JPS59230199A - Collimating plate for neutron ray - Google Patents

Collimating plate for neutron ray

Info

Publication number
JPS59230199A
JPS59230199A JP58104938A JP10493883A JPS59230199A JP S59230199 A JPS59230199 A JP S59230199A JP 58104938 A JP58104938 A JP 58104938A JP 10493883 A JP10493883 A JP 10493883A JP S59230199 A JPS59230199 A JP S59230199A
Authority
JP
Japan
Prior art keywords
collimating
neutron
plates
mold
collimating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58104938A
Other languages
Japanese (ja)
Other versions
JPH0447800B2 (en
Inventor
豊田 英二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP58104938A priority Critical patent/JPS59230199A/en
Publication of JPS59230199A publication Critical patent/JPS59230199A/en
Publication of JPH0447800B2 publication Critical patent/JPH0447800B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発りJは、軽量化と、中づ」ユ子線および中性子線
により発生した放射能の遮蔽性能を向上した中性子線用
コリメート板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a collimating plate for neutron beams that is lightweight and has improved shielding performance for radioactivity generated by neutron beams and neutron beams.

周知のとおり、中性子線をがん治療に用いる場合、中性
子線が病巣部のみに照射され健全組織に損傷を与えない
ことが重要である。中性子は線源から放射状に射出され
るので、線源と照射対象の輪郭を結んだ錐体を空間部と
し、他を遮蔽体で充填した立体形状が理想的なコリメー
タである。
As is well known, when using neutron beams for cancer treatment, it is important that the neutron beams are irradiated only to the lesion and do not damage healthy tissue. Since neutrons are emitted radially from a radiation source, the ideal collimator has a three-dimensional shape in which the space is a cone connecting the outlines of the radiation source and the irradiation target, and the rest is filled with a shield.

ところで、この照射対象の輪郭は治療対象により異なる
ので理想的なコリメータをその都度製作することは不可
能であった。
However, since the outline of the irradiation target differs depending on the treatment target, it has been impossible to manufacture an ideal collimator for each treatment.

そこで、照射対象の輪郭を階段状に近イリさせ、複数個
の分割円錐筒(円錐板)のコリメート板を組み合わせて
錐体空間を作り出すことが考えられた。
Therefore, it was considered to make the outline of the irradiation target almost step-like and to create a conical space by combining collimating plates of a plurality of divided conical cylinders (conical plates).

第1図は上記によるコリメート板の組み合わせを示す説
明図である。
FIG. 1 is an explanatory diagram showing a combination of the collimating plates as described above.

この図において、1はコリメート板全体を示す。In this figure, 1 indicates the entire collimating plate.

IRは右f1部分のコリメート板の積層したものを示し
、IR,、IR2,・ ・、IRゎは個々のコリ7−1
・板を示す。なお、第4図では一例として10枚重ねた
ものを示す。また、ILは左側部分の各コリメート板を
積層したもので、二点鎖線で示し、図示はされていない
が個々のコリメート板IL、、IL2 、  ・・・・
、IL、。により形成され、かつコリメート板IRと対
称位置に配設されている。
IR indicates a stack of collimating plates on the right f1 portion, and IR,, IR2,..., IRゎ indicates individual collimation plates 7-1.
・Show the board. Note that FIG. 4 shows an example in which 10 sheets are stacked. In addition, IL is a stack of collimating plates on the left side, which is shown by two-dot chain lines, and although not shown, the individual collimating plates IL, IL2, . . .
,IL,. and is arranged at a symmetrical position to the collimating plate IR.

コリメート板lはX111]を中心として回転運動を行
なう。したがって隣シ合ったコリメート板1は円錐角の
異なる円錐板からなる。
The collimating plate l performs a rotational movement centering on X111]. Therefore, adjacent collimating plates 1 are composed of conical plates having different cone angles.

第2図(ai ’d積層したコリメート板を使用したコ
リメータにより形成された照射ヘッドの概略平面図、第
2図(1〕)は第2図(a)のコリメータを正面のA方
向から見た斜視図、第2図(c)は第2図tb)を裏面
のB方向から見た斜視図である。これらの図において1
1は中性子用コリメータの11でテ射ヘッド、12はク
ーゲットで、中性子を放射する線源である。13はコリ
メータ、14は前記」リメータ13の筐体で、この中に
コリメート板IR,ILが対称形に配設きれており、各
コリメート板IR,、IR2゜・・・・+ lR1゜r
 lLI+ IL2  +・−1IL1qkそれぞれ別
個に回動させるだめ、各リンク装置15を介してそれぞ
れの調整装置16に接続されている。17は前記線源1
2からの中性子を入射する入射窓(固定フリメータ)、
18は前記コリメート板IR,ILによって形成された
錐体形の空間部全形成する通路、19は前記線源12.
入射窓17、通路18を経て中性子が放射される放射窓
、20Vi前記各フリメート板IL、IRと、リンク装
置15とを接続するために形成した開孔部である。
Figure 2 (schematic plan view of an irradiation head formed by a collimator using ai'd laminated collimating plates, Figure 2 (1)) shows the collimator in Figure 2 (a) viewed from the front A direction. A perspective view of FIG. 2(c) is a perspective view of FIG. 2(tb) viewed from the direction B on the back side. In these figures 1
Reference numeral 1 denotes a neutron collimator 11, which is a radiation head, and 12, a cooget, which is a radiation source that emits neutrons. 13 is a collimator, and 14 is a housing of the above-mentioned remeter 13, in which collimating plates IR and IL are arranged symmetrically, each collimating plate IR,, IR2゜...+lR1゜r
1LI+IL2+.-1IL1qk are connected to respective adjustment devices 16 via respective link devices 15, so that they can be rotated separately. 17 is the radiation source 1
an entrance window (fixed frimeter) that receives neutrons from 2;
Reference numeral 18 denotes a passageway forming the entire cone-shaped space formed by the collimating plates IR and IL, and 19 the radiation source 12.
These are an entrance window 17, a radiation window through which neutrons are emitted through a passage 18, and an opening formed to connect the frimate plates IL and IR to the link device 15.

次に動作について説明する。Next, the operation will be explained.

各コリメート板LL、〜IL、。、IR,〜IR,。Each collimating plate LL, ~IL,. , IR, ~IR,.

は、それぞれの調整装置16を矢印C方向に動かすこと
により、リンク装置15+1?介して矢印り方向に回動
させる。
By moving each adjustment device 16 in the direction of arrow C, link device 15+1? Rotate it in the direction of the arrow.

これにより、各コリメート板IL、〜I L、o、 I
R,〜IR,。は、たとえば、第3図に示すような形状
に照射野が形成される。
As a result, each collimating plate IL, ~IL, o, I
R, ~IR,. For example, an irradiation field is formed in a shape as shown in FIG.

ところで、上記のコリメート板IR,IL’z製作する
にはそれぞれ円錐角の異なる円錐板を形成し、その円錐
板から切り出す必要がある。
By the way, in order to manufacture the above-mentioned collimating plates IR and IL'z, it is necessary to form conical plates having different cone angles and cut them out from the conical plates.

照射対象の輪郭に近づけるためには階段状の刻みを小さ
くし、多数のコリメート板を組み合わせねばならない。
In order to approximate the contour of the irradiation target, it is necessary to make the stepped increments small and to combine a large number of collimating plates.

まだ、薄い円錐板は精度を要するため鉄製を主体にして
製作されていたが加工歪の発生で製作が困難となり、ま
た、重いだめ出力の大きな駆動源を必要とするのでコス
トの増加にもつながる。さらに、鉄製のものは残留放射
能が大きいので時間の経過とともに放射化するため危険
であり、取り扱いが不便である等の欠点があった。
Thin conical plates were still manufactured mainly from iron because they required precision, but manufacturing was difficult due to the occurrence of processing distortion.Also, it required a heavy drive source with a large output, which led to an increase in costs. . In addition, those made of iron have a large amount of residual radioactivity, which makes them radioactive over time, making them dangerous and inconvenient to handle.

このように、円錐面型のコリメータ13はその原理が分
っていながら製作の困難さのだめ実用に供されず、特に
中性子線Gこよるがん治療においては従来製作容易な平
行板積層式コリメータが用いられてきたが半影が大きく
ソヤーブな照射が不可能である等の欠点があった。
As described above, although the principle of the conical surface type collimator 13 is known, it is not put into practical use due to the difficulty of manufacturing it.Especially in cancer treatment using neutron beam G, the conventional parallel plate laminated collimator, which is easy to manufacture, has not been put into practical use. Although it has been used, it has drawbacks such as a large penumbra and the impossibility of soybean irradiation.

この発明は、上記の欠点を除去するだめになされたもの
で軽量で可塑性をイ■するプラスチックを使用するとと
もにこのプラスチ、りに中性子線と、中性子線により発
生した放射能をsMする充てん剤を加えた中性子線用コ
リメート板を提供するものである。以下この発明につい
て説明する。
This invention was made to eliminate the above-mentioned drawbacks, and it uses a lightweight plastic that has high plasticity, and a filler that absorbs neutron beams and the radioactivity generated by the neutron beams. The present invention also provides a collimating plate for neutron beams. This invention will be explained below.

第4図、第5図はこの発明の中性子線用コリメ−ト板を
製作するだめに使用されるプラスチック成形金型と多層
成形金型を示すものである。
FIGS. 4 and 5 show a plastic mold and a multilayer mold used for manufacturing the neutron beam collimating plate of the present invention.

まず、第4図において、21はプラスチック成形金型(
以下単に金型という)で、21A、21Bは上型と下型
を示す。プラスチックとしてエポキシ樹脂について述べ
ると、硬化剤と混合したエポキシ樹脂を金型21でまず
成形する。この場合、たとえば、硬化温度100°Cに
対し金型を70°Cに保持し、半硬化した状態で取り出
す。このようにして成形した半硬化(セミキュア)状態
のコリメルト板IR2ILを所定枚数製作した後、再び
70°Cイーj近に加熱し可撓性の状態の各コリメート
板IR,ILを第5図に示す多層成形金型22に入れる
。なお、22A、22BB:前記多)−成形金型22の
」ニ型吉下型を示す。
First, in Fig. 4, 21 is a plastic molding die (
21A and 21B indicate an upper mold and a lower mold. Regarding epoxy resin as a plastic, first, epoxy resin mixed with a hardening agent is molded in a mold 21. In this case, for example, while the curing temperature is 100°C, the mold is held at 70°C and taken out in a semi-cured state. After producing a predetermined number of collimated plates IR2IL in a semi-cured (semi-cured) state formed in this way, the collimated plates IR and IL in a flexible state are heated again to around 70°C, as shown in Figure 5. It is placed in the multilayer mold 22 shown. In addition, 22A, 22BB: 2-type Yoshishita mold of the above-mentioned multi-molding mold 22 is shown.

多層成形金型22け予め予熱されている(例えば70℃
)。コリメート板IR,〜IR,の表面には離型剤(ソ
リコングリス等)が塗布され相互の接着を防止する。
22 multilayer molds are preheated (e.g. 70℃)
). A mold release agent (solicon grease, etc.) is applied to the surfaces of the collimating plates IR, IR, to prevent mutual adhesion.

次いで、型締めされた多層成形金型22を炉中で硬化条
件に至るまで加熱成形し、保持(例えば100°Cで8
時間)した後、コリメート板IR,〜IR。
Next, the clamped multilayer mold 22 is heated and molded in a furnace until hardening conditions are reached, and held (for example, at 100°C for 8
time), then the collimating plate IR, ~IR.

を多層成形金型22’A、22Bから取り出すことによ
って、それぞれの円錐角をもつコリメート板IR,〜I
R,を得るものである。
are taken out from the multilayer molds 22'A and 22B, collimating plates IR, ~I with their respective cone angles are
R, is obtained.

このように、2種類の各金型21Δ、21B、22A、
22Bを用意することによって、相隣るコリメート板I
R,〜IR6に互に相手に金型の役割を持たせて成形で
きるので、多種類の円錐面型コリメート板IR,ILの
製作が可能になる。
In this way, each of the two types of molds 21Δ, 21B, 22A,
By preparing 22B, adjacent collimating plates I
Since R, to IR6 can be molded with each other having the role of a mold, it is possible to manufacture many types of conical surface type collimating plates IR and IL.

第6図はこの発明の一実施例を示す中性子線用コリメー
ト板の斜視図である。この図において、31はエポキシ
樹脂を主体とするコリメート板で、第1図に示す右側の
もののうちの任意の1枚を示したもので、31Aはエポ
キシ樹脂に鉄粉を含有させて、高速中性子を減速する高
速中性子減速層、31Bはボロンを含有する層で、熱中
性子を吸収し除去する熱中性子吸収層、31Cは鉛を含
イjするγ線減衰層で、高速中性子減速層31A、熱中
性吸収層で発生したγ線を減衰させる。
FIG. 6 is a perspective view of a neutron beam collimating plate showing an embodiment of the present invention. In this figure, 31 is a collimating plate mainly made of epoxy resin, and 31A is an arbitrary one of the ones on the right side shown in Figure 1. 31B is a layer containing boron and is a thermal neutron absorption layer that absorbs and removes thermal neutrons; 31C is a γ-ray attenuation layer containing lead; fast neutron moderation layer 31A; It attenuates the gamma rays generated in the magnetic absorption layer.

上記各層31A、31B 、31Cはエポキシ樹脂を基
材としてそれぞれ添加物を混合したもので第1表にその
成分の一例を示す。
Each of the layers 31A, 31B, and 31C is made by mixing an epoxy resin with additives, and Table 1 shows an example of the components.

第   1   表 上記各成分により製作されたコリメート板31の重量は
鉄製の場合の40%である。
Table 1 The weight of the collimating plate 31 manufactured from the above components is 40% of that of iron.

以上説明したようにこの発明は、プラスチック成形金型
と多層成形金型とになりそれぞれエポキシ樹脂を主旧と
して、鉄粉を含有させた高速中性子減速層と、ボロンを
含有させた熱中性子吸収層と、高速中性子減速層と熱吸
収除去層で発生したγ線を減衰させる鉛を含有させたr
@減衰層とによりコリメート板を形成したので、鉄板製
のコリメート板に比べて残留放射能が少なく、かつ残留
放射能は鉛層で遮蔽されるので放射能による害がなく取
扱いが便利であるとともに軽量化されたので出力の小さ
い駆動源でよく、コストが低減できる等の利点を有する
As explained above, the present invention consists of a plastic molding mold and a multilayer molding mold, each of which is mainly made of epoxy resin, has a fast neutron moderating layer containing iron powder, and a thermal neutron absorbing layer containing boron. and r containing lead to attenuate the γ-rays generated in the fast neutron moderation layer and heat absorption removal layer.
Since a collimating plate is formed with the attenuation layer, there is less residual radioactivity compared to a collimating plate made of iron plate, and the residual radioactivity is shielded by the lead layer, so there is no harm caused by radioactivity and it is convenient to handle. Since the weight is reduced, a drive source with a small output is required, which has advantages such as cost reduction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はコリメート板の組み合わせを示す説明図、第2
図(a)は積層したコリメート板を使用したフリメーク
によシ形成された照射へノドの概略平[7ij図、第2
図(blは第2図(a)のコリメータを正面のA方向か
ら見た斜視図、第2図(c)は第2図Fblを裏面のB
方向から見た斜視図、第3図tまコリメート板により形
成された照射野を示す正面図、第4図はこの発明の実施
に用いるプラスチック成形金型の分解斜視図、第5図は
同じく多層成形金型を示す側断面図、第6図はこの発明
の一実施例を示す中性子線用コリメート板の斜視図であ
る。 図中、1 、IR,IL、IR,、IR2,=−・、I
R,o。 l L+ + I L2 + ””” + L L 1
0はコリメート板、21はプラスチック成形金型、21
Aは上型、21Bは下型、22は多層成形金型、22A
は上型、22Bは下型、311dコリメート板、31A
は高速中性子減速層、31Bは熱中性子吸収層、31C
はγ線減衰層である。 第1図 第2図 (U) 第2図
Figure 1 is an explanatory diagram showing the combination of collimating plates, Figure 2
Figure (a) shows the approximate flat surface of the irradiation nozzle formed by freemake using laminated collimating plates [Figure 7ij, 2nd
Figures (bl is a perspective view of the collimator in Figure 2 (a) seen from the front A direction, Figure 2 (c) is a perspective view of the collimator in Figure 2 (a) from the back side B
Fig. 3 is a front view showing the irradiation field formed by the collimating plate, Fig. 4 is an exploded perspective view of the plastic molding die used for carrying out this invention, and Fig. 5 is also a multilayer FIG. 6 is a side sectional view showing a molding die, and a perspective view of a neutron beam collimating plate showing an embodiment of the present invention. In the figure, 1, IR, IL, IR,, IR2,=-・, I
R, o. l L+ + I L2 + “”” + L L 1
0 is a collimating plate, 21 is a plastic mold, 21
A is an upper mold, 21B is a lower mold, 22 is a multilayer mold, 22A
is the upper mold, 22B is the lower mold, 311d collimating plate, 31A
is a fast neutron moderation layer, 31B is a thermal neutron absorption layer, 31C
is the gamma-ray attenuation layer. Figure 1 Figure 2 (U) Figure 2

Claims (1)

【特許請求の範囲】[Claims] 放射線錐体空間を分割円錐筒のコリメート板の積層によ
り近似的に形成させ、線源からの中性子綜合前記放射線
錐体空間から放射させる中性子線用コリメータにおいて
、前記各コリメート板を前記線源側から夕i方に向けて
順次、エポキシ樹脂をそれぞれ主月として鉄粉を含有さ
せた高速中性子減速層と、同じくボロンを含不させた熱
中性子吸収層と、同じく鉛を含有させたr紳減衰層を設
けて構成したことを特徴とする中性子線用コリメート板
In a neutron beam collimator in which a radiation cone space is approximately formed by stacking collimating plates of a divided conical cylinder, and neutrons from a radiation source are integrated and radiated from the radiation cone space, each of the collimating plates is moved from the radiation source side. Toward evening, a fast neutron moderating layer made of epoxy resin containing iron powder, a thermal neutron absorption layer also containing no boron, and a neutron damping layer also containing lead were formed. A collimating plate for neutron beams, characterized in that it is configured by providing.
JP58104938A 1983-06-14 1983-06-14 Collimating plate for neutron ray Granted JPS59230199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58104938A JPS59230199A (en) 1983-06-14 1983-06-14 Collimating plate for neutron ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58104938A JPS59230199A (en) 1983-06-14 1983-06-14 Collimating plate for neutron ray

Publications (2)

Publication Number Publication Date
JPS59230199A true JPS59230199A (en) 1984-12-24
JPH0447800B2 JPH0447800B2 (en) 1992-08-04

Family

ID=14394028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58104938A Granted JPS59230199A (en) 1983-06-14 1983-06-14 Collimating plate for neutron ray

Country Status (1)

Country Link
JP (1) JPS59230199A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290113A (en) * 2011-07-18 2011-12-21 中国原子能科学研究院 Neutron Absorbing Layer Carrier Stretching Device
CN103000243A (en) * 2012-11-27 2013-03-27 华北电力大学 Gas circulation device of neutron collimator
EP2835149A4 (en) * 2012-03-30 2015-10-21 Sumitomo Heavy Industries Collimator for neutron capture therapy and neutron capture therapy apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467199A (en) * 1977-10-20 1979-05-30 Lintott Eng Ltd Radiationnshielding nonnelectroconductive material
JPS5485297U (en) * 1977-11-29 1979-06-16

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467199A (en) * 1977-10-20 1979-05-30 Lintott Eng Ltd Radiationnshielding nonnelectroconductive material
JPS5485297U (en) * 1977-11-29 1979-06-16

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290113A (en) * 2011-07-18 2011-12-21 中国原子能科学研究院 Neutron Absorbing Layer Carrier Stretching Device
EP2835149A4 (en) * 2012-03-30 2015-10-21 Sumitomo Heavy Industries Collimator for neutron capture therapy and neutron capture therapy apparatus
CN103000243A (en) * 2012-11-27 2013-03-27 华北电力大学 Gas circulation device of neutron collimator

Also Published As

Publication number Publication date
JPH0447800B2 (en) 1992-08-04

Similar Documents

Publication Publication Date Title
Nath et al. Neutrons from high‐energy x‐ray medical accelerators: an estimate of risk to the radiotherapy patient
Palos et al. The use of thin lung shields to deliver limited whole-lung irradiation during mantle-field treatment of Hodgkin's disease
JP6465677B2 (en) Boron Neutron Capture Therapy System
EP3666337A1 (en) Neutron capture therapy system
TWI672708B (en) Box structure with shielding function
Brahme et al. Neutron beam characteristics from 50 MeV protons on beryllium using a continuously variable multi-leaf collimator
JPS59230199A (en) Collimating plate for neutron ray
EP3527261A1 (en) Radiation irradiation system and positioning component for radiation irradiation system
Clement et al. Monte Carlo methods of neutron beam design for neutron capture therapy at the MIT Research Reactor (MITR-II)
Liu et al. Design of a high‐flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor
Farajollahi et al. Comparison between clinically used irregular fields shielded by Cerrobend and standard lead blocks
GB1409263A (en) Neutron beam collimators
CN109420258B (en) Neutron capture therapy system
JPS5827100A (en) Method of transporting spent nuclear fuel
JP2017026563A (en) Neutron shielding material, method for manufacturing the same, and neutron shielding container
CN111276271A (en) Combined structure for shielding and absorbing x-ray
JPS59230200A (en) Manufacture of collimator for neutron ray
Almond NBS SP 554 (1979) NEUTRON LEAKAGE FROM CURRENT MACHINES
CN208756806U (en) A kind of flexible shielding for radiotherapy
Das Dosimetry of Gold‐198 Seed Implants
Kim et al. 50–300 kVp X-ray Transmission Ratios for Lead, Steel and Concrete
Lee et al. Secondary neutron dose measurement for proton line scanning therapy
Degtyarev et al. Calculation and experimental studies of the possibility of online determination of the Bragg peak position in experiments on detection of prompt gamma radiation in radiation therapy problems
Best Monte Carlo modeling of the Gamma Knife Perfexion™
KR20230081191A (en) Maze-type neutron beam shaping assembly for neutron capture therapy