JPS59229175A - Method of controlling heating of melting furnace, etc. - Google Patents

Method of controlling heating of melting furnace, etc.

Info

Publication number
JPS59229175A
JPS59229175A JP10089283A JP10089283A JPS59229175A JP S59229175 A JPS59229175 A JP S59229175A JP 10089283 A JP10089283 A JP 10089283A JP 10089283 A JP10089283 A JP 10089283A JP S59229175 A JPS59229175 A JP S59229175A
Authority
JP
Japan
Prior art keywords
combustion
melting furnace
exhaust gas
gas temperature
operation pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10089283A
Other languages
Japanese (ja)
Inventor
片岡 義典
克明 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP10089283A priority Critical patent/JPS59229175A/en
Publication of JPS59229175A publication Critical patent/JPS59229175A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は溶解炉等のg0熱方法に関し、特にアルミニウ
ム溶解炉の加熱制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a g0 heating method for a melting furnace, etc., and particularly to a heating control method for an aluminum melting furnace.

従来アルミニウムの溶解炉(反射炉)においては、1本
又は数本の重油バーナーもしくはLNGバーナーの質量
により炉温もしくは排ガス温度の制御および溶湯温度制
御をおこなっている。この際溶解炉内にアルミニウムの
溶湯ができるまでは炉温もしくは排ガス温度によって制
御し、アルミニウムの溶湯ができた後は溶湯温度で制御
をおこなっている(第1図参照)。
In conventional aluminum melting furnaces (reverberatory furnaces), the furnace temperature or exhaust gas temperature and molten metal temperature are controlled by the mass of one or several heavy oil burners or LNG burners. At this time, until molten aluminum is formed in the melting furnace, it is controlled by the furnace temperature or exhaust gas temperature, and after the molten aluminum is formed, it is controlled by the molten metal temperature (see Figure 1).

この場合において制御は、排ガス温度目標値および溶湯
温度目標値を一定に設定したPID (比例積分微分)
制御を従来より行っているが、制御−操作系の切り換え
にかなりの時間を要し、その切り換えに対する排ガス温
度の応答が遅いので設定した運転パターンに従う温度上
昇ダイヤグラムに正確に追従できずハンチングを起こし
て実効ある制御が困難となっていた。更に加熱初期から
高燃焼量で運転する従来のアルミニウム溶解炉の場合次
のような問題があった。
In this case, the control is based on PID (proportional-integral-derivative) in which the exhaust gas temperature target value and the molten metal temperature target value are set constant.
Control is performed conventionally, but it takes a considerable amount of time to switch between the control and operating systems, and the response of the exhaust gas temperature to the switching is slow, making it impossible to accurately follow the temperature rise diagram that follows the set operating pattern, resulting in hunting. This made effective control difficult. Furthermore, conventional aluminum melting furnaces that operate at a high combustion rate from the initial stage of heating have the following problems.

ti)溶解炉に装入直後のアルミニウム除材は表面のみ
で輻射熱を吸収するにすぎず、熱吸収効率が悪いため、
高燃焼の重油バーナー又はLNG /\−ナーからの熱
は専ら排ガス温度の上昇に費やされ、排ガスへの熱損失
が大きくなる。
ti) Aluminum removed immediately after being charged into the melting furnace absorbs radiant heat only on the surface, and the heat absorption efficiency is poor.
The heat from the high-combustion heavy oil burner or LNG burner is used exclusively to raise the exhaust gas temperature, resulting in large heat losses to the exhaust gas.

(2)アルミニウム除材をバーナーによって急激に加熱
するためアルミニウム除材が熔解せずに燃えてしまい、
酸化ロスが大きくなる。
(2) Because the aluminum removed material is rapidly heated with a burner, the aluminum removed material burns without melting.
Oxidation loss increases.

(3)溶解炉内に発生した酸化物の断熱効果により伝熱
効率に悪影響を及ぼす。
(3) The heat transfer efficiency is adversely affected by the heat insulation effect of the oxides generated in the melting furnace.

上述の従来技術の問題に鑑み、本出願人は、本願と同日
付けの特許出願に於いて、複数の燃焼装置を備えた溶解
炉等の加熱を制御する方法であって、前記燃焼装置の全
発生熱量が一定状態において、排ガス温度の上昇率を最
低にする燃焼ずなわち最適燃焼を与える前記燃焼装置の
運転パターンを選択し、選択された前記運転パターンで
前記燃焼装置を所定時間燃焼させ、それによって排ガス
による損失熱量を最低にしつつ、前記溶解炉の装入材料
である被溶解材料の低温からの急激な加熱を避けるよう
にすることを特徴とする加熱制御方法を提案し、被熔解
材の酸化ロスを防止し且つ最適の熱効率を達成させたも
のである。しかしながら、この方法を所定の排ガス温度
、例えばアルミニウムの湯温目標値近傍まで実施し、そ
の後ばPID制御に切り換えて急激な加熱を行っても、
熔解に要する時間はトータルとして長くなるという問題
がある。
In view of the above-mentioned problems in the prior art, the present applicant has proposed a method for controlling the heating of a melting furnace, etc. equipped with a plurality of combustion devices, in a patent application dated the same date as the present application, which describes Selecting an operation pattern of the combustion device that provides combustion that minimizes the rate of increase in exhaust gas temperature, that is, optimal combustion when the amount of heat generated is constant, and causing the combustion device to burn for a predetermined period of time in the selected operation pattern, We propose a heating control method characterized by minimizing heat loss due to exhaust gas and avoiding rapid heating of the material to be melted, which is the charging material of the melting furnace, from a low temperature. This prevents oxidation loss and achieves optimal thermal efficiency. However, even if this method is carried out until a predetermined exhaust gas temperature is reached, for example near the aluminum hot water temperature target value, and then the switch is made to PID control and rapid heating is performed,
There is a problem in that the total time required for melting becomes long.

ところで、アルミニウム等の金属の熔解の場合、初期に
は表面のみが加熱され酸化の恐れがあるとしても、温度
が上昇するにつれて被熔解材の表面は溶融するのでより
高速の加熱を行っても酸化ロスの可能性か少なくなる。
By the way, in the case of melting metals such as aluminum, even if only the surface is heated at the beginning and there is a risk of oxidation, as the temperature rises the surface of the material to be melted will melt, so even if heated at a higher speed, oxidation will not occur. The possibility of loss will be reduced.

従って、上記従来技術の問題の解決を図り、同時に溶解
工程自体の短縮を図ることが操業上望ましい。
Therefore, it is desirable for operation to solve the problems of the prior art described above and at the same time to shorten the melting process itself.

本発明による加熱制御方法においては、これらの目的を
達成するために、燃焼装置の全装置を少なくとも2段階
以上に分けて段階的に増加させ、各々の段階の燃焼にお
いて、燃焼装置の全装置を一定にした状態で燃焼排ガス
温度の上昇率を最低にする燃焼装置の運転パターンを選
択し、この選択された運転パターンに従って燃焼装置を
所定時間燃焼させる。このような運転パターンを選択す
る理由は、燃焼装置の全装置が同一で排ガス温度の上昇
率が最低ということは、アルミニウム除材への熱吸収率
が最大で排ガス損失を軽減させることができることを意
味するからである。
In order to achieve these objectives, in the heating control method according to the present invention, the total number of devices in the combustion device is increased stepwise in at least two or more stages, and in each stage of combustion, the total number of devices in the combustion device is increased. A combustion device operation pattern that minimizes the rate of increase in combustion exhaust gas temperature under a constant state is selected, and the combustion device is operated for a predetermined period of time in accordance with the selected operation pattern. The reason for selecting such an operation pattern is that all the combustion equipment is the same and the rate of increase in exhaust gas temperature is the lowest, which means that the rate of heat absorption into the aluminum removed material is the highest and can reduce exhaust gas loss. Because it means.

更に本発明の好ましい特徴に従えば、各々の段階で運転
パターンの選択工程および選択された運転パターンに従
う燃焼工程を行いながら燃焼装置の全装置を段階的に増
加させるのは、排ガス温度がほぼ溶湯目標値になるまで
行われる。/8湯温度目標値すなわち設定値に近ずいた
状態では装入材料の外表面は完全に溶融し、以後の排ガ
ス温度設定値制御による急激な加熱によっても装入材料
の酸化ロスの心配はなくなるからである。
Furthermore, according to a preferred feature of the present invention, the stepwise increase in all the units of the combustion device while carrying out the operation pattern selection step and the combustion step according to the selected operation pattern in each step is such that the exhaust gas temperature is approximately equal to the molten metal. This is done until the target value is reached. /8 When the hot water temperature is close to the target value, that is, the set value, the outer surface of the charging material is completely melted, and there is no need to worry about oxidation loss of the charging material even if it is rapidly heated by controlling the exhaust gas temperature set value. It is from.

すなわち本発明は炉体が低温度のときは低燃焼として被
熔解材の酸化ロスを防止し、しかも被溶H材の表面が溶
融するにつれて段階的に高燃焼とすることによって溶解
能率を維持するものである。
In other words, the present invention prevents oxidation loss of the material to be melted by performing low combustion when the temperature of the furnace body is low, and maintains melting efficiency by increasing combustion in stages as the surface of the H material to be melted melts. It is something.

以下添付の図面を参照し−て本発明の好ましい実施例に
ついて説明する。
Preferred embodiments of the present invention will now be described with reference to the accompanying drawings.

第2図は溶解炉の概略図である。バーナー(参照番号1
〜8)は溶解炉に4本ずつ向かい合わせて設置されてい
る。このうぢバーナー1.3.6.8ば装量大(例えば
LNG 150 Nrr?/時間)のものであり、バー
ナー2.4.5.7は装量小(例えばLNG 5ON 
d/待時間のものである。バーナー1〜8はいずれもL
NGもしくは重油を燃料とする超高速バーナーである。
FIG. 2 is a schematic diagram of the melting furnace. Burner (reference number 1
~8) are installed in the melting furnace, four each facing each other. Burner 1.3.6.8 has a large capacity (for example, LNG 150 Nrr/hour), and burner 2.4.5.7 has a small capacity (for example, LNG 5ON/hour).
d/waiting time. Burners 1 to 8 are all L
It is an ultra-high-speed burner that uses NG or heavy oil as fuel.

ちなみに本発明の適用に関しバーナーの種類および燃料
は問わない。又溶解炉の形状およびバーナーの配置につ
いても種々の選択が可能である。
Incidentally, with regard to the application of the present invention, the type of burner and the fuel do not matter. Also, various choices can be made regarding the shape of the melting furnace and the arrangement of the burners.

アルミニウム絵付ば材料装入扉9から溶解炉内へ装入さ
れ、一方炉内のガスは煙道10から排出される。更に溶
解炉内および煙道内には熱電対11が設置され、熱電対
11からの信号は制御装置12へ入力される。
The aluminum plate is charged into the melting furnace through the material charging door 9, while the gas inside the furnace is exhausted through the flue 10. Further, a thermocouple 11 is installed inside the melting furnace and the flue, and a signal from the thermocouple 11 is input to a control device 12.

本実施例においては隣接3−る大容量のバーナー1.3
.6.8と小容量のバーナー2.4.5.7の組合せ、
すなわちバーナー1と2.3と4.5と6.7と8から
燃焼装置が4つ構成される。
In this example, three adjacent large capacity burners 1.3
.. Combination of 6.8 and small capacity burner 2.4.5.7,
That is, burners 1, 2.3, 4.5, 6.7, and 8 constitute four combustion devices.

制御装置12は各燃焼装置の質量を大、小2種類のうち
の一方に選択するように作動する。制御装置12ばシー
ケンサ−、マイクロコンピュータ−、ミニコンピユータ
−等の演算機能を備え、l/′A焼装置の運転パターン
を制御する。
The control device 12 operates to select one of two types of mass, large and small, for each combustion device. The control device 12 is equipped with arithmetic functions such as a sequencer, a microcomputer, a minicomputer, etc., and controls the operation pattern of the l/'A baking apparatus.

本発明に従うと排ガス温度設定値制御をおこなうまで、
即ち排ガス温度が溶湯温度設定値に近ずくまでの材料の
加熱期間は少なくとも2段階以上に分けられ、燃焼装置
の全装量は段階的に増加せしめられる。−例として排ガ
ス温度設定値制御をおこなうまでの加熱期間を3段階に
分けた場合について、本発明の加熱制御方法を一層詳細
に説明する。第1表はこの場合の燃焼装置の質量を示し
たものである。
According to the present invention, until exhaust gas temperature set value control is performed,
That is, the heating period of the material until the exhaust gas temperature approaches the set temperature of the molten metal is divided into at least two stages, and the total charge of the combustion device is increased in stages. - As an example, the heating control method of the present invention will be explained in more detail in the case where the heating period until exhaust gas temperature set value control is divided into three stages. Table 1 shows the mass of the combustion device in this case.

第1表 アルミニウム絵付を熔解炉内へ扉9がら装入しおわった
ら、第1段階の燃焼を実行する前に初期燃焼期間として
5〜10分間適当な質量で、例えば燃焼装置火燃焼2組
、小燃焼2組の運転パターンに従って炉を加熱する。こ
れにより適度な炉温の上昇をはかり、初期の急激な排ガ
スの温度の変化をさける。
Table 1 After loading the painted aluminum into the melting furnace through the door 9, before carrying out the first stage combustion, the initial combustion period is 5 to 10 minutes. The furnace is heated according to the operating pattern of two sets of small combustion. This allows for an appropriate rise in furnace temperature and avoids rapid changes in exhaust gas temperature at the beginning.

続いて第1段階の加熱を実施するわけであるが、このよ
うな加熱方式においては4通り(4C1−4)通りの運
転パターン(a)〜(d)を示したものであり、図中大
および小はそれぞれ燃焼装置の大燃焼および小燃焼を表
す。
Next, the first stage of heating is performed, and in this heating method, four (4C1-4) operation patterns (a) to (d) are shown. and small represent the large combustion and small combustion of the combustion device, respectively.

このような燃焼装置の4通りの運転パターン(a)〜(
d)を燃焼装置の全装量を一定とした上で適当な時間、
例えば2分間毎に変更してすべて実施する。このとき2
分間の始まりと終わりの排ガス温度の温度差を演算して
、各運転パターンにおける排ガス温度の上昇率を見い出
す。ここで2分間としたのは、コントロールモーターに
よる大−小の切換え時間が約30秒あり、加うるに排ガ
ス温度の応答性を考えると妥当な時間だからである。
There are four operating patterns (a) to (a) for such a combustion device.
d) for an appropriate period of time while keeping the total loading of the combustion device constant;
For example, change the settings every 2 minutes and execute them all. At this time 2
The temperature difference between the exhaust gas temperature at the beginning and end of a minute is calculated to find the rate of increase in exhaust gas temperature for each driving pattern. The reason why the time is set at 2 minutes is that the control motor takes about 30 seconds to switch between large and small levels, which is a reasonable time considering the responsiveness of the exhaust gas temperature.

このようにして求めた排ガス温度の上昇率から上昇率を
最低にする燃焼装置の運転パターンを(a)〜(d)か
ら選択する。選択された燃焼装置の運転パターンに従っ
て適当な時間例えば20〜30分間炉を加熱する。
Based on the rate of increase in exhaust gas temperature determined in this way, the operation pattern of the combustion device that minimizes the rate of increase is selected from among (a) to (d). The furnace is heated for a suitable period of time, e.g. 20-30 minutes, according to the operating pattern of the combustion equipment selected.

次に第2段階の運転に切換える。Next, switch to the second stage of operation.

この第2段階の加熱は第1表から明らかなように、燃焼
装置火燃焼2組、小燃焼2組の組合せである。このよう
な加熱方式においては第4図に示されるように6通り(
4C2=6)の運転パターン(a)〜(f)が考えられ
る。第2段階の運転においても第1段階と同様排ガス温
度の上昇率を最低にする燃焼装置の運転パターンを第4
図(a)〜(f)から選択する。
As is clear from Table 1, this second stage heating is a combination of two sets of combustion device fire combustion and two sets of small combustion. In such a heating method, there are six ways (
4C2=6) driving patterns (a) to (f) are possible. In the second stage of operation, as in the first stage, the combustion equipment operation pattern that minimizes the rate of increase in exhaust gas temperature is selected.
Select from figures (a) to (f).

すなわち燃焼装置の6通りの運転パターン(a)〜(f
)を燃焼装置の全装量を一定とした上で適当な時間例え
ば2分間毎に変更してすべて実施し、各運転パターンに
おける排ガス温度の上昇率を見い出す。第1段階と同じ
く選択された燃焼装置の運転パターンに従って適当な時
間例えば20〜30分間炉を加熱する。
In other words, there are six operation patterns (a) to (f) of the combustion device.
) are all carried out by keeping the total charge of the combustion device constant and changing it for an appropriate period of time, for example, every two minutes, to find the rate of increase in exhaust gas temperature in each operation pattern. As in the first stage, the furnace is heated for a suitable period of time, for example 20 to 30 minutes, according to the combustion device operating pattern selected.

最後に第3段階の運転に切換える。この第3段階の加熱
は第1表から明らかなように、燃焼装置火燃焼3組、小
燃焼1組の組合せである。このようン(加熱方式におい
ては第5図に示されるように4通り(4C3=4)の運
転パターン(a) 〜(d)が考えられる。第3段階の
運転においても第1段階および第2段階と同様排ガス温
度の上昇率を最低にする燃焼装置の運転パターンを第5
図(a)〜(d)から選択する。
Finally, switch to the third stage of operation. As is clear from Table 1, this third stage heating is a combination of three sets of combustion device fire combustion and one set of small combustion. In this heating method, four (4C3=4) operation patterns (a) to (d) are possible as shown in Fig. 5. In the third stage of operation, the first and second As in the fifth stage, the combustion equipment operation pattern that minimizes the rate of increase in exhaust gas temperature is
Select from figures (a) to (d).

すなわち燃焼装置の4通りの運転パターン(a)〜(d
)を燃焼装置の全装量を一定とした上で適当な時間例え
ば2分間毎に変更してすべて実施し、各運転パターンに
おける排ガス温度の上昇率を見い出す。第1段階および
第2段階と同じく選択された燃焼装置の運転パターンに
従って適当な時間例えば20〜30分間炉を加熱する。
In other words, there are four operating patterns (a) to (d) of the combustion device.
) are all carried out by keeping the total charge of the combustion device constant and changing it for an appropriate period of time, for example, every two minutes, to find the rate of increase in exhaust gas temperature in each operation pattern. As in the first and second stages, the furnace is heated for a suitable period of time, for example 20 to 30 minutes, according to the selected operating pattern of the combustion equipment.

第3段階の最適質量燃焼後は排ガス温度設定値制御に切
換え、排ガス温度制御期間が経過した後ば湯温制御をお
こなう。
After the optimum mass combustion in the third stage, the control is switched to exhaust gas temperature set value control, and after the exhaust gas temperature control period has elapsed, hot water temperature control is performed.

第6図は、本発明の他の実施例に従うアルミニウム溶解
炉の加熱制御方法の時間一温度ダイヤグラムを示す。
FIG. 6 shows a time-temperature diagram of a heating control method for an aluminum melting furnace according to another embodiment of the present invention.

溶解炉運転開始から、時間−は、低燃焼で加熱を行い、
時間T0 経過後に質量を増加させ、時間(T1+T2
)のあいだ質量を一定とする。この増加直後に上−に詳
述した選択工程に従い最適の運転パターンで運転を行い
、時間T1経過後に再度選択工程に従い選択した最適パ
ターンでの燃焼工程を行う。これらの時間T2経過後、
本発明に従う2段階目の質量の増加を行い、選択工程、
これによる最適運転パターンでの燃焼工程の繰り返しを
質量の増加初期と時間T3経過後に行う。従って時間(
T3+T4)経過後、すなわち排ガスが湯温設定値近傍
の所定値に近ずくと本発明に従う加熱制御を終了し、排
ガス温度目標値を一定とした急激加熱を行う。排ガス温
度が目標設定値に到達するとバーナーをオン・オフ制御
してこの設定値に保持する。更に被溶解材湯温か設定値
に到達すると(時間T5経過後)湯温をこの設定値に保
持するようバーナーをオン・オフ制御し、完全な熔解を
図る。
From the start of the melting furnace operation, heating is performed at low combustion rate for a period of time.
After the time T0 has elapsed, the mass is increased and the time (T1+T2
), the mass is kept constant. Immediately after this increase, operation is performed in the optimum operating pattern according to the selection process detailed above, and after time T1 has elapsed, a combustion process is performed again in the optimum pattern selected according to the selection process. After these times T2 have elapsed,
Performing a second stage mass increase according to the present invention, a selection step,
The combustion process in this optimum operation pattern is repeated at the beginning of the increase in mass and after the elapse of time T3. Therefore time (
After T3+T4), that is, when the exhaust gas approaches a predetermined value near the hot water temperature set value, the heating control according to the present invention is terminated, and rapid heating is performed with the exhaust gas temperature target value constant. When the exhaust gas temperature reaches the target set value, the burner is controlled on and off to maintain this set value. Furthermore, when the temperature of the material to be melted reaches the set value (after time T5 has elapsed), the burner is controlled on and off to maintain the water temperature at this set value to ensure complete melting.

以上説明したとおり本発明による溶解炉の制御加熱方法
に従うと、排ガス損失及びアルミニウム除材溶解初期の
酸化ロスを低減し、且つ高位の溶解能率を維持すること
が可能である。
As explained above, by following the controlled heating method for a melting furnace according to the present invention, it is possible to reduce exhaust gas loss and oxidation loss at the initial stage of aluminum removal and melting, and to maintain a high level of melting efficiency.

なお本発明をアルミニウム溶解炉に通用した場合につい
て説明したが、バーナーを数本使用する溶解炉(鉄、ガ
ラス等用)、焼却炉にも適用することができるというこ
とは明らかである。
Although the present invention has been described for the case where it is applied to an aluminum melting furnace, it is clear that it can also be applied to a melting furnace (for iron, glass, etc.) using several burners and an incinerator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の加熱方法による熔解炉温度とバーナー
質量を示したグラフ、 第2図は溶解炉の概略図、 第3図は第1段階の燃焼装置の運転パターンを示した図
、 第4図は第2段階の燃焼装置の運転パターンを示した図
、 第5図は第3段階の燃焼装置の運転パターンを示した図
、 第6図は本発明の1実施例に従う溶解炉の加熱制御の時
間一温度ダイヤグラムを示す。 (主な参照番号) 1〜817.バーナー、 901.材料装入扉、 10、、、、、溶解炉煙道、。 11.、、、、熱電対、 12、、、、、制御装置、 出願人 住友軽金属工業株式会社 代理人 弁理士 新居 止音 第1図 第2図 第3図 第4図 (a)     (b) (c)(d) (e)            (f)第 6 口 時間
Figure 1 is a graph showing the melting furnace temperature and burner mass according to the conventional heating method, Figure 2 is a schematic diagram of the melting furnace, Figure 3 is a diagram showing the operation pattern of the first stage combustion equipment, FIG. 4 is a diagram showing the operation pattern of the second stage combustion device, FIG. 5 is a diagram showing the operation pattern of the third stage combustion device, and FIG. 6 is a diagram showing the heating of the melting furnace according to one embodiment of the present invention. Figure 3 shows a time-temperature diagram of the control. (Main reference numbers) 1-817. Burner, 901. Material charging door, 10,... Melting furnace flue. 11. ,,,,Thermocouple, 12,,,,,Control device, Applicant: Sumitomo Light Metal Industries Co., Ltd. Agent Patent attorney: Arai Noise stoppage Figure 1 Figure 2 Figure 3 Figure 4 (a) (b) (c ) (d) (e) (f) 6th mouth time

Claims (1)

【特許請求の範囲】 (1)複数の燃焼装置を備えた溶解炉等の加熱を制御す
る方法であって、前記燃焼装置の全装置を少なくとも2
段階以上に分けて段階的に増加させ、各々の段階の燃焼
において、前記燃焼装置の全装置が一定の状態で燃焼排
ガス温度の上昇率を最低にする燃焼を与える前記燃焼装
置の運転パターンを選択し、この選択された運転パター
ンに従って燃焼装置を所定時間燃焼させることを特徴と
する溶解炉等の加熱制御方法。 (2、特許請求の範囲第1項記載の溶解炉等の加熱制御
方法であって、前記運転 ターンの選択工程は、燃焼装
置の運転パターンを所定時間毎に変更し、各運転パター
ンの開始時と終了時における排ガス温度の差を求め、求
めた排ガス温度の差を演算し、それによって、排ガス温
度の上昇率を求めることによりおこなわれることを特徴
とする溶解炉等の加熱制御方法。 (3)特許請求の範囲第1項記載の溶解炉等の加熱制御
方法であって、前記した燃焼装置の全装置を段階的に増
加させることを排ガス温度が所定温度近傍になるまで行
うことを特徴とする溶解炉等の加熱制御方法。 (4)特許請求の範囲第3項記載の溶解炉等の加熱制御
方法であって、前記所定温度は被溶解利料の湯温目標値
であることを特徴とする溶解炉等の加熱制御方法。 (5)特許請求の範囲第1項記載の溶解炉等の加熱制御
方法であって、前記燃焼装置の全装置を段階的に増加さ
せる任意の段階内において、前記運転パターンの選択工
程及び選択された運転パターンに従う燃焼工程を繰り返
して行うことを特徴とする溶解炉等の加熱制御方法。
[Scope of Claims] (1) A method for controlling heating of a melting furnace, etc. equipped with a plurality of combustion devices, wherein all of the combustion devices are
Selecting an operation pattern of the combustion device that provides combustion that minimizes the rate of increase in combustion exhaust gas temperature with all devices in the combustion device being kept constant during each stage of combustion. A heating control method for a melting furnace, etc., characterized in that the combustion device is caused to burn for a predetermined period of time according to the selected operation pattern. (2. The heating control method for a melting furnace, etc. as set forth in claim 1, wherein the operation turn selection step changes the operation pattern of the combustion device at predetermined time intervals, and at the start of each operation pattern. A heating control method for a melting furnace, etc., characterized in that it is carried out by determining the difference in exhaust gas temperature between and at the end, calculating the difference in the determined exhaust gas temperature, and thereby determining the rate of increase in exhaust gas temperature. (3 ) A heating control method for a melting furnace, etc., as set forth in claim 1, characterized in that all of the combustion devices described above are increased in stages until the exhaust gas temperature approaches a predetermined temperature. (4) A heating control method for a melting furnace, etc. according to claim 3, characterized in that the predetermined temperature is a target temperature of hot water for melting interest. (5) A heating control method for a melting furnace, etc. according to claim 1, wherein in any step of increasing the total number of the combustion devices in stages. A heating control method for a melting furnace, etc., characterized in that the operation pattern selection step and the combustion step according to the selected operation pattern are repeatedly performed.
JP10089283A 1983-06-08 1983-06-08 Method of controlling heating of melting furnace, etc. Pending JPS59229175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10089283A JPS59229175A (en) 1983-06-08 1983-06-08 Method of controlling heating of melting furnace, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10089283A JPS59229175A (en) 1983-06-08 1983-06-08 Method of controlling heating of melting furnace, etc.

Publications (1)

Publication Number Publication Date
JPS59229175A true JPS59229175A (en) 1984-12-22

Family

ID=14285982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10089283A Pending JPS59229175A (en) 1983-06-08 1983-06-08 Method of controlling heating of melting furnace, etc.

Country Status (1)

Country Link
JP (1) JPS59229175A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832732A1 (en) * 2001-11-29 2003-05-30 Air Liquide Aluminum melting process controlled as a function of the formation of aluminum oxides, deduced by monitoring the variations in carbon monoxide concentration and the temperature of the fumes leaving the furnace
EP2098603A1 (en) * 2008-03-06 2009-09-09 Linde AG Method for melting of aluminium
JP2010019474A (en) * 2008-07-09 2010-01-28 Osaka Gas Co Ltd Burner combustion type furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2832732A1 (en) * 2001-11-29 2003-05-30 Air Liquide Aluminum melting process controlled as a function of the formation of aluminum oxides, deduced by monitoring the variations in carbon monoxide concentration and the temperature of the fumes leaving the furnace
WO2003056044A1 (en) * 2001-11-29 2003-07-10 L'air Liquide, Societe Anonyme A Directoire Et Co Nseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Aluminium melting method using analysis of fumes coming from the furnace
EP2098603A1 (en) * 2008-03-06 2009-09-09 Linde AG Method for melting of aluminium
JP2010019474A (en) * 2008-07-09 2010-01-28 Osaka Gas Co Ltd Burner combustion type furnace

Similar Documents

Publication Publication Date Title
JPS59229175A (en) Method of controlling heating of melting furnace, etc.
JPS63282484A (en) Non-ferrous metal melting furnace
JPS59229174A (en) Method of controlling heating of melting furnace, etc.
US2746740A (en) Cycle annealing furnace
US2163510A (en) Temperature regulating means for
JP2850229B2 (en) Firing furnace
JPS59229176A (en) Method of controlling heating of melting furnace, etc.
JPS61110812A (en) Burning method of combustion furnace
US2176270A (en) Open hearth furnace
SU1127903A1 (en) High-temperature air-heater for blast furnace
JPS591926A (en) Method of controlling purge of boiler
SU601317A1 (en) Pusher-type electric furnace
Baranov Intensification of the Thermal Operation of Open Hearth Furnace Regenerators
JPH08199231A (en) Operation of heating furnace
SU1090665A1 (en) Glass melting furnace
JP3029977B2 (en) Firing furnace
SU1302444A1 (en) Method of controlling electric conditions of electric-arc furnace
JP3747481B2 (en) Combustion control device in regenerative burner device
JPS5976807A (en) Controlling method of combustion in hot stove
SU1453376A1 (en) Arrangement for controlling the temperature duty of induction furnace
JPS5819148Y2 (en) heat treatment furnace
JPH11166791A (en) Sintering furnace
JPS58210120A (en) Method for controlling combustion in heating furnace
JPS5832123Y2 (en) Rotary hearth type Matsufuru type continuous heat treatment furnace
SU1397683A1 (en) Continuous furnace for heating blanks