JPS5923090B2 - Tap-switching automatic voltage regulator - Google Patents

Tap-switching automatic voltage regulator

Info

Publication number
JPS5923090B2
JPS5923090B2 JP8011076A JP8011076A JPS5923090B2 JP S5923090 B2 JPS5923090 B2 JP S5923090B2 JP 8011076 A JP8011076 A JP 8011076A JP 8011076 A JP8011076 A JP 8011076A JP S5923090 B2 JPS5923090 B2 JP S5923090B2
Authority
JP
Japan
Prior art keywords
contact
tap
shunt winding
output voltage
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8011076A
Other languages
Japanese (ja)
Other versions
JPS535722A (en
Inventor
甲子雄 美頭
忠雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8011076A priority Critical patent/JPS5923090B2/en
Publication of JPS535722A publication Critical patent/JPS535722A/en
Publication of JPS5923090B2 publication Critical patent/JPS5923090B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 本発明は単巻変圧器の分路巻線にタップを設け電磁接触
器でそのタップを切替えることにより電圧調整を行う自
動電圧調整器に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic voltage regulator that adjusts voltage by providing a tap in the shunt winding of an autotransformer and switching the tap with an electromagnetic contactor.

第1図は従来例を示すもので、図中4は単巻変圧器、4
1はその直列巻線でnlはその巻数を示す。42は同じ
く分路巻線で42A、42B、42Cは夫々分路巻線に
設けたタップ、n2〜n4は分路巻線における各タップ
間の巻線を示す。
Figure 1 shows a conventional example, in which 4 is an autotransformer;
1 indicates the series winding, and nl indicates the number of turns. Similarly, 42 is a shunt winding, 42A, 42B, and 42C are taps provided in the shunt winding, and n2 to n4 are windings between the taps in the shunt winding.

1a、Ibは第1の電磁接触器の接点、2a、2bは第
2の電磁接触器の接点、3a、3bは第3の電磁接触器
の接点で夫々aは常開接点、bは常閉接点を示5 して
いる。
1a and Ib are the contacts of the first electromagnetic contactor, 2a and 2b are the contacts of the second electromagnetic contactor, and 3a and 3b are the contacts of the third electromagnetic contactor, where a is a normally open contact and b is a normally closed contact. It shows the contact points.

5は抵抗、E1は入力電圧、E2は出力電圧である。5 is a resistor, E1 is an input voltage, and E2 is an output voltage.

上記各電磁接触器は制御回路(図示しない)により操作
される。
Each of the electromagnetic contactors described above is operated by a control circuit (not shown).

制御回路は云うまでもなく第1〜第3の電磁接触器が同
時に閉路することのない10ように制御している。その
制御の態様について説明すると、今接点Ibのみが閉じ
ているときにはn1+n2+n3+n4出力電圧E2は
、E2■E1× 接点 n2+n3+n4 2aのみが閉じているときには出力電圧E2は、15n
1+n2+n3E2=E1× 、接点3aのみが閉じ n2+n3 n1+n2 ているときには出力電圧E2は、E2■E0×の如くな
るため、巻数n1〜n4を適当に選ぶこと20によつて
希望の電圧値が得られる。
Needless to say, the control circuit controls the first to third electromagnetic contactors so that they do not close at the same time. To explain the mode of control, when only contact Ib is closed, the output voltage E2 is: E2 E1 × When only contact 2a is closed, the output voltage E2 is 15n
1+n2+n3 E2=E1× When only the contact 3a is closed (n2+n3 n1+n2), the output voltage E2 becomes E2×E0×, so by appropriately selecting the number of turns n1 to n4 (20), a desired voltage value can be obtained.

なお、第1〜第3の電磁接触器は各接点が開から閉、閉
から開に動作する過程で常開及び常閉の両接点が共に閉
路する状態が存在するような構造の電磁接触器を使用し
ている。
The first to third electromagnetic contactors are electromagnetic contactors that have a structure in which both the normally open and normally closed contacts are closed in the process of each contact operating from open to close and from close to open. are using.

常開及び常閉接点25のON、OFF状態を図示すると
第T図のとおりで電磁接触器が吸引されるとき常閉b接
点がOFFするより前に常開a接点がONしその後b接
点がOFFする。逆に落下するときには先にb接点がO
Nして後a接点がOFFする。このような接点30作用
はオーバーラップ形のリレーと称している。タップ切替
え状態の一例を第1図においてタップ42Bから42C
に切替わる場合について説明する図が第2図〜第6図で
ある。すなわち接点2aが閉の状態では第2図に示すよ
うに分路巻線3542はタップ42Bで電源に接続され
ておりタップ42Bからタップ42Cに切替わる場合に
は制御回路より先づ第2の電磁接触器の操作コイルの−
Aクー励磁が解かれる。
The ON and OFF states of the normally open and normally closed contacts 25 are illustrated in Figure T. When the magnetic contactor is attracted, the normally open A contact turns ON before the normally closed B contact turns OFF, and then the B contact turns OFF. Turn off. On the other hand, when falling, the B contact opens first.
After turning N, the a contact turns off. This type of contact 30 action is called an overlap type relay. An example of the tap switching state is shown in FIG. 1 from taps 42B to 42C.
FIGS. 2 to 6 are diagrams illustrating the case of switching to. That is, when the contact 2a is closed, the shunt winding 3542 is connected to the power supply at the tap 42B as shown in FIG. 2, and when switching from the tap 42B to the tap 42C, the second electromagnetic Contactor operating coil -
A-coo excitation is released.

その場合電磁接触器のA,b接点は前述のようにオーバ
ーラツプがあるため第3図で示すように接点2aが閉路
状態にあるとき先づ接点2bが閉路し抵抗5を通じて分
路巻線を短絡するので短絡回路にはISlなる電流が流
れる。その後接点2aが完全に開路されると第4図のよ
うに分路巻線は電源端子間に接続されることなく抵抗5
を通じて短絡回路が形成されているので直列巻線に流れ
る負荷電流2によるアンペアターンを打消すだけの電流
1S2が流れて鉄心の過励磁が防止される。次に第3の
電磁接触器の操作コイルが励磁されると第5図に示すよ
うに接点3bが開路される前に接点3aが閉路され抵抗
5を通じて短絡電流1S3が流れ次の瞬間、接点3bが
開路完了し第6図に示すようにタツプ42Cの接続が得
られる。逆にタツプ42Cからタツプ42Bに移る動作
は第6図から第2図の方向に全く逆の順序をたどる。他
のタツプについても基本動作は全く同様である。抵抗5
の値はIs,,Is3のような短絡電流が過大とならな
いような適正値が選ばれる。従来のタツプ切替え回路に
おけるタツプ切替え過程で第4図に示す状態、すなわち
前述のように分路巻線が電源端子間に接続されることな
く抵抗を通じて分路巻線の一部が短絡されている状態で
負荷電流12が零すなわち無負荷状態ならば出力電圧E
2はE2+E,となり、負荷電流12が流れているとき
には短絡回路電流1S2が流れ、抵抗5および短絡され
ている分路巻線のインピーダンスとの電圧降下により出
力電圧E2はE2〈E1となる。
In that case, the A and B contacts of the electromagnetic contactor overlap as mentioned above, so when the contact 2a is in the closed state, the contact 2b is closed first and the shunt winding is shorted through the resistor 5, as shown in FIG. Therefore, a current ISl flows through the short circuit. After that, when the contact 2a is completely opened, the shunt winding is not connected between the power supply terminals and the resistor 5
Since a short circuit is formed through the series winding, a current 1S2 sufficient to cancel the ampere turn caused by the load current 2 flowing through the series winding flows, thereby preventing overexcitation of the iron core. Next, when the operation coil of the third electromagnetic contactor is excited, the contact 3a is closed before the contact 3b is opened, and a short circuit current 1S3 flows through the resistor 5, as shown in FIG. is completed and the connection of the tap 42C is obtained as shown in FIG. Conversely, the movement from tap 42C to tap 42B follows the completely reverse order from FIG. 6 to FIG. 2. The basic operations of the other taps are exactly the same. resistance 5
An appropriate value such as Is, , Is3 is selected so that the short circuit current does not become excessive. During the tap switching process in a conventional tap switching circuit, the state shown in Figure 4 occurs, that is, as described above, the shunt winding is not connected between the power supply terminals, but a part of the shunt winding is short-circuited through the resistor. If the load current 12 is zero, that is, in a no-load state, the output voltage E
2 becomes E2+E, and when the load current 12 is flowing, a short circuit current 1S2 flows, and the output voltage E2 becomes E2<E1 due to the voltage drop between the resistor 5 and the impedance of the shorted shunt winding.

すなわち出力電圧はタツプを切替える毎に一旦入力電圧
以下となりステツプ電圧幅よりはるかに大きな電圧変動
をする。各タツプの入出力電圧特性とタツプ切替え時の
出力電圧変動の関係を図示したものが第8図である。こ
のようなタツプ切替え時の大きな電圧変動は電灯負荷の
場合に不快なチラツキを感じさせる等、良質な電気の供
給を妨げるものである。また前述の第4図から第5図の
状態に移つた時、すなわち分路巻線が電源端子間に接続
されることなく抵抗を通じて分路巻線の一部が短絡され
ている状態から分路巻線のタツプが電磁接触器接点によ
り電源端子に接続された瞬時には、分路巻線を通じて電
磁接触器接点に大きな励磁突入電流が流れ、接点の溶着
損傷を起こす恐れがある。
That is, each time the tap is switched, the output voltage becomes lower than the input voltage once, and the voltage fluctuates much larger than the step voltage width. FIG. 8 shows the relationship between the input/output voltage characteristics of each tap and the output voltage fluctuation when switching the taps. Such large voltage fluctuations at the time of tap switching cause an unpleasant flickering sensation in the case of electric lamp loads, and impede the supply of high-quality electricity. Also, when the state changes from the state shown in FIG. 4 to the state shown in FIG. At the moment when the tap of the winding is connected to the power supply terminal by the magnetic contactor contact, a large excitation inrush current flows through the shunt winding to the magnetic contactor contact, which may cause welding damage to the contact.

この励磁突入電流を押えるためには単巻変圧器の磁束密
度を十分低くする必要があり、単巻変圧器の鉄心を通常
の変圧器に比べ非常に大きなものにしなければならない
。これらの現象はタツプを切替える毎に発生する。本発
明は分路巻線の各タツプに接続された各電磁接触器の常
開又は常閉接点の他方の接点と抵抗との直列接続体によ
つて分路巻線と電源端子を接続することにより従来のも
のの欠点を除去しようとするものであり、以下本発明の
実施例について説明する。
In order to suppress this excitation inrush current, it is necessary to make the magnetic flux density of the autotransformer sufficiently low, and the iron core of the autotransformer must be made much larger than that of a normal transformer. These phenomena occur every time the tap is switched. The present invention connects the shunt winding and the power terminal by a series connection body of the other normally open or normally closed contact of each magnetic contactor connected to each tap of the shunt winding and a resistor. The present invention is intended to eliminate the drawbacks of the conventional method, and embodiments of the present invention will be described below.

第9図は本発明のものの一実施例であり第1図に示す従
来の回路に対応するもので、そのタツプ42Bから42
Cに切替わる場合について説明する図が第10図〜第1
4図である。
FIG. 9 shows an embodiment of the present invention, which corresponds to the conventional circuit shown in FIG.
Figures 10 to 1 are diagrams explaining the case of switching to C.
This is Figure 4.

すなわち接点2aが閉の状態では第10図に示すように
分路巻線42はタツプ42Bで電源に接続されており出
n1+N2+N3力電圧E2はE2=E1×?となり、
夕 N2+N3 ツプ42Bからタツプ42Cに切替わる場合には制御回
路により先づ第2の電磁接触器の操作コイルの励磁が解
かれる。
That is, when the contact 2a is closed, the shunt winding 42 is connected to the power supply at the tap 42B as shown in FIG. 10, and the output voltage E2 is E2=E1×? Then,
When switching from tap N2+N3 tap 42B to tap 42C, the control circuit first de-energizes the operating coil of the second electromagnetic contactor.

その場合電磁接触器にはオーバーラツプがあるため第1
1図に示すように接点2aが閉路状態で先づ接点2bが
閉路し、その後接点2aが完全開路されると第12図示
すように分路巻線42は抵抗5を通じて電源端子に接続
され電流1rが流れる。この状態の出力電圧E2nl+
N2+N3はE1×?から電流1rによる抵抗と N2+N3 分路巻線のインピーダンスとのわずかな電圧降下分を減
じた値となる。
In that case, since there is overlap in the magnetic contactor, the first
As shown in Figure 1, when the contact 2a is closed, the contact 2b is closed first, and then when the contact 2a is completely opened, the shunt winding 42 is connected to the power supply terminal through the resistor 5, and the current flows as shown in Figure 12. 1r flows. Output voltage E2nl+ in this state
Is N2+N3 E1×? It is the value obtained by subtracting the slight voltage drop between the resistance due to the current 1r and the impedance of the N2+N3 shunt winding.

次に第3の電磁接触器の操作コイルが励磁されると第1
3図に示すように接点3bが開路される前に接点3aが
閉路し抵抗5を通じて短絡電流1sが流れる。そして次
の瞬間接点3bが開路完了し第14図に示すようにタツ
プ42Cの接続が得られ出力電圧E2はE2=E1×n
1+N2?となる。
Next, when the operation coil of the third electromagnetic contactor is excited, the first
As shown in FIG. 3, the contact 3a is closed before the contact 3b is opened, and a short circuit current 1s flows through the resistor 5. Then, the next instantaneous contact 3b completes opening, and the connection of the tap 42C is obtained as shown in FIG. 14, and the output voltage E2 is E2=E1×n.
1+N2? becomes.

従つてタツプ切替え過程においN2 て従来のように出力電圧E2が入力電圧E1より低くな
ることは決してなく、第8図に示すように出力電圧変動
はほゾステツプ電圧幅となる。
Therefore, in the tap switching process, the output voltage E2 never becomes lower than the input voltage E1 as in the conventional case, and the output voltage fluctuation becomes a step voltage width as shown in FIG.

またタツプ切替え過程において分路巻線は常に電源端子
に接続されているので従来のように励磁突入電流が流れ
ることもない。逆にタツプ42Cからタツプ42Bに移
る動作は第14図から第10図の方向に全く逆の順序を
たどる。他のタツプについても基本動作は同じである。
抵抗5の値はIrおよびIsのような短絡電流が過大と
ならないようにまた第12図に示す状態で出力電圧降下
が大きくならないようその兼合で適正値を選べばよい。
また電磁接触器接点と抵抗との接続体を電源端子と分路
巻線のどの位置に接続するかは任意で各タツプ切替え時
の出力電圧変動が最も小さくなるように選べばよい。次
に、電磁接触器の接点1a,1bについて説明する。接
点1aは接点2b,3b及び抵抗5とでタツプ42Aか
ら42Bへ、又はタツプ42Bから42Aに切替える際
、一時的にも分路巻線42を電源から切離さないための
ものであり、その動作は第11図〜第13図で説明した
のと同様である。
Further, since the shunt winding is always connected to the power supply terminal during the tap switching process, there is no excitation inrush current flowing as in the conventional case. Conversely, the movement from tap 42C to tap 42B follows the completely reverse order from FIG. 14 to FIG. 10. The basic operation is the same for other taps.
The value of the resistor 5 may be selected appropriately to prevent short-circuit currents such as Ir and Is from becoming excessive and to prevent the output voltage drop from becoming large in the state shown in FIG. 12.
Further, the position of the connection body between the electromagnetic contactor contact and the resistor between the power supply terminal and the shunt winding can be arbitrarily selected so as to minimize the output voltage fluctuation when switching each tap. Next, the contacts 1a and 1b of the electromagnetic contactor will be explained. Contact 1a, together with contacts 2b and 3b and resistor 5, is used to prevent the shunt winding 42 from being disconnected from the power supply even temporarily when switching from tap 42A to 42B or from tap 42B to 42A. is the same as that explained in FIGS. 11 to 13.

また、その目的は接点1a,2b,3b及び抵抗5の接
続体がない時、タツプ42Aから42Bへの切替時に、
一時的にいずれの接点も開路して分路巻線42が電源か
ら開路されるか、又は、いずれの接点も閉路して分路巻
線42の巻線N4部分が短絡されることがある。前者の
場合は負荷電流が流れている時にはその電流が全て励磁
電流となり、鉄心は極度に飽和して分路巻線42には尖
つた波形の高電圧が誘起され、分路巻線42の絶縁破壊
につながる。一方、後者の場合は巻線N4の部分の短絡
焼損の可能性がある。又、タツプ42Aのみ電磁接触器
の常閉接点1bを使用している点について説明すれば次
の通りである。
Also, its purpose is when switching from tap 42A to 42B when there is no connection body between contacts 1a, 2b, 3b and resistor 5.
Both contacts may be temporarily open, disconnecting the shunt winding 42 from the power source, or both contacts may be closed, shorting the N4 portion of the shunt winding 42. In the former case, when the load current is flowing, all of the current becomes an excitation current, the iron core becomes extremely saturated, and a high voltage with a sharp waveform is induced in the shunt winding 42, causing the insulation of the shunt winding 42 to deteriorate. leading to destruction. On the other hand, in the latter case, there is a possibility that the winding N4 may be short-circuited and burnt out. Further, the point that only the tap 42A uses the normally closed contact 1b of the electromagnetic contactor will be explained as follows.

何らかの事故により、全ての電磁接触器が無励磁になつ
た場合に第9図に示すような回路構成とするためで、仮
りにタツプ42A接点1a1抵抗5を含む接続体部分に
接点1bを接続したような場合、抵抗5を通して電源に
接続され、長時間の事故状態が続くと抵抗5は焼損する
か、又、それを防ぐには大容量の抵抗が必要となる。
This is to create a circuit configuration as shown in Figure 9 in the event that all the magnetic contactors become de-energized due to some kind of accident.For example, contact 1b is connected to the connecting body part that includes tap 42A contact 1a1 and resistor 5. In such a case, the resistor 5 is connected to the power supply through the resistor 5, and if the accident condition continues for a long time, the resistor 5 may burn out, and a large-capacity resistor is required to prevent this.

第15図はタツプ数4の場合の別の実施例を示すもので
図中14は単巻変圧器、141はその直列巻線でNll
はその巻数を示す。
Fig. 15 shows another embodiment in which the number of taps is 4. In the figure, 14 is an autotransformer, and 141 is its series winding.
indicates the number of turns.

142は同じく分路巻線で、142A,142B,14
2Cは分路巻線に設けたタツプ、Nl2〜Nl4は分路
巻線における各タツプ間の巻数を示す。
142 is also a shunt winding, 142A, 142B, 14
2C represents a tap provided in the shunt winding, and Nl2 to Nl4 represent the number of turns between each tap in the shunt winding.

11A,llbノ は第1の電磁接触器、12a,12bは第2の電磁接触
器、13a,13bは第3の電磁接触器、14a,14
bは第4の電磁接触器の各接点5でA,bの関係は第9
図の場合と同じである。
11A, llb are first electromagnetic contactors, 12a, 12b are second electromagnetic contactors, 13a, 13b are third electromagnetic contactors, 14a, 14
b is each contact 5 of the fourth electromagnetic contactor, and the relationship between A and b is the ninth
Same as in the figure.

15は抵抗である。15 is a resistance.

今接点11bのみが閉じているとき分路巻線は電源端子
より励磁されず短絡されているので入出力間では単巻変
圧器のインピーダンス電圧降下分だけのわずかな電圧降
下のみで実用上E1キE2である。次に接点12aのみ
が閉じているときには出力電圧E2はE2=ElXll
l+112+113+114、接点13aのみが閉じN
l2+Nl3+Nl4ているときには出力電圧E2はE
2=ElXシγ訳?台を二咀接点14aのみが閉じてい
るとNll+Nl2き出力電圧E2はE2=E1×?と
なる。
Now, when only contact 11b is closed, the shunt winding is not excited from the power supply terminal and is short-circuited, so there is only a slight voltage drop between the input and output, equal to the impedance voltage drop of the autotransformer. It is E2. Next, when only the contact 12a is closed, the output voltage E2 is E2=ElXll
l+112+113+114, only contact 13a is closed N
When l2+Nl3+Nl4, the output voltage E2 is E
2=ElXshiγ translation? If only the two-way contact 14a is closed, the output voltage E2 of Nll+Nl2 is E2=E1×? becomes.

Nl2 これはタツプ数が変つても基本的には実施例で示すもの
と同様である。
Nl2 This is basically the same as shown in the embodiment even if the number of taps is changed.

なお、接点11bは電源から開路された分路巻線142
の一部である巻線Nl3,nl4を短絡し、接点12a
,13a,14aの開放による分路巻線142の絶縁破
壊を防止している。一方、接点11aは第15図に示す
状態からタツプ142Aが接点12aにより接続された
状態に変わるときに、一時的に分路巻線142を電源に
接続する接続体を構成するものであり、そのタツプ切替
時の動作は第11図〜第13図の接点2bと同様である
。以上の通りであり、電磁接触器の接点11a,11b
は第9図において説明したように、必須不可欠のもので
はないが、あれば好適と言える。本発明は以上のように
簡単な回路でありながら、単巻変圧器のタツプ切替え過
程において瞬時も分路巻線が電源端子から切離されるこ
とがなく、従つて出力電圧変動が小さくなり、更に励磁
突入電流の流れることのない信頼性の高(/哨動電圧調
整器が得られる。
Note that the contact 11b is connected to the shunt winding 142 which is disconnected from the power supply.
Short-circuit the windings Nl3 and nl4, which are part of the contact 12a.
, 13a, 14a is prevented from dielectric breakdown of the shunt winding 142 due to opening of the terminals 13a, 14a. On the other hand, the contact 11a constitutes a connection body that temporarily connects the shunt winding 142 to the power source when the state shown in FIG. 15 changes to the state in which the tap 142A is connected by the contact 12a. The operation during tap switching is similar to that of the contact 2b in FIGS. 11 to 13. As above, the contacts 11a and 11b of the electromagnetic contactor
As explained in FIG. 9, although it is not essential, it is preferable to have it. Although the present invention is a simple circuit as described above, the shunt winding is not disconnected from the power supply terminal even momentarily during the tap switching process of the autotransformer, so output voltage fluctuation is reduced. A highly reliable (/pulse voltage regulator) is obtained in which no excitation inrush current flows.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のものの回路図、第2図〜第6図は第1図
における動作の一例を説明する概念図、第7図は電磁接
触器の接点動作を説明する図、第8図は第1図における
入出力電圧特性とタツプ切替え時の出力電圧変動を示す
図、第9図および第15図は本発明の実施例を示す回路
図、第10図〜第14図は第9図における動作の一例を
説明する概念図である。
Figure 1 is a conventional circuit diagram, Figures 2 to 6 are conceptual diagrams explaining an example of the operation in Figure 1, Figure 7 is a diagram explaining the contact operation of a magnetic contactor, and Figure 8 is a diagram explaining an example of the operation in Figure 1. Fig. 1 is a diagram showing input/output voltage characteristics and output voltage fluctuations when switching taps, Figs. 9 and 15 are circuit diagrams showing embodiments of the present invention, and Figs. It is a conceptual diagram explaining an example of operation.

Claims (1)

【特許請求の範囲】[Claims] 1 分路巻線に複数個のタップを設けた単巻変圧器と、
常開接点と常閉接点を有し、これらの接点がその開閉動
作時に共に閉路する状態が存在するようにされた複数個
の電磁接触器を備え、上記複数個の電磁接触器の常開又
は常閉のいずれか一方の接点を夫々上記各タップと電源
端子との間に接続すると共に、上記各電磁接触器の他方
の接点と抵抗との直列接続体を、上記電源端子と上記分
路巻線のタップ切替え時の出力電圧変動が最も小さくな
る位置に接続するようにしたタップ切替え式自動電圧調
整器。
1. An autotransformer with multiple taps on the shunt winding,
A plurality of electromagnetic contactors are provided, each having a normally open contact and a normally closed contact such that a state exists in which these contacts are both closed during the opening/closing operation, and whether the plurality of magnetic contactors are normally open or One of the normally closed contacts is connected between each of the above taps and the power terminal, and the series connection body of the other contact of each of the magnetic contactors and the resistor is connected between the above power terminal and the shunt winding. A tap-switching automatic voltage regulator that is connected to the position where the output voltage fluctuation when switching line taps is minimized.
JP8011076A 1976-07-06 1976-07-06 Tap-switching automatic voltage regulator Expired JPS5923090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8011076A JPS5923090B2 (en) 1976-07-06 1976-07-06 Tap-switching automatic voltage regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8011076A JPS5923090B2 (en) 1976-07-06 1976-07-06 Tap-switching automatic voltage regulator

Publications (2)

Publication Number Publication Date
JPS535722A JPS535722A (en) 1978-01-19
JPS5923090B2 true JPS5923090B2 (en) 1984-05-30

Family

ID=13709035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8011076A Expired JPS5923090B2 (en) 1976-07-06 1976-07-06 Tap-switching automatic voltage regulator

Country Status (1)

Country Link
JP (1) JPS5923090B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624171B2 (en) * 1985-10-23 1994-03-30 株式会社日立メディコ Autotransformer
JPS648001A (en) * 1987-07-01 1989-01-12 Hokkaido Prefecture Stabilization of size of wood and shape fixing treating method of bending wood
JP2011201196A (en) 2010-03-26 2011-10-13 Dow Corning Toray Co Ltd Treating agent for lignocellulose material

Also Published As

Publication number Publication date
JPS535722A (en) 1978-01-19

Similar Documents

Publication Publication Date Title
US2483723A (en) Electromagnetic circuit maker and breaker
JPS5923090B2 (en) Tap-switching automatic voltage regulator
US4283748A (en) Circuit arrangement for operating heavy-duty equipment using electrical relaying device
US7154251B2 (en) Dual controlled output voltage, anti-saturation, auto-transformer circuit methodology
JP3487487B2 (en) Power switching circuit
US2535169A (en) Alternating current supply system
US3381198A (en) Starter for alternating current driven motors
JPH06284571A (en) Rush current prevention circuit
US1763202A (en) Circuit breaker
US1343207A (en) Electric-arc-welding system
EP0107359A2 (en) Alternating current limiting type semiconductor current circuit breaker
JPH11225432A (en) Transformer rush current reduction method
JPS62171Y2 (en)
US2297991A (en) Control of electric circuits
US2158275A (en) High leakage transformer
JPS5923454B2 (en) On-load tap changer
JP2000148260A (en) Power saving device
SU1046783A1 (en) Contactor for transformer voltage control without breaking load current
US2158926A (en) Electric circuit
JP3497764B2 (en) Voltage controller
JP3342805B2 (en) Transformer tap changer
USRE20147E (en) Transformer tap changing
JP3143146B2 (en) Tap switching transformer under load with exciting current suppression resistor
SU1756951A1 (en) Device for connection of load to three-phase power supply source
DE583588C (en) Transformer system with reduced no-load losses