JPS59231389A - Method of controlling atmosphere in furnace - Google Patents

Method of controlling atmosphere in furnace

Info

Publication number
JPS59231389A
JPS59231389A JP10399583A JP10399583A JPS59231389A JP S59231389 A JPS59231389 A JP S59231389A JP 10399583 A JP10399583 A JP 10399583A JP 10399583 A JP10399583 A JP 10399583A JP S59231389 A JPS59231389 A JP S59231389A
Authority
JP
Japan
Prior art keywords
furnace
temperature
atmosphere
oxygen sensor
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10399583A
Other languages
Japanese (ja)
Inventor
真壁 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO NETSU SHIYORI KOGYO KK
TOUKIYOU NETSU SHIYORI KOGYO KK
Original Assignee
TOKYO NETSU SHIYORI KOGYO KK
TOUKIYOU NETSU SHIYORI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO NETSU SHIYORI KOGYO KK, TOUKIYOU NETSU SHIYORI KOGYO KK filed Critical TOKYO NETSU SHIYORI KOGYO KK
Priority to JP10399583A priority Critical patent/JPS59231389A/en
Publication of JPS59231389A publication Critical patent/JPS59231389A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は炉内雰囲気の制御方法に関するもので、酸素セ
ンサーによシ、温度変化のある炉内雰囲気の制御を正確
且安価に行えることを特徴とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the atmosphere in a furnace, and is characterized in that the atmosphere in the furnace, which undergoes temperature changes, can be accurately and inexpensively controlled using an oxygen sensor.

近時、赤外線ガス測定器、露点側等にかわって酸素セン
サーが炉内雰囲気の分析及び制御に使用されている。
Recently, oxygen sensors have been used to analyze and control the atmosphere inside the furnace instead of infrared gas measuring instruments, dew point sensors, etc.

上記酸素センサーは炉内に直接挿入するため上記従来の
割器のごとく、サンプリング装置、それらのメンテナン
スが不要であシ、さらに応答性が極めて早い利点を有す
る。
Since the oxygen sensor is inserted directly into the furnace, unlike the conventional splitter, it does not require a sampling device or its maintenance, and has the advantage of extremely quick response.

」二記酸素センザーによる炉内雰囲気の分析は酸素セン
サーからの起電力が炉内雰囲気中の00.2/Co及び
炉内温度と一定の関係を有することを利用して行われる
The analysis of the furnace atmosphere using the oxygen sensor is performed using the fact that the electromotive force from the oxygen sensor has a certain relationship with 00.2/Co in the furnace atmosphere and the furnace temperature.

すなわち、先端を閉塞したジルコニア固体電解質(Zr
Or)の内外面に白金電極をコーティングした酸素セン
サーを炉内雰囲気中に置くと、内側(基準空気)と外側
(炉内雰囲気)の酸素濃度の違いに応じて上記内外面の
白金電極力が生ずる。
That is, a zirconia solid electrolyte (Zr
When an oxygen sensor coated with platinum electrodes on the inner and outer surfaces of Or) is placed in the furnace atmosphere, the force of the platinum electrodes on the inner and outer surfaces increases depending on the difference in oxygen concentration between the inside (reference air) and the outside (furnace atmosphere). arise.

上記起電力に炉内温度を与えれば炉内酸素量が求められ
る。
If the temperature inside the furnace is given to the above electromotive force, the amount of oxygen inside the furnace can be determined.

さらに炉内雰囲気には CO+%0こ判0.!  −−−−−−−(1)2 C
O* C+ 0C1z   −m−−−−−(2)の平
衡関係が存在するから、炉内酸素量と炉内温度及び雰囲
気のカーホンポテンシャル間にある一定の関係から、カ
ーホンポテンシャルを算出することができるものである
Furthermore, the atmosphere inside the furnace contains CO+%0. ! --------(1)2C
Since the equilibrium relationship of O* C+ 0C1z -m---(2) exists, the carphon potential is calculated from a certain relationship between the amount of oxygen in the furnace, the temperature in the furnace, and the carhon potential of the atmosphere. It is something that can be done.

すなわち、温度によって酸素センサーからの起電力がか
わシ、炉内温度が変化した場合には雰囲気のカーホンポ
テンシャルの正確な算出が困難であった。
That is, the electromotive force from the oxygen sensor varies depending on the temperature, and when the temperature inside the furnace changes, it is difficult to accurately calculate the carbon potential of the atmosphere.

そのため、従来は炉内温度を一定に保った状態にして酸
素センサーからの信号(起電力〕をリニアライスして出
力さぜたシ、大型コンピューターを必要としていた。
For this reason, in the past, the temperature inside the furnace was kept constant and the signal (electromotive force) from the oxygen sensor was linearly sliced and output, which required a large computer.

本発明はマイクロプロセッサ−を使用した市販の調節劇
を使用して温度変化のある雰囲気の分析を行い、それに
よって炉内雰囲気を制御するものである。
The present invention uses a commercially available microprocessor-based regulator to analyze the atmosphere with temperature changes and thereby control the furnace atmosphere.

すでに述べたごとく、酸素センサーからの起電力及び炉
内温度から演算された雰囲気のカーホンポテンシャルは
二次曲線である。
As already mentioned, the Cahon potential of the atmosphere calculated from the electromotive force from the oxygen sensor and the temperature inside the furnace is a quadratic curve.

その址まの状態でリニアライスするには市販の上記調肺
訓では演算能力が不足する。すなわち、−という演算機
能を有しない。そこで本発明では折線近似によってリニ
アライスする。
In order to linearly rice the image in its original state, the above-mentioned commercially-available computational power is insufficient. That is, it does not have the arithmetic function -. Therefore, in the present invention, linear lining is performed using broken line approximation.

上記折線近似は最も使用される特定の温度において行い
、炉内温度が変化してもその温度における酸素センサー
出力としてリニアライスする。
The above-mentioned polygonal line approximation is performed at a specific temperature that is most used, and even if the temperature inside the furnace changes, it is linearly sliced as the oxygen sensor output at that temperature.

つぎに熱電対により検出された炉内温度に所定演算を施
して得た温度補正信号を得る。該温度補正は炉内温度に
よシ上記二次曲線がイ行移動すること、炉内温度変化と
炉内酸素濃度変化が比例するというチーターにより実験
的に定めだ数式により行われる。そして、補正された温
度信号と上記折線近似による電圧信号を演算してカーホ
ンポテンシャルが算出され、その後の制御は従来性われ
ている方法、例えば上記算出値と目標値とを比較して目
標値に沿うようにエンリッチカスの供給量を制御し、そ
して炉内雰囲気を制御するものである。
Next, a temperature correction signal is obtained by subjecting the furnace temperature detected by the thermocouple to a predetermined calculation. The temperature correction is carried out using a mathematical formula experimentally determined by Cheetah, which states that the quadratic curve shifts according to the temperature inside the furnace, and that changes in the temperature inside the furnace are proportional to changes in the oxygen concentration inside the furnace. Then, the Cahon potential is calculated by calculating the corrected temperature signal and the voltage signal by the above-mentioned broken line approximation, and the subsequent control is carried out using conventional methods, for example, by comparing the above-mentioned calculated value and the target value to obtain the target value. The supply amount of enriched scum is controlled in accordance with the above, and the atmosphere inside the furnace is controlled.

実施例1 酸素センサー出力の折線近似を最も多用される温度、具
体的には926.7℃(1700’F)について行い、
炉内温度が変化しても上記温度926.7℃の酸素セン
サー出カとじてリニアライスする。
Example 1 A polygonal line approximation of the oxygen sensor output was performed at the most frequently used temperature, specifically 926.7°C (1700'F),
Even if the temperature inside the furnace changes, the linear rice is processed using the oxygen sensor output at the temperature of 926.7°C.

つぎに、炉内温度変化と炉内酸素濃度の比例関係を炉内
温度が14℃ずれると炉内酸素濃度が05%変化すると
いう実、検値によって定める。
Next, the proportional relationship between the temperature change in the furnace and the oxygen concentration in the furnace is determined based on the fact that when the temperature in the furnace shifts by 14°C, the oxygen concentration in the furnace changes by 05%.

その・結果、炉内酸素濃度は上記酸素センササ−により
リニアライズされた出力信号を八々し、熱電対による検
出炉内温度をtとすると、 5 A(/14  (1−926,7) )  −−−−f
3)で表わされる。
As a result, the in-furnace oxygen concentration is 5 A (/14 (1-926,7)), where the output signal linearized by the oxygen sensor sensor is calculated and the in-furnace temperature detected by the thermocouple is t. -----f
3).

上記(3)式により温度補正が行われ、その温度補正信
号△Aと上記酸素センサーによりリニアライスされた出
力信号Aを演算して炉内雰囲気のカーホンポテンシャル
が算出され、その算出値と目標値が比較され、エンリッ
チガスの供給量が制御され、そして炉内雰囲気が制菌さ
れる。
Temperature correction is performed using the above equation (3), and the Cahon potential of the furnace atmosphere is calculated by calculating the temperature correction signal △A and the output signal A linearly sliced by the oxygen sensor, and the calculated value and the target The values are compared, the enrichment gas supply is controlled, and the furnace atmosphere is sterilized.

ツ・2図には本発明の方法を実施するフロック図が示さ
れている。
FIG. 2 shows a block diagram for implementing the method of the invention.

図中(1)は酸素センサー、(2)は加算器、(3)(
ま減算器、(4)は熱電対、(5)は減算器、(6)は
乗算器、(7)は折線1刀数器、(8)はカーホンポテ
ンシャル算出m、t9+は目標設定器、(10)はエン
リッチカスコントロール部である。
In the figure, (1) is the oxygen sensor, (2) is the adder, and (3) (
(4) is a thermocouple, (5) is a subtracter, (6) is a multiplier, (7) is a broken line counter, (8) is a carphone potential calculation m, and t9+ is a target setting device. , (10) is an enriched gas control section.

すなわち1本発明は酸素センサー(1)からの出力に加
算、減算を施して、上記一定の温度における酸素センサ
ー出カがリニアライスされる。
That is, one aspect of the present invention adds and subtracts the output from the oxygen sensor (1) to linearly slice the oxygen sensor output at the constant temperature.

他方、熱電対(4)からの検出温度が上記(3)式にそ
って減算及び乗算され、上記酸素センサー(1)の補正
はれた出力とともに折線1刀数器(7)に加えられ、炉
内雰囲気のカーボンポテンシャルが算出される。
On the other hand, the detected temperature from the thermocouple (4) is subtracted and multiplied according to the above equation (3), and is added to the polygon line counter (7) together with the corrected output of the oxygen sensor (1), The carbon potential of the atmosphere inside the furnace is calculated.

−Dぎに’cの算出値と目標設定器(9)とがエンリッ
チガスコントロール部(10)で比較され目標値に沿う
ようにエンリッチカスの供給量が制御されるものである
-D, the calculated value of 'c and the target setter (9) are compared in the enriched gas control section (10), and the supply amount of the enriched gas is controlled so as to meet the target value.

上記のごとく1本発明は酸素センサー出力を折線近似に
よってリニアライスして得た信号と、炉内温度に所定演
算を施して得た温度補正信号を演算して炉内雰囲気のカ
ーボンポテンシャルを算出L + 目標設定値と比較し
てエンリッチカスの供給量を制御するものであり、折線
近似によるため、酸素センサー出力のリニアライスの変
更が容易であり温度補正も容易であり、市販の14節計
を使用して正確且つ安価に、しかも温度変化する雰囲気
制御が可能である効果を得ることができるものである。
As mentioned above, the present invention calculates the carbon potential of the atmosphere inside the furnace by calculating the signal obtained by linearly arranging the output of the oxygen sensor using polygonal approximation and the temperature correction signal obtained by performing a predetermined calculation on the temperature inside the furnace. + It controls the supply amount of enriched gas by comparing it with the target setting value, and since it uses broken line approximation, it is easy to change the linear rice of the oxygen sensor output, and it is also easy to correct the temperature. It can be used accurately and inexpensively, and it is possible to achieve the effect of being able to control the atmosphere with temperature changes.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、米1図は酸素セ
ンサー出力、温度及びカーボンポテンシャルの関係を示
す線図、ツ・2図は本発明のフロック図である。 (1)・・・酸素センサー、(4)・・・熟成対、(7
)・・・折線関敬器、(8)・・・カーボンポテンシャ
ル算出部、(9)・・・目標設定器、00)・・・エン
リッチカスコントロール部。 才2図 オ  1   図 1
The drawings show one embodiment of the present invention, and Figure 1 is a diagram showing the relationship between oxygen sensor output, temperature, and carbon potential, and Figures 2 and 2 are block diagrams of the present invention. (1)...Oxygen sensor, (4)...Aging pair, (7
)... Broken line Seki Keiki, (8)... Carbon potential calculation section, (9)... Target setting device, 00)... Enrich gas control section. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 酸素センサー出力を折線近似によってリニアライズして
得た信号と、炉内温度に所定演算を施して得な温度補正
信号を演算して炉内雰囲気のカーホンポテンシャルを算
出し、該算出値を目標値と比較してエンリッチカスの係
給量を制御することを特徴とする炉内雰囲気の制御方法
Calculate the Cahon potential of the furnace atmosphere by using the signal obtained by linearizing the oxygen sensor output using a polygonal approximation and performing a predetermined calculation on the furnace temperature to calculate the appropriate temperature correction signal, and set the calculated value as the target. A method for controlling an atmosphere in a furnace, characterized by controlling the amount of enriched sludge charged in comparison with a value.
JP10399583A 1983-06-10 1983-06-10 Method of controlling atmosphere in furnace Pending JPS59231389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10399583A JPS59231389A (en) 1983-06-10 1983-06-10 Method of controlling atmosphere in furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10399583A JPS59231389A (en) 1983-06-10 1983-06-10 Method of controlling atmosphere in furnace

Publications (1)

Publication Number Publication Date
JPS59231389A true JPS59231389A (en) 1984-12-26

Family

ID=14368875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10399583A Pending JPS59231389A (en) 1983-06-10 1983-06-10 Method of controlling atmosphere in furnace

Country Status (1)

Country Link
JP (1) JPS59231389A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162820A (en) * 1986-12-26 1988-07-06 Daido Steel Co Ltd Atmosphere control method for heat treatment furnace
JPH03134117A (en) * 1989-10-17 1991-06-07 Ngk Insulators Ltd Method for operating reducing atmospheric furnace
JPH0428819A (en) * 1990-05-25 1992-01-31 Ngk Insulators Ltd Method for operating reducing atmospheric furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162820A (en) * 1986-12-26 1988-07-06 Daido Steel Co Ltd Atmosphere control method for heat treatment furnace
JPH03134117A (en) * 1989-10-17 1991-06-07 Ngk Insulators Ltd Method for operating reducing atmospheric furnace
JPH0428819A (en) * 1990-05-25 1992-01-31 Ngk Insulators Ltd Method for operating reducing atmospheric furnace

Similar Documents

Publication Publication Date Title
JP2647217B2 (en) Composite control method
JPH063431B2 (en) Engine air-fuel ratio sensor
JPS644145B2 (en)
JP4184007B2 (en) Gas sensor characteristic compensation device and gas concentration measurement device
US3442773A (en) Electrochemical gas measuring systems
JPS59231389A (en) Method of controlling atmosphere in furnace
ATE73546T1 (en) METHOD AND DEVICE FOR DYNAMIC POWER DIFFERENTIAL CALORIMETRY.
US4716760A (en) Air-fuel ratio detection system
JPH0222341B2 (en)
JPH0645867B2 (en) Atmosphere heat treatment control device
CN112556741A (en) Accurate calibration system and method suitable for temperature and humidity sensor of transformer substation
JP2592517B2 (en) Apparatus for measuring carbon potential in furnace air in reducing atmosphere furnace
US3605484A (en) Method and apparatus to determine carbon potential in the atmosphere of treatment furnaces
JPS6020651B2 (en) Combustion control method for heating furnaces, etc.
JPS62227074A (en) Method for controlling flow rate of enriching gas in gas carburizing process
EP3783355A1 (en) Method and sensor assembly for estimating gas partial pressure
JP2575521B2 (en) Furnace operation method of reducing atmosphere furnace
KR890007055A (en) Air-fuel ratio sensor for internal combustion engine
SU802721A1 (en) Apparatus for automatic control of combustion process
JP2575507B2 (en) Furnace operation method of reducing atmosphere furnace
SU798530A1 (en) System for sampling and analysis of flue gases
SU775686A1 (en) Polarograph
JP4870611B2 (en) Gas sensor control device
SU930135A1 (en) Device for measuring signal rms value
JPH0648255B2 (en) Low oxygen high sulfur partial pressure adjustment method