JPS59230304A - Satellite antenna - Google Patents

Satellite antenna

Info

Publication number
JPS59230304A
JPS59230304A JP10532083A JP10532083A JPS59230304A JP S59230304 A JPS59230304 A JP S59230304A JP 10532083 A JP10532083 A JP 10532083A JP 10532083 A JP10532083 A JP 10532083A JP S59230304 A JPS59230304 A JP S59230304A
Authority
JP
Japan
Prior art keywords
tracking
radiator
elements
communication
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10532083A
Other languages
Japanese (ja)
Other versions
JPH0740641B2 (en
Inventor
Susumu Tamagawa
玉川 晉
Kenji Ueno
健治 上野
Hiroyuki Kumazawa
熊沢 弘之
Yasuo Takamatsu
高松 泰男
Fumio Takeda
武田 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
NEC Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Electric Corp
NEC Corp
Nippon Telegraph and Telephone Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, NEC Corp, Nippon Telegraph and Telephone Corp, Nippon Electric Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP58105320A priority Critical patent/JPH0740641B2/en
Publication of JPS59230304A publication Critical patent/JPS59230304A/en
Publication of JPH0740641B2 publication Critical patent/JPH0740641B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To increase the degree of freedom for distribution of tracking radiation elements by combining the communication radiation elements and those elements distributed newly adjacently to said communication elements to obtain a primary radiator for tracking. CONSTITUTION:For the signals received by radiation elements 12 and 13 among those 11-14 serving as a communication horn, only the beacon frequency signals are extracted by demultiplexers 17 and 18. These signals are synthesized with the output signal of a radiation element 15 added newly through a magic T20. In the same way, the signals of radiation elements 13 and synthesized by a magic T19. Then these two signals are synthesized by magics T21 and T22, and therefore the directional characteristics are obtained at output terminals 23 and 24. Thus good tracking radiation beams are obtained. The radiation elements 12 and 13 for communication constitute a radiation element for tracking together with tracking elements 15 and 16. Thus, the degree of freedom for distribution of tracking radiation elements is increased and the good tracking characteristics are obtained.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は自己追尾信号の検出機能を有する衛星搭載用ア
ンテナに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a satellite-mounted antenna having a self-tracking signal detection function.

〔従来技術の説明〕[Description of prior art]

従来、衛星搭載用アンテナの照射領域を地上の所定の通
信領域に一致させるために、この衛星搭載用アンテナに
は地上の基準となる地球局から送られてくるビーコン信
号を受信して衛星搭載用アンテナの方向制御信号を検出
する4個またはその整数倍の一次放射器が設けられてい
た。またこれらの−次放射器は、通信用に設けられた一
次放射器の放射素子と完全に共用されるか、もしくは全
く別に設けられていた。
Conventionally, in order to match the irradiation area of a satellite-mounted antenna with a predetermined communication area on the ground, this satellite-mounted antenna receives a beacon signal sent from a reference earth station on the ground. Four or an integer multiple of primary radiators were provided to detect the antenna's steering signal. Furthermore, these secondary radiators were either completely shared with the radiating element of the primary radiator provided for communications, or were provided completely separately.

しかし追尾用ホーンが通信用ホーンと完全に共用される
一次放射器では、全ての一次放射素子の配置が種々の形
をガした通信領域に対応して決定されるため、追尾用ホ
ーンとして最適な配置をとる自由度がなく、しかも良好
な追尾精度を得るための追尾用指向特性が得られない欠
点があった。
However, in a primary radiator where the tracking horn is completely shared with the communication horn, the arrangement of all the primary radiating elements is determined according to the communication area with various shapes, so it is difficult to find the optimal one for the tracking horn. There was a drawback that there was no flexibility in the arrangement, and that tracking directional characteristics for obtaining good tracking accuracy could not be obtained.

また追尾用−次放射器を通信用−次放射器と全く別に設
ける場合には、二つの一次放射器が主反射鏡の焦点近傍
に少なくとも両者の幾何学的な形状の分だけ偏位して配
置されるために、通信用と追尾用の二つの放射指向方向
が異なることから、アンテナの通信領域からずれた地点
にビーコン波送信用地球局を設置しなければガらない欠
点があった。
In addition, when the tracking radiator is provided completely separately from the communication radiator, the two primary radiators are offset near the focal point of the main reflector by at least the geometric shape of the two. Because of the location, the two radiation directions for communication and tracking are different, which has the disadvantage that the earth station for transmitting beacon waves must be installed at a point away from the communication area of the antenna.

本発明者らは、これに対し衛星からの電波の照射領域が
細長いような場合には、通信用−次放射器の放射素子も
一般には細長い曲線の上に配置されるので、この通信用
−次放射器の放射素子の一部を追尾用−次放射器の構成
素子の一部としても共用できることに着目して本発明を
完成した。
On the other hand, the present inventors believe that when the irradiation area of radio waves from a satellite is long and narrow, the radiating element of the communication radiator is also generally arranged on a long and narrow curve. The present invention was completed by focusing on the fact that a part of the radiating element of the secondary radiator can also be used as part of the components of the tracking radiator.

〔発明の目的〕[Purpose of the invention]

本発明は、以上の考察に基づいて通信用−次放射器の複
数個の放射素子の一部と、これに新たに加えた放射素子
とにより追尾用−次放射器を構成し、通信用放射指向特
性の他に良好でかつ所望の方向に指向する追尾用放射指
向特性をも有する小形の一次放射器を備えた衛星搭載用
アンテナを提供することを目的とする。
Based on the above consideration, the present invention configures a tracking radiator by a part of the plurality of radiating elements of the communication radiator and a newly added radiating element, and radiates the communication radiator. It is an object of the present invention to provide a satellite-mounted antenna equipped with a small primary radiator that has not only directional characteristics but also good tracking radiation directional characteristics that point in a desired direction.

す々わち本発明は、−次放射器の放射素子の数が少なく
、シかも追尾用ピーコンに対して設計自由度の大きい衛
星搭載用アンテナを提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a satellite-mounted antenna that has a small number of radiating elements in the -order radiator and has a large degree of freedom in designing a tracking peaker.

〔発明の要旨〕[Summary of the invention]

本発明は、所望の通信領域を定める通信用−次放射器の
放射素子の配置を変えることなく、この−次放射器の放
射素子の一部と新たに設けた放射素子とによシ追尾用−
次放射器を構成して、上記通信領域の中に良好な追尾用
放射ビームを得ることを特徴とする。
The present invention provides a method for tracking by using a part of the radiating element of the next radiator for communication and a newly provided radiating element without changing the arrangement of the radiating element of the first radiator for communication to define a desired communication area. −
The second radiator is configured to obtain a good tracking radiation beam within the communication area.

〔実施例による説明〕[Explanation based on examples]

次に本発明の一実施例を図面に基づいて詳しく説明する
Next, one embodiment of the present invention will be described in detail based on the drawings.

第1図は本発明一実施例アンテナの縦断何間図である。FIG. 1 is a vertical cross-sectional view of an antenna according to an embodiment of the present invention.

衛星搭載用アンテナは、地球局に向けられた1個の主反
射鏡1、およびこの主反射鏡1の焦点付近に配置され、
この主反射鏡1を照射する複数個の放射素子を有する一
次放射器2によシ構成される。
The satellite-mounted antenna has one main reflector 1 directed toward the earth station, and is arranged near the focal point of this main reflector 1,
It is composed of a primary radiator 2 having a plurality of radiating elements that irradiates the main reflecting mirror 1.

第2図はこの一次放射器2の正面図である。第2図にお
いて、−次放射器2は放射素子11〜16によシ構成さ
れる。この放射素子11〜14により通信用−次放射器
が構成され、この放射素子11〜14に対し同一振幅で
同位相の信号が同時に供給された場合には、第3図に示
すような電界強度分布の通信領域が得られる。
FIG. 2 is a front view of this primary radiator 2. In FIG. 2, the -order radiator 2 is composed of radiating elements 11-16. These radiating elements 11 to 14 constitute a second-order radiator for communication, and when signals of the same amplitude and the same phase are simultaneously supplied to these radiating elements 11 to 14, the electric field strength as shown in Fig. 3 The communication area of the distribution is obtained.

本発明の特徴ある構成は、上記放射素子12および13
に隣接して、新たに放射素子15および16が配設され
、この放射素子15または16と放射素子12または1
3とを組合わせて、追尾用−次放射器が構成されるとこ
ろにある。放射素子12および13は追尾用と通信用に
共用される。
A characteristic configuration of the present invention is that the radiating elements 12 and 13
Radiating elements 15 and 16 are newly arranged adjacent to the radiating element 15 or 16 and the radiating element 12 or 1.
In combination with 3, a tracking radiator is constructed. The radiating elements 12 and 13 are shared for tracking and communication.

このような構成のアンテナでは、放射素子12と15に
対し同一振幅で180°位相の異なる信号を供給した場
合には、第2図のAA’線上には第4図に実線で示され
る放射指向特性が得られる。この実線で示される指向特
性は放射素子13と16についても同様に第2図のBB
’線上に得られるので、放射素子12と15および放射
素子13と16に対して同一位相、同一振幅の信号を供
給した場合には、第2図のcc’線上に3dB増加した
第4図に破線で示される放射指向特性が得られる。
In an antenna with such a configuration, if signals with the same amplitude and 180° phase difference are supplied to the radiating elements 12 and 15, the radiation direction shown by the solid line in FIG. 4 will be on line AA' in FIG. characteristics are obtained. The directivity characteristics shown by this solid line are the same for the radiating elements 13 and 16 as shown in FIG.
4. Therefore, if signals of the same phase and the same amplitude are supplied to the radiating elements 12 and 15 and the radiating elements 13 and 16, the result in FIG. 4 is increased by 3 dB on the cc' line in FIG. A radiation directivity characteristic indicated by a broken line is obtained.

全く同じように放射素子13と15および放射素子12
と16をそれぞれ同一振幅で180″位相を相異させて
合成を行い、それらの出力を同一位相関係のもとで合成
した場合には、第4図に破線で示される指向特性が第2
図のDD’線上に生ずる。この場合には、第1図のca
’線とDD’線とは直交していることが望ましいが、放
射素子12および13の配置は所望の通信領域を確保す
るために決められるため、一般にはca’線とDD’線
とは直交しない。
In exactly the same way, radiating elements 13 and 15 and radiating element 12
and 16 with the same amplitude and a 180" phase difference, and when their outputs are synthesized under the same phase relationship, the directional characteristics shown by the broken line in Figure 4 will be the 2nd one.
This occurs on line DD' in the figure. In this case, ca in Figure 1
It is desirable that the 'line and the DD' line are orthogonal to each other, but since the arrangement of the radiating elements 12 and 13 is determined to ensure the desired communication area, the ca' line and the DD' line are generally orthogonal. do not.

しかし自己追尾の精度は第4図に示される指向特性の谷
間の深さによって決まるので、追尾に対する所期の目的
は十分に満たすことができる。またこの谷間が現われる
方向は通信領域の中に存在するように設計することもで
きる。
However, since the accuracy of self-tracking is determined by the depth of the valley in the directivity characteristics shown in FIG. 4, the intended purpose of tracking can be fully satisfied. Further, the direction in which this valley appears can be designed to exist within the communication area.

以上説明した通信用信号および追尾用信号の供給方法お
よび検出方法を第5図の一次放射器2のブロック構成例
により説明する。
The method of supplying and detecting the communication signal and tracking signal described above will be explained using an example of the block configuration of the primary radiator 2 in FIG. 5.

第5図において、17および18は分波器、19〜22
はマジックティ、23〜28は出力端子である。
In FIG. 5, 17 and 18 are branching filters, 19 to 22
is a magic tee, and 23 to 28 are output terminals.

この分波器17および18は分岐回路29を構成し、マ
ジックティ19〜22は合成回路30を構成する。
The branching filters 17 and 18 constitute a branch circuit 29, and the magic tees 19 to 22 constitute a combining circuit 30.

放射素子12の出力は分波器17の入力に接続される。The output of the radiating element 12 is connected to the input of the duplexer 17.

この分波器17の一方の出力には出力端子27が接続さ
れ、この他方の出力にはマジックティ20の一方の入力
が接続される。また放射素子13の出力は分波器18の
入力に接続される。この分波器18の一方の出力には出
力端子28が接続され、この他方の出力にはマジックテ
ィ19の一方の入力が接続される。上記マジックティ1
9および20の他方の入力には、前記放射素子16およ
び15の各出力がそれぞれ接続される。このマジックテ
ィ19およヒ20の各Eアームはマジックティ21の入
力に接続され、マジックティ19および20の各Hアー
ムはマジックティ22の入力に接続される。
An output terminal 27 is connected to one output of the duplexer 17, and one input of the magic tee 20 is connected to the other output. Further, the output of the radiating element 13 is connected to the input of the duplexer 18. An output terminal 28 is connected to one output of the duplexer 18, and one input of the magic tee 19 is connected to the other output. Magic tee 1 above
The outputs of the radiating elements 16 and 15 are connected to the other inputs of the radiating elements 9 and 20, respectively. The E arms of the magic tees 19 and 20 are connected to the input of the magic tee 21, and the H arms of the magic tees 19 and 20 are connected to the input of the magic tee 22.

このマジックティ21の■アームは出力端子23に接続
され、マジックティ22のEアームは出力端子24に接
続される。
The {circle around (2)} arm of the magic tee 21 is connected to the output terminal 23, and the E arm of the magic tee 22 is connected to the output terminal 24.

このような構成の一次放射器では、通信用ホーンである
放射素子11〜14のうち放射素子12および13に受
信された信号は、ビーコン周波数信号のみ分波する分波
器17および18によって取り出される。分波器17に
よシ検出された信号は、新たに設けられた放射素子15
の出力信号とマジツテイ20で合成されると、このマジ
ックティ20のEアームには第4図に示される指向特性
が得られる。全く同様にマジックティ19のEアームに
も放射素子13と16の信号が得られるのでこれらの信
号をマジックティ21によシ合成すると、その■アーム
には第4図に示される合成指向特性が得られる。
In the primary radiator having such a configuration, the signals received by the radiating elements 12 and 13 of the radiating elements 11 to 14, which are communication horns, are extracted by the demultiplexers 17 and 18, which demultiplex only the beacon frequency signal. . The signal detected by the demultiplexer 17 is transmitted to the newly provided radiating element 15.
When combined with the output signal of the magic tee 20, the E arm of the magic tee 20 has the directivity characteristics shown in FIG. In exactly the same way, the signals of radiating elements 13 and 16 are obtained from the E arm of Magic Tee 19, so when these signals are combined by Magic Tee 21, the combined directional characteristics shown in Fig. 4 are obtained in the arm. can get.

一方マシックティ19と20の各■アームに得られる2
個の信号をマジックティ22によシ合成スると、そのE
アームには第4図に示される指向特性が得られる。出力
端子23および24に得られる直交方向に対するそれぞ
れの特性は第4図に示すように、一般には同じではない
が追尾性能に対してはその特性の差異は問題とならない
ので所期の目的を達成することができる。
On the other hand, the 2 obtained in each arm of Masic Tea 19 and 20
When the signals of E are synthesized by the magic tee 22, the E
The arm has the directional characteristics shown in FIG. 4. As shown in Figure 4, the respective characteristics obtained at the output terminals 23 and 24 in the orthogonal direction are generally not the same, but the difference in characteristics does not matter for tracking performance, so the desired purpose is achieved. can do.

なお上記例では、アンテナは送信アンテナとして電波を
送り出す方向から説明したが、電磁界の可逆理論によシ
受信アンテナとして電波を受信する場合についても適用
することができる。したがって、上記説明の中で用いた
「照射」または「放射」の語は、本発明を送信アンテナ
に限定するものではない。
In the above example, the antenna was explained from the direction of transmitting radio waves as a transmitting antenna, but it can also be applied to the case of receiving radio waves as a receiving antenna according to the reversible theory of electromagnetic fields. Therefore, the terms "irradiation" or "radiation" used in the above description do not limit the invention to transmitting antennas.

上記説明で一次放射器は主反射鏡の焦点付近に配置する
ことを述べたが、この焦点には副反射鏡を用いることに
よ多形成される焦点その他の実効的に主反射鏡の焦点と
して作用するものの全てを含む。
In the above explanation, it was stated that the primary radiator is placed near the focal point of the main reflecting mirror, but at this focal point, there are multiple focal points formed by using sub-reflecting mirrors, and other effective focal points of the main reflecting mirror. It includes everything that works.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、既設の通信用−次
放射器を構成する複数個の放射素子の他に新たに少数個
の放射素子を設け、この新た々放射素子と上記複数個の
放射素子の一部とにより追尾用−次放射器を構成するこ
とにより、(イ)追尾用−次放射器のだめの放射素子の
配置の自由度を大きくとることができ、 (ロ) 良好な追尾用指向特性が得られ、また通信用−
次放射器および追尾用−次放射器を主反射鏡の焦点近傍
に集中して配置することにより、 (ハ)主反射鏡の形状および重量を小型化でき、に) 
ビーコン波送信用地球局をアンテナの通信領域に設置す
ることができる 優れた効果がある。
As described above, according to the present invention, a small number of radiating elements are newly provided in addition to the plurality of radiating elements constituting the existing communication radiator, and this new radiating element and the plurality of radiating elements are By configuring the tracking-order radiator with a part of the radiating element of Directional characteristics for tracking can be obtained, and it can also be used for communication.
Secondary radiator and tracking - By arranging the secondary radiator near the focal point of the main reflector, (c) the shape and weight of the main reflector can be reduced;
This has the excellent effect of allowing the earth station for transmitting beacon waves to be installed in the communication area of the antenna.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明一実施例アンテナの縦断側面図。 第2図はこのアンテナの一次放射器の正面図。 第3図は通信用−次放射器の照射領域の電界分布を示す
図。 第4図は追尾用−次放射器の照射領域の電界分布を示す
図。 第5図は本発明一実施例アンテナの−次放射器のブロッ
ク構成図。 1・・・主反射鏡、2・・・−次放射器、11〜16・
・・放射素子、17.18・・・分波器、19〜22−
・・マジックティ、23〜28・・−出力端子、29・
・・分岐回路、3゜・・・合成回路。 特許出願人代理人 弁理士 井 出 直 孝 第1図 0 第2図 留暗頷襖 襖 冑  ミ
FIG. 1 is a longitudinal sectional side view of an antenna according to an embodiment of the present invention. Figure 2 is a front view of the primary radiator of this antenna. FIG. 3 is a diagram showing the electric field distribution in the irradiation area of the communications radiator. FIG. 4 is a diagram showing the electric field distribution in the irradiation area of the tracking radiator. FIG. 5 is a block diagram of a -order radiator of an antenna according to an embodiment of the present invention. 1... Main reflecting mirror, 2... -order radiator, 11-16.
... Radiation element, 17.18 ... Branching filter, 19-22-
...Magic tee, 23-28...-output terminal, 29.
...Branch circuit, 3゜...Synthesis circuit. Nao Takashi Ide, Patent Attorney Representative for Patent Applicant Figure 1 0 Figure 2 Tome-no-no-fusuma-ku Mi

Claims (1)

【特許請求の範囲】[Claims] (1)地球局に向けられた1個の主反射鏡と、この主反
射鏡を照射する複数個の放射素子によ多構成された通信
用−次放射器とを備えた衛星搭載用アンテナにおいて、
上記放射素子の一部と上記放射素子とは別に設けられた
少数個の放射素子とKよ多構成された追尾用−次放射器
と、上記通信用−次放射器の放射素子の一部の信号通路
に設けられ追尾用信号を分岐する分岐回路と、上記追尾
用−次放射器の追尾用信号と上記分岐回路によ多分岐さ
れた追尾用信号とを組合わせて所定の追尾用のアンテナ
・ビーム特性を得る合成回路とを備えたことを特徴とす
る衛星搭載用アンテナ。
(1) In a satellite-mounted antenna equipped with one main reflector directed toward the earth station and a communications radiator composed of multiple radiating elements that irradiate the main reflector. ,
A part of the radiating element, a small number of radiating elements provided separately from the radiating element, a K number of tracking radiators, and a part of the radiating element of the communication radiator. A branch circuit provided in the signal path for branching the tracking signal, and a predetermined tracking antenna that combines the tracking signal of the tracking-next radiator and the tracking signal branched by the branch circuit. - A satellite-mounted antenna characterized by being equipped with a synthesis circuit for obtaining beam characteristics.
JP58105320A 1983-06-13 1983-06-13 Trackable satellite antenna Expired - Lifetime JPH0740641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58105320A JPH0740641B2 (en) 1983-06-13 1983-06-13 Trackable satellite antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58105320A JPH0740641B2 (en) 1983-06-13 1983-06-13 Trackable satellite antenna

Publications (2)

Publication Number Publication Date
JPS59230304A true JPS59230304A (en) 1984-12-24
JPH0740641B2 JPH0740641B2 (en) 1995-05-01

Family

ID=14404413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58105320A Expired - Lifetime JPH0740641B2 (en) 1983-06-13 1983-06-13 Trackable satellite antenna

Country Status (1)

Country Link
JP (1) JPH0740641B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827270A (en) * 1986-12-22 1989-05-02 Mitsubishi Denki Kabushiki Kaisha Antenna device
JPH01181306A (en) * 1988-01-14 1989-07-19 Nippon Telegr & Teleph Corp <Ntt> Antenna feeder circuit
JPH03128506A (en) * 1989-07-07 1991-05-31 Dx Antenna Co Ltd Automatic tracking device for satellite communication
JP2008054025A (en) * 2006-08-24 2008-03-06 Nippon Telegr & Teleph Corp <Ntt> Array antenna, array feeding reflector antenna, and oriented direction error detection method and oriented direction error compensation method of both antennas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827270A (en) * 1986-12-22 1989-05-02 Mitsubishi Denki Kabushiki Kaisha Antenna device
JPH01181306A (en) * 1988-01-14 1989-07-19 Nippon Telegr & Teleph Corp <Ntt> Antenna feeder circuit
JPH03128506A (en) * 1989-07-07 1991-05-31 Dx Antenna Co Ltd Automatic tracking device for satellite communication
JP2008054025A (en) * 2006-08-24 2008-03-06 Nippon Telegr & Teleph Corp <Ntt> Array antenna, array feeding reflector antenna, and oriented direction error detection method and oriented direction error compensation method of both antennas
JP4622966B2 (en) * 2006-08-24 2011-02-02 日本電信電話株式会社 Array antenna, array-fed reflector antenna, pointing direction error detection method and pointing direction error compensation method for both antennas

Also Published As

Publication number Publication date
JPH0740641B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
Demmerle et al. A biconical multibeam antenna for space-division multiple access
US3482251A (en) Transceive and tracking antenna horn array
EP0963006B1 (en) Reconfigurable multiple beam satellite phased array antenna
JP3444850B2 (en) Multi-pattern antenna with independently controllable antenna pattern characteristics
US4482897A (en) Multibeam segmented reflector antennas
JPH0685485B2 (en) Double grating antenna reflector and manufacturing method thereof
JPH01503666A (en) Equal power amplifier system and its placement method for active phased array antennas
JPH01502872A (en) Multi-level beamforming network
JPH0444441B2 (en)
CN210111047U (en) Feed network for antenna and antenna
CA2249004C (en) Array feed for axially symmetric and offset reflectors
US6677908B2 (en) Multimedia aircraft antenna
US2653238A (en) Dual frequency antenna
JPH0936656A (en) Distribution and synthsis device and antenna system
US2925595A (en) Monopulse transmitting and receiving systems
US2217321A (en) Beam antenna
JPS59230304A (en) Satellite antenna
US20230025634A1 (en) 5g dual port beamforming antenna
US20220311130A1 (en) Antenna feed networks and related antennas and methods
JP2007532077A (en) Array antenna for suppressing back signal and design method thereof
WO2019087525A1 (en) Base station device antenna, re-radiator, communication system, and base station device
JPH0654843B2 (en) Multi-frequency band shared antenna
JP2580822B2 (en) Electronic scanning antenna
US3613099A (en) Vor antenna system
JPH05267928A (en) Reflecting mirror antenna