JPS59231390A - Condensing device - Google Patents
Condensing deviceInfo
- Publication number
- JPS59231390A JPS59231390A JP10527783A JP10527783A JPS59231390A JP S59231390 A JPS59231390 A JP S59231390A JP 10527783 A JP10527783 A JP 10527783A JP 10527783 A JP10527783 A JP 10527783A JP S59231390 A JPS59231390 A JP S59231390A
- Authority
- JP
- Japan
- Prior art keywords
- condensate
- hot well
- condenser
- radioactive
- water supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B9/00—Auxiliary systems, arrangements, or devices
- F28B9/08—Auxiliary systems, arrangements, or devices for collecting and removing condensate
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、沸騰水型原子力発電プラントにおいて使用す
るに好適な復水器装置に係り、特に第1ホツトウエルと
第2ホツトウエルとを有するいわゆるサイドストリーム
型復水器装置に関する。Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a condenser device suitable for use in a boiling water nuclear power plant, and in particular to a so-called side stream condenser device having a first hot well and a second hot well. Concerning a type condenser device.
近年、復水器装置は、復水脱塩器の目づま如等による給
水流量の変動防止、給水流量制御の容易性等を考慮して
復水脱塩器流量と給水流量とを独立させたサイドストリ
ーム型が普及してきている。In recent years, condenser equipment has made the condensate demineralizer flow rate and the feed water flow rate independent in order to prevent fluctuations in the feed water flow rate due to condensate demineralizer blockages, etc., and to facilitate control of the feed water flow rate. The side stream type is becoming popular.
第1図は、サイトス) IJ−ム型復水器装置を有する
lWi#水型原子力発電プラントの復水給水系の概略を
示したものである。第1図において、原子炉lOにおい
て発生した蒸気は、主蒸気管12t−介して高圧タービ
ン14に導びかれ高圧タービン14を駆動する。高圧タ
ービン14を駆動した蒸気は、気水分離器16によシ乾
燥蒸気となって低圧タービン18を駆動した後4器2o
に入シ、第1ホツトウエル22において凝縮し復水とな
る。第1ホツトウエル22内の復水は、復水循環ボ/グ
24によシ吸引され、復水フィルタ26、復水脱塩器2
8に送られて浄化され、復水器20の第2ホツトウエル
30に導かれる。第2ホツトウエル30に入った復水け
、高圧復水ポンプ32により給水加熱器34.36と給
水ポンプ38とからなる給水系に送られ、一定の温度ま
で温められた後原子炉10に供給される。FIG. 1 schematically shows a condensate water supply system of an IWi# water type nuclear power plant having a Cytos IJ-type condenser device. In FIG. 1, steam generated in the nuclear reactor IO is guided to a high pressure turbine 14 through a main steam pipe 12t and drives the high pressure turbine 14. The steam that drove the high pressure turbine 14 is turned into dry steam by the steam separator 16, which drives the low pressure turbine 18.
When the water enters the water, it condenses in the first hot well 22 and becomes condensate. The condensate in the first hot well 22 is sucked into the condensate circulation port 24, and is passed through the condensate filter 26 and the condensate demineralizer 2.
8 to be purified and guided to the second hot well 30 of the condenser 20. The condensate that has entered the second hot well 30 is sent by the high-pressure condensate pump 32 to the water supply system consisting of the feed water heaters 34 and 36 and the feed water pump 38, heated to a certain temperature, and then supplied to the reactor 10. Ru.
復水器20は、第2図に示すように第1ホツトウエル2
2と第2ホツトウエル30とが隔壁40によシ仕切られ
ており、この隔壁40の上部に両者を連通ずる開口部4
2が形成しである。そして、第1ホツトウエル22には
、復水器空気抽出器44に連通する配管46が設けられ
、底部には復水浄化管48が連結されている。この復水
浄化管48は、前記した復水循環ポンプ24、復水フィ
ルタ26、復水脱塩器28を介して第2ホツトウエル3
0に接続さh、第1ホツトウエル22に凝縮した復水5
0を浄化した後、ノズル52から第2ホツトウエル30
内に注入するようになっている。また、第2ホツトウエ
ル30には、高圧復水ポンプ32に連通する復水供給配
管54が設けである。The condenser 20 includes a first hot well 2 as shown in FIG.
2 and the second hot well 30 are partitioned by a partition wall 40, and an opening 4 is provided in the upper part of the partition wall 40 to communicate the two.
2 is formed. The first hot well 22 is provided with a pipe 46 communicating with a condenser air extractor 44, and a condensate purification pipe 48 is connected to the bottom thereof. This condensate purification pipe 48 is connected to the second hot well 3 via the aforementioned condensate circulation pump 24, condensate filter 26, and condensate demineralizer 28.
0, condensed water 5 condensed in the first hot well 22
0, the second hot well 30 is removed from the nozzle 52.
It is designed to be injected internally. Further, the second hot well 30 is provided with a condensate supply pipe 54 that communicates with the high-pressure condensate pump 32.
上記の如く構成しであるサイドストリーム型復水器装置
の作用は次の通りである。低圧タービン18f:駆動し
た蒸気は、復水器20に入り凝縮して復水50となり第
1ホツトウエル22に溜る。The operation of the side stream type condenser device constructed as described above is as follows. Low-pressure turbine 18f: The driven steam enters the condenser 20 and condenses to become condensate 50, which accumulates in the first hot well 22.
そして復水50は、復水浄化管48を介して復水循環ポ
ンプ24に吸引され、復水フイルり26、復水脱塩器2
8に送られる。復水フィルタ26及び復水脱塩器28は
、−次冷却材である復水を浄化し、放射性物質をヨウ素
に対する除染係数が100となるように復水中の放射能
濃度を低減する。このように浄化された復水は、ノズル
52′f:介して第2ホツトウエル30に注入される。The condensate 50 is then sucked into the condensate circulation pump 24 via the condensate purification pipe 48, and is passed through the condensate filter 26 and the condensate demineralizer 2.
Sent to 8th. The condensate filter 26 and the condensate demineralizer 28 purify condensate, which is a secondary coolant, and reduce the radioactivity concentration in the condensate so that the decontamination coefficient for radioactive substances with respect to iodine is 100. The condensate thus purified is injected into the second hot well 30 through the nozzle 52'f.
第2ホツトウエル30に入る復水は、復水供給配・a5
4を介して給水系へ送られる量より多く、一部が開口部
42から第1ホツトクエル22内にオーバフローし、第
1ホツトウエル22に環流される。The condensate entering the second hot well 30 is connected to the condensate supply distribution a5.
4 into the water supply system, a portion overflows into the first hotwell 22 through the opening 42 and is refluxed into the first hotwell 22.
なお、第1ホツトウエル22内は、配管46を介して復
水器空気抽出器44により負圧にされ、原子炉10にお
いて分解した酸素ガス及び水素ガスを抽出できるように
なっている。Note that the inside of the first hot well 22 is made negative pressure by a condenser air extractor 44 via a pipe 46, so that oxygen gas and hydrogen gas decomposed in the reactor 10 can be extracted.
ところが、上記の構造を有する従来の復水器装置におい
ては、第1図に示した高圧復水ポンプ32、給水加熱器
34等の給水系機器まわりの放射線量が比較的高くなる
。即ち、復水フィルタ26及び復水脱塩器28において
捕捉された放射性物質の内、放射性ヨウ素が崩壊して生
成される放射性キセノンや、放射性臭素が崩壊して生成
される放射性クリプトン等の放射性気体が復水脱塩器2
8に捕捉されず、復水中に過飽和の状態で溶解し、第2
ホツトウエル30に運ばれる。このため給水系に送られ
る復水は、放射性気体が溶存しており、この放射性気体
により高圧復水ポンプ32や給水加熱器34等の給水系
機器まわりの放射線量が高くなり、これらの機器まわり
をコンクリート壁により遮蔽する必要があった。However, in the conventional condenser device having the above structure, the radiation dose around water supply system equipment such as the high pressure condensate pump 32 and the feed water heater 34 shown in FIG. 1 is relatively high. That is, among the radioactive substances captured in the condensate filter 26 and the condensate demineralizer 28, radioactive gases such as radioactive xenon produced by the decay of radioactive iodine and radioactive krypton produced by the decay of radioactive bromine. is condensate demineralizer 2
8, it dissolves in the condensate in a supersaturated state, and the second
Transported to Hotwell 30. For this reason, the condensate sent to the water supply system has radioactive gas dissolved in it, and this radioactive gas increases the radiation dose around water supply system equipment such as the high-pressure condensate pump 32 and the feed water heater 34. It was necessary to shield it with a concrete wall.
本発明は前記従来技術の欠点を除去するためになされた
もので、給水系に送る復水中の放射1lft金低減する
ことができる復水器装置を提供すること全目的とする。The present invention has been made to eliminate the drawbacks of the prior art, and has an overall object to provide a condenser system capable of reducing 1 lf of gold emitted in condensate sent to a water supply system.
本発明は、給水系に復水全供給する第2ホツトウエル中
を排気装置Kk用いて負圧とし、この第2ホツトウエル
中に第1ホツトウエルからの浄化してめる復水を噴霧し
、復水中に溶存している放射性気体を脱気した後、給水
系に復水を供給するように構成したものである。In the present invention, the inside of the second hotwell that supplies all of the condensate to the water supply system is made negative pressure using the exhaust device Kk, and the purified condensate from the first hotwell is sprayed into the second hotwell. After degassing the radioactive gas dissolved in the water, condensate is supplied to the water supply system.
本発明に係る復水器装置の好ましい実施例を、添付図面
に従って詳説する。なお、前記従来技術において説明し
た部分に対応する部分については、同一の符号を付しそ
の説明を省略する。A preferred embodiment of the condenser device according to the present invention will be described in detail with reference to the accompanying drawings. Note that the same reference numerals are given to the parts corresponding to the parts explained in the prior art, and the explanation thereof will be omitted.
第3図は、本発明に係る復水器装置の実施例の説明図で
ある。第3図において、復水器20の第2ホツトウエル
30は、隔壁5Gと仕切板58とから形成されている。FIG. 3 is an explanatory diagram of an embodiment of the condenser device according to the present invention. In FIG. 3, the second hotwell 30 of the condenser 20 is formed from a partition wall 5G and a partition plate 58.
隔壁5Gは、従来よシ高い位置まで第1ホツトウエル2
2の上方に延在し、第2ホツトウエル30内の復水50
が自由表面60を有するようになっている。そして、第
2ホツトウエル30の空間部62には、復水を噴霧する
ための噴霧器64が取付けである。また、隔、壁56の
上部には、配゛a46から分岐した枝管66が接続され
、下端部、即ちホットウェル30の底部には開口部68
が形成しである。前記した仕切板58は、隔壁56外方
(第1ホツトウエル22側)に位置し、その上端が第1
ホントウエル22中の復水50の自由表面よりも高い位
置に位置し、隔壁56との間に放水ロア0を形成してい
る。The partition wall 5G is installed in the first hot well 2 to a higher position than before.
condensate 50 in the second hot well 30;
has a free surface 60. A sprayer 64 for spraying condensate is attached to the space 62 of the second hot well 30. Further, a branch pipe 66 branched from the partition a46 is connected to the upper part of the partition wall 56, and an opening 68 is connected to the lower end, that is, the bottom of the hot well 30.
is formed. The partition plate 58 described above is located outside the partition wall 56 (on the first hot well 22 side), and its upper end is connected to the first hot well 22 side.
It is located at a higher position than the free surface of the condensate 50 in the real well 22, and forms a water discharge lower 0 between it and the partition wall 56.
上記の如く構成した実施例の作用は次の通りである。The operation of the embodiment configured as described above is as follows.
第3図において、復水器20の第1ホツトウエル22と
第2ホツトウエル30とは、復水器空気抽出器44によ
り減圧され、ゲージ圧で一720tars Hg程度の
真空に保たれている。そして、第1ホントウエル22に
おいて凝縮した復水50は、前記したように復水フィル
タ26及び復水脱塩器28により放射性物質が除去され
、噴霧器64から第2ホツトウエル30の空間部62に
噴霧される。第2ホツトウエル30内に復水を噴霧する
と、復水中に溶存しているキセノン、クリプトン等の放
射性気体は、次の原理により脱気される。In FIG. 3, the first hot well 22 and the second hot well 30 of the condenser 20 are depressurized by the condenser air extractor 44 and maintained at a vacuum of about -720 tars Hg in gauge pressure. The condensate 50 condensed in the first hot well 22 has radioactive substances removed by the condensate filter 26 and the condensate demineralizer 28 as described above, and is sprayed from the sprayer 64 into the space 62 of the second hot well 30. be done. When condensate is sprayed into the second hot well 30, radioactive gases such as xenon and krypton dissolved in the condensate are degassed according to the following principle.
(1)水中に溶解できるガスの濃度は、水の表面に存在
するそのガスの分圧比に正比例する。(1) The concentration of a gas that can be dissolved in water is directly proportional to the partial pressure ratio of that gas present at the surface of the water.
(2)水中の溶存ガス濃度は、水の温度の増加とともに
減少し、さらに飽和蒸気圧以下に減圧されると、即ち水
の温度が飽和温度以上に達するとガスは水中に溶存でき
ない。(2) The concentration of dissolved gases in water decreases as the temperature of the water increases, and when the pressure is further reduced below the saturated vapor pressure, that is, when the temperature of the water reaches the saturated temperature or higher, gases cannot be dissolved in the water.
そこで、放射性気体を過飽和状態に含んだ復水け、噴霧
器64から第2ホツトウエル30内に噴霧されると、復
水が微粒化され衣面積が急激に大きくなる。この結果、
復水中に溶存していた放射性の希ガス成分は、速やかに
第2ホントウエル30内の真空度(−720mmHg程
度)に相当する飽和濃度まで拡散、脱気が行なわれる。Therefore, when the condensate containing the radioactive gas in a supersaturated state is sprayed from the sprayer 64 into the second hot well 30, the condensate is atomized and the coating area increases rapidly. As a result,
The radioactive rare gas component dissolved in the condensate is quickly diffused and degassed to a saturation concentration corresponding to the degree of vacuum in the second real well 30 (approximately -720 mmHg).
特に、復水フィルタ26、復水脱塩器28において生成
される放射性のキセノンヤフリグトン等の核種は、化学
的に不活性のため水中への溶解度が低く、上記の過程に
よりほぼ完全に脱気される。脱気により気化した放射性
気体は、復水器空気抽出器44に吸引され、図示しない
気体廃莱物処理系に送られ、処理される。このため、復
水中の放射性気体による放射能濃度は、復水中に8まれ
ているその他の核分裂生成物の放射能に対して無視しう
る程度にまで減少する。例えば、iiooMweクラス
の原子力発電プラントにおいては、一般に第1ホツトウ
エル内に凝縮した復水50中には約1.4×10−”p
Cs/ cc程度の放射性核分裂生成物が含まれており
、これらの放射性核分裂生成物が復水フィルタ26及び
復水脱塩器28により除去されて1/100程度に減少
する。しかし、復水フィルタ26及び復水脱塩器28に
おいて捕捉されたヨウ素、臭素が崩壊することによって
キセノン、クリプトン等の放射性希ガスが生成され、従
来の第2ホツトウエル30中に流入する復水には、約5
.8X10−”μCi / c cの放射性希ガスが含
まれ、放射性核分裂生成物ヲよめると約6.0X10−
2μCi/ c c程度の放射能濃度となっていた。し
かし、上記の如く第2ホツトウエル30内に復水を噴霧
することにより、放射性希ガス金はぼ零とすることがで
き、給水とし1給水系に送られる復水中の放射能濃度が
約1.4X10−3μCi/CCとなり、従来の115
0にまで低減することが可能となる。この結果、放射線
の遮蔽に必要なコンクリート壁の厚さが従来よ、930
CIn程度薄くすることができ、特に高圧復水ポンプ室
周囲の遮蔽壁等を削除することが可能となる。In particular, nuclides such as radioactive xenon yafligton produced in the condensate filter 26 and condensate demineralizer 28 have low solubility in water because they are chemically inert, and are almost completely desorbed through the above process. It bothers me. The radioactive gas vaporized by the degassing is sucked into the condenser air extractor 44, sent to a gaseous waste treatment system (not shown), and treated. Therefore, the radioactivity concentration due to the radioactive gas in the condensate is reduced to a negligible level compared to the radioactivity of other fission products contained in the condensate. For example, in an iiiooMwe class nuclear power plant, the condensate 50 condensed in the first hotwell typically contains approximately 1.4 x 10-"p
Radioactive fission products of about Cs/cc are included, and these radioactive fission products are removed by the condensate filter 26 and the condensate desalter 28 and reduced to about 1/100. However, when the iodine and bromine captured in the condensate filter 26 and the condensate demineralizer 28 decay, radioactive rare gases such as xenon and krypton are generated, and the condensate flowing into the conventional second hot well 30 is is about 5
.. It contains 8X10-"μCi/cc of radioactive noble gas, and if you read the radioactive fission products, it will be about 6.0X10-"
The radioactivity concentration was approximately 2 μCi/cc. However, by spraying condensate into the second hot well 30 as described above, the radioactive rare gas gold can be reduced to almost zero, and the radioactivity concentration in the condensate sent to the first water supply system as water supply is approximately 1. 4X10-3μCi/CC, compared to the conventional 115
It becomes possible to reduce it to 0. As a result, the thickness of concrete walls required for radiation shielding is now 930 mm
It can be made as thin as CIn, and in particular it is possible to eliminate shielding walls around the high pressure condensate pump chamber.
また、従来の復水器装置において給水系の放射の低減を
目的として通常の脱気器を設ける場合には、3〜5分間
相当の給水流量の溶量を有する脱気タンクが必要となシ
、スペース面及びコスト面から大きな負担となるのに対
し、本実施例によればサイドストリーム型復水器の特徴
を損うことなく、新たに大型の機器全設置せずに放射能
の低減を図ることができる。このため、原子力発電プラ
ントにおける作業員の被爆線@全大幅に低減できる。In addition, when installing a normal deaerator for the purpose of reducing radiation in the water supply system in a conventional condenser system, a deaeration tank with a solubility equivalent to the feed water flow rate for 3 to 5 minutes is required. However, according to this embodiment, radioactivity can be reduced without compromising the characteristics of the sidestream condenser and without installing all new large equipment. can be achieved. Therefore, the total radiation exposure of workers in nuclear power plants can be significantly reduced.
放射性気体が脱気された復水は、復水給水配管54を介
して給水系に送られるとともに、一部がU字状の流れを
して放水ロア0から第1ホツトウエル22内に環流する
。The condensate from which the radioactive gas has been degassed is sent to the water supply system via the condensate water supply pipe 54, and a portion of the condensate flows in a U-shape and circulates from the water discharge lower 0 into the first hot well 22.
なお、前記実施例においては放水ロア0を隔壁56と仕
切板58とによって形成した場合について説明したが、
管の一端を第2ホツトウエルの自由表面60よシ下方に
接続したパイプにより形成してもよく、隔壁60に自由
表面60より下方にオリフィス状の開口を形成してもよ
い。In addition, in the embodiment described above, the case where the water discharge lower 0 is formed by the partition wall 56 and the partition plate 58 has been explained.
One end of the tube may be formed by a pipe connected below the free surface 60 of the second hotwell, or an orifice-like opening may be formed in the partition wall 60 below the free surface 60.
以上説明したように本発明によれば、排気している第2
ホツトウエル中に復水を噴霧すること顛より、復水中の
放射線量上大幅に低減することができる。As explained above, according to the present invention, the second
By spraying condensate into the hot well, the radiation dose in the condensate can be significantly reduced.
第1図は沸騰水型原子炉の復水給水系の概略系統図、第
2図は従来のサイトスll−ム型復水器装置の説明図、
第3図は本発明に係る復水器装置の実施例の説明図、第
4図は前記実施例の第2ホツトウエルの概略斜視図であ
る。
20・・・復水器、22・・・第1ホツトウエル、30
・・・第2ホツトクエル、44・・・復水器を気抽出器
、64・・・噴霧器っ
代理人 弁理士 鵜沼辰之
第1図
第2図
第3図Figure 1 is a schematic system diagram of a condensate water supply system for a boiling water reactor, Figure 2 is an explanatory diagram of a conventional cytosm type condenser system,
FIG. 3 is an explanatory diagram of an embodiment of the condenser device according to the present invention, and FIG. 4 is a schematic perspective view of the second hot well of the embodiment. 20... Condenser, 22... First hot well, 30
...Second Hot Quell, 44...Condenser and air extractor, 64...Sprayer Agent: Patent Attorney Tatsuyuki Unuma Figure 1 Figure 2 Figure 3
Claims (1)
トウエル内の復水が浄化されて流入する第2ホツトウエ
ルとを備えた復水器装置において、前記第2ホツトウエ
ル内の気体を排出する排気装置と、前記第2ホツトウエ
ル内に前記復水を噴霧する噴霧器とを設けたことを特徴
とする復水器装置。L. A condenser device comprising a first hotwell for condensing steam and a second hotwell into which the condensate in the first hotwell is purified and flows, an exhaust device for discharging gas in the second hotwell; , and a sprayer for spraying the condensate in the second hot well.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10527783A JPS59231390A (en) | 1983-06-13 | 1983-06-13 | Condensing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10527783A JPS59231390A (en) | 1983-06-13 | 1983-06-13 | Condensing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59231390A true JPS59231390A (en) | 1984-12-26 |
Family
ID=14403173
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10527783A Pending JPS59231390A (en) | 1983-06-13 | 1983-06-13 | Condensing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59231390A (en) |
-
1983
- 1983-06-13 JP JP10527783A patent/JPS59231390A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910008360B1 (en) | Method of vacuum degassing and refilling a reactor coolant system | |
TWI666652B (en) | Apparatus for degassing a nuclear reactor coolant system | |
JPH07209488A (en) | Radioactivity emission reducing device | |
JPS59231390A (en) | Condensing device | |
KR20120055233A (en) | Moving type tritium removal system | |
JPS6134116B2 (en) | ||
JP2815424B2 (en) | Radioactive gas waste treatment equipment | |
JPS60201296A (en) | Reducer for radiation dose | |
JP2000329895A (en) | Operation method of nuclear reactor plant and waste liquid processing method of nuclear reactor plant | |
JP2000002782A (en) | Control unit for atmosphere inside reactor container | |
JPH0129278B2 (en) | ||
JPS6154199B2 (en) | ||
JPS6261842B2 (en) | ||
JPS6324479Y2 (en) | ||
JPH10115696A (en) | Method for stopping injection of hydrogen-oxygen of nuclear power plant and equipment for injection of hydrogen-oxygen for emergency | |
JP2002098306A (en) | Boiler equipment, and its operation method | |
JPS58151598A (en) | Vent filter built-in type radioactive liquid waste tank | |
JPS56108503A (en) | Vapor trap filler | |
JPS6154846B2 (en) | ||
JPS61245093A (en) | Feedwater system of nuclear power generating plant | |
JPH0287098A (en) | Nuclear reactor cover gas system of fast breeder | |
JPS607167B2 (en) | feed water heater system | |
JPS60131499A (en) | Treater for gas waste | |
JPS5712884A (en) | Method and apparatus for removing iron oxide from water of water-supply system in electric power generating plant | |
JPS59115997A (en) | Method and apparatus for preventing corrosion of condenser in atomic power plant |