)キープロ
ーブ位置1J7I Ti用ダイ−トル(カ センリ′−
取付番J枠 (8)−七ンリ′− (9) −(J)欠ン^r (10)−信号ゲーブル 11W許出願人  電子r6ケ気]ニ業株式会社新日本
非破壊検査株式会社 代理人 手掘  益(ばか2名)
Fig. 1 is a partially cutaway surface diagram of the scale deposition detection device, Fig. 2 is a block diagram of the electric 10 mark δ that processes the output of the detection device, and Fig. 3 is an explanatory diagram of the operating principle of the magnetic detection device. Fourth
The figure shows a front view and a side view of the test tube, Figure 5 is a schematic diagram of the test tube filled with a predetermined fl' [%], and Figure 6 shows the probe body as seen in Test 111゛. An explanatory diagram showing the approach direction, Figure 7 is a calibration curve obtained with a test tube, Figures 8 and 9 are calibration curves when changing the approach direction of the probe, and Figure 10 is a calibration curve obtained from the test tube. FIG. 3 is a front view showing the detection device in a flattened state. (1) - Scale jlfi ■ Detection device (2) - Housing (3) Probe body (3a) - Detector, 1 (4) - Wheel (4a) - Notch groove rim (5) - Blowoff position Pole 1 (6) Key probe position 1J7I Diameter for Ti
Mounting number J frame (8) - Seven pins' - (9) - (J) Missing ^r (10) - Signal cable 11W Applicant Electronic r6ke] Nigyo Co., Ltd. Agent of Shin Nippon Nondestructive Testing Co., Ltd. People Tegumi Masu (2 idiots)

Claims (1)

【特許請求の範囲】 1、 磁界を発生させる磁石と、磁束の変1ヒを検出す
る高感度磁気検出素子とを内蔵したプローブを非磁性鋼
管の長手方向に沿って移動さ−U、上記プローブの出力
によって前記非磁性鋼管内のスゲール堆積母を検出する
ことを特徴とする非磁性鋼管におりるスケール堆積量検
出方法。 2、 磁界を発生さ−1る磁石と、磁束の変化を検出す
る高感度磁気検出素子とを備えたプローブ本体を筐体に
取り伺げろと共にその高感度磁気検出素子側である検出
端が筐体の開放θ11)から突出する■をI!LINで
きるように構成し、同筐体のプローブ本体検Ll丘11
.i側の両側に車輪を設り、かつ同車輪の回転回数に応
した信号を出力するセンーリ・−を設kJたことを特徴
とする非磁性鋼管におりるスケール堆Ul景検出装置。
[Claims] 1. A probe incorporating a magnet that generates a magnetic field and a highly sensitive magnetic detection element that detects changes in magnetic flux is moved along the longitudinal direction of a non-magnetic steel pipe. A method for detecting the amount of scale deposits in a non-magnetic steel pipe, comprising detecting scale deposits in the non-magnetic steel pipe based on the output of the above. 2. Place the probe body, which is equipped with a magnet that generates a magnetic field and a high-sensitivity magnetic detection element that detects changes in magnetic flux, into the housing, and place the detection end, which is the side of the high-sensitivity magnetic detection element, inside the housing. ■ that protrudes from the opening θ11) of the body is I! It is configured so that it can be connected to the probe body in the same housing.
.. What is claimed is: 1. A scale pile view detection device mounted on a non-magnetic steel pipe, characterized in that wheels are provided on both sides of the i side, and a sensor is provided for outputting a signal corresponding to the number of rotations of the wheels.
JP13332982A 1982-07-29 1982-07-29 Scale accumulated quantity detecting method in nonmagnetic steel pipe, and device used for said method Pending JPS5923221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13332982A JPS5923221A (en) 1982-07-29 1982-07-29 Scale accumulated quantity detecting method in nonmagnetic steel pipe, and device used for said method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13332982A JPS5923221A (en) 1982-07-29 1982-07-29 Scale accumulated quantity detecting method in nonmagnetic steel pipe, and device used for said method

Publications (1)

Publication Number Publication Date
JPS5923221A true JPS5923221A (en) 1984-02-06

Family

ID=15102163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13332982A Pending JPS5923221A (en) 1982-07-29 1982-07-29 Scale accumulated quantity detecting method in nonmagnetic steel pipe, and device used for said method

Country Status (1)

Country Link
JP (1) JPS5923221A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020048629A (en) * 2000-12-18 2002-06-24 윤종용 blanket tungsten
US7162896B2 (en) * 2002-02-26 2007-01-16 Bsh Bosch Und Siemens Hausgeraete Gmbh Apparatus for checking the formation of scale, and water-carrying appliance
US7175715B2 (en) * 2000-10-26 2007-02-13 Bsh Bosch Und Siemens Hausgeraete Gmbh Method and device for determining the deposits of components from a liquid on surfaces, in particular liquid pumping machines

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173460A (en) * 1974-11-18 1976-06-25 Illinois Tool Works

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173460A (en) * 1974-11-18 1976-06-25 Illinois Tool Works

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175715B2 (en) * 2000-10-26 2007-02-13 Bsh Bosch Und Siemens Hausgeraete Gmbh Method and device for determining the deposits of components from a liquid on surfaces, in particular liquid pumping machines
KR20020048629A (en) * 2000-12-18 2002-06-24 윤종용 blanket tungsten
US7162896B2 (en) * 2002-02-26 2007-01-16 Bsh Bosch Und Siemens Hausgeraete Gmbh Apparatus for checking the formation of scale, and water-carrying appliance

Similar Documents

Publication Publication Date Title
ES2388877T3 (en) Procedure and system for non-destructive electromagnetic ultrasonic testing of a metal part
CN100533176C (en) Austenitic stainless steel tube inner oxide magnetic damage-free detection device
RU2529655C2 (en) Device of pipeline control with double spiral matrix of electromagnetoacoustic sensors
US20200056975A1 (en) Magnetic induction particle detection device and concentration detection method
CN102460143B (en) Apparatus and method for measuring deposit sediment on inside wall of tube
JPS5877653A (en) Nondestructive testing device
US5418823A (en) Combined ultrasonic and eddy-current method and apparatus for non-destructive testing of tubular objects to determine thickness of metallic linings or coatings
Sadek NDE technologies for the examination of heat exchangers and boiler tubes-principles, advantages and limitations
JP2766929B2 (en) Non-destructive inspection equipment
CN101694478B (en) Method for detecting internal corrosion of steel pipeline
JPS5923221A (en) Scale accumulated quantity detecting method in nonmagnetic steel pipe, and device used for said method
US5397985A (en) Method for the imaging of casing morphology by twice integrating magnetic flux density signals
CN109900781A (en) Ferromagnetism tamper multi-channel quantitative electromechanical detection method in Austenitic stainless steel pipe
CN210221898U (en) Probe and detector for detecting ferromagnetic blockage in austenitic stainless steel pipe
JP4118487B2 (en) Steel pipe corrosion diagnosis method
Al-Qadeeb Tubing inspection using multiple NDT techniques
RU2306479C2 (en) Inner defectoscope for pipelines
EP0650028A2 (en) Method and apparatus for measurement of thickness of specimens
KR100360978B1 (en) Nondestructive RFEC inspection system for tube in tubes
JPH086294Y2 (en) Eddy current flaw detector
CN108557597B (en) A kind of autocoding spooler, Stress Map imaging system
RU25218U1 (en) IN-TUBE MULTI-CHANNEL PROFILE
Prestwood et al. The use of eddy-current methods to examine irradiated fuel pins
JPH0560522B2 (en)
Keshwani et al. Ferrite cores as back yoke for enhancing hall sensor sensitivity in caliper tool for pipeline inspection