JPS59228612A - Polarizing prism - Google Patents
Polarizing prismInfo
- Publication number
- JPS59228612A JPS59228612A JP10403483A JP10403483A JPS59228612A JP S59228612 A JPS59228612 A JP S59228612A JP 10403483 A JP10403483 A JP 10403483A JP 10403483 A JP10403483 A JP 10403483A JP S59228612 A JPS59228612 A JP S59228612A
- Authority
- JP
- Japan
- Prior art keywords
- triangular prism
- index lens
- distributed index
- cylindrical type
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/283—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、偏光プリズムの改良に関し、更に詳しくは複
屈折材料からなる三角プリズムとガラスの如き等方性透
明材料からなる三角プリズムとを接着一体化した構造の
偏光プリズムに関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in polarizing prisms, and more specifically to a polarizing prism having a structure in which a triangular prism made of a birefringent material and a triangular prism made of an isotropic transparent material such as glass are bonded and integrated. It is related to.
例えば、光通信システムにおいては、送信側の装@(半
導体し7ザ等)が受信側からの反射光による干渉を受け
ないようにするため、光アイソレータが組込まれる。こ
の光アイソレータは、一方向のみに光を伝送し、それと
は逆の方向には伝送しないような非可逆性を有する二端
子素子であり、ファラデー回転子の両端にそれぞれ偏光
プリズムを配した構成が一般的である。For example, in an optical communication system, an optical isolator is incorporated in order to prevent equipment (semiconductor, etc.) on the transmitting side from being interfered with by reflected light from the receiving side. This optical isolator is a two-terminal element with irreversibility that transmits light only in one direction and not in the opposite direction, and has a configuration in which polarizing prisms are placed at each end of a Faraday rotator. Common.
ここで用いられる偏光プリズムは、複屈折材料の光軸を
ある一定方向とした三角プリズム2個を光学的に接着し
、平面偏光を得るよう構成されている。光通信システム
の光アイソレータに用いられる偏光プリズムとしては、
極めて高性能のものが要求され、そのため、複屈折材料
としては、一般には加工性が非常に悪い天然の方解石結
晶(カルサイト)が用いられる。そのため、例えば1個
当り数十万円というように非常に高価なものとなり、2
個の偏光プリズムを必要とする光アイソレータは半導体
レーザーよりも遥かに高価なものとなってしまい、光通
信システムを様々な分野で広く発展させていくうえで非
常に大きな問題であった。The polarizing prism used here is configured to obtain plane polarized light by optically bonding two triangular prisms with the optical axis of a birefringent material in a certain direction. Polarizing prisms used in optical isolators for optical communication systems include:
Extremely high performance is required, and for this reason natural calcite crystals (calcite), which is generally very difficult to work with, are used as the birefringent material. Therefore, they are extremely expensive, for example several hundred thousand yen per piece, and
Optical isolators, which require individual polarizing prisms, are much more expensive than semiconductor lasers, and this has been a huge problem in the widespread development of optical communication systems in various fields.
本発明の目的は、上記のような従来技術の欠点を解消で
き、歩留りがよく、製作容易で大幅なコストダウンを図
ることができるような偏光プリズムを提供することにあ
る。SUMMARY OF THE INVENTION An object of the present invention is to provide a polarizing prism that can eliminate the drawbacks of the prior art as described above, has a high yield, is easy to manufacture, and can significantly reduce costs.
本発明は、最近の光通信技術の発展に伴い、レーザー光
の如き一定波長の光源がしばしば用いられること、また
、偏光作用は三角プリズム同士の接合面で生じることに
着目し、偏光プリズムのうち一方を他の材料で置換えう
ろことを知得し、なされたものである。即ち本発明は、
基本的には複屈折材料からなる三角プリズムと円筒型の
分布屈折率レンズとを接着一体化した構成のものである
。The present invention focuses on the fact that with the recent development of optical communication technology, a light source with a constant wavelength such as a laser beam is often used, and that the polarization effect occurs at the joint surfaces of triangular prisms. This was done after learning that one side of the scale could be replaced with another material. That is, the present invention
Basically, it has a structure in which a triangular prism made of a birefringent material and a cylindrical distributed index lens are bonded together.
以下、図面に基づき本発明について更に詳しく説明する
。第1図は、本発明に係る偏光プリズムの一実施例を示
す説明図であり、グラン−トンプソン型プリズムに適用
した場合の一例である。このタイプのプリズムでは異常
光線が利用される。即ち、この実施例で示す偏光プリズ
ムは、複)m折林料からなる三角プリズム1に、該三角
プリズム1の斜面に合致する傾斜端面を有する円筒型の
分布屈折率レンズ2を接着剤3にて接着一体化してなる
。この場合、三角プリズム1は直角プリズムであり、そ
の一つの角度は約20度となっている。複屈折材料とし
ては、方解石結晶(カルサイト)や金紅石結晶〈ルチー
ル)等各種のものが使用できる。円筒型の分布屈折率レ
ンズ2は、円筒軸から放射方向に屈折率勾配を有するも
ので、それ故、円筒軸方向に入射する光の光線軌跡を変
化させることができるものである。Hereinafter, the present invention will be explained in more detail based on the drawings. FIG. 1 is an explanatory diagram showing an embodiment of a polarizing prism according to the present invention, and is an example of a case where the polarizing prism is applied to a Glan-Thompson type prism. This type of prism utilizes extraordinary rays. That is, the polarizing prism shown in this embodiment includes a triangular prism 1 made of polymorphic material, and a cylindrical distributed index lens 2 having an inclined end surface that matches the slope of the triangular prism 1, attached to an adhesive 3. It is integrated with adhesive. In this case, the triangular prism 1 is a right-angled prism, and one angle thereof is about 20 degrees. As the birefringent material, various materials such as calcite crystal (calcite) and rutile crystal (rutile) can be used. The cylindrical distributed index lens 2 has a refractive index gradient in the radial direction from the cylinder axis, and is therefore capable of changing the ray trajectory of light incident in the cylinder axis direction.
さて、第2図は、光が複屈折材料からなる三角プリズム
1に入射した場合を示している。三角プリズム1に入射
した光線は、該三角プリズム1内を直進し、三角プリズ
ム1と接着剤3との境界面で常光線Oと異常光線eに分
離する。Now, FIG. 2 shows the case where light is incident on the triangular prism 1 made of a birefringent material. A ray of light incident on the triangular prism 1 travels straight through the triangular prism 1 and is separated into an ordinary ray O and an extraordinary ray e at the interface between the triangular prism 1 and the adhesive 3.
接着剤3の屈折率は、常光線Oのそれより小さく、異常
光線eのそれより大きく選定される。The refractive index of the adhesive 3 is selected to be smaller than that of the ordinary ray O and larger than that of the extraordinary ray e.
したがって、異常光線eは接着剤3の層を通過するが、
常光線0は入射角が臨界角を超えるので前記境界面で全
反射されるため、両光線に分離できるのである。円筒型
の分布屈折率レンズ2での異常光線eに対する屈折率は
、円筒軸から放射方向の距離によって異なるが、円筒軸
に対して傾いて入射したとしても、光線軌跡が曲げられ
、出射光を入射光と平行な状態で円筒型の分布屈折率レ
ンズ2の端面から出射させることができる。Therefore, the extraordinary ray e passes through the layer of adhesive 3, but
Since the incident angle of the ordinary ray 0 exceeds the critical angle, it is totally reflected at the boundary surface, so that it can be separated into both rays. The refractive index for the extraordinary ray e in the cylindrical distributed index lens 2 varies depending on the distance in the radial direction from the cylinder axis, but even if the ray enters at an angle with respect to the cylinder axis, the trajectory of the ray will be bent and the outgoing light will be The light can be emitted from the end face of the cylindrical distributed index lens 2 in a state parallel to the incident light.
常光線を利用しようとする場合には、例えば第3図に示
すようなロツション型プリズムと1−ればよい。この場
合も三角プリズム1は複屈折材料からなり、他方の部材
は円筒型の分布屈折率レンズ2からなる。三角プリズム
1における接合面の角度と結晶方位は、ロツション・プ
リズムと同様にする。この場合、三角プリズム1に入る
入射光と円筒型の分布屈折率レンズ2から出る常光線0
とを平行となしうる。ここで注目すべきは、従来のロツ
ション・プリズムでは、光軸に対して傾斜して出射する
異常光線eも、光軸と平行に出射される点である。つま
り、異常光線eも円筒型の分布屈折率レンズ2によって
その光線軌跡が曲げられ、それ故、端面において光軸と
平行となるように出射するからである。つまり、本実施
例では、常光線0と異常光線eとを分離し、かつ両者と
も入射光に対して平行に出射させることができるので、
両者とも利用したい場合には特に好適な装置となる。If ordinary rays are to be used, a Rotchon prism as shown in FIG. 3 may be used. In this case as well, the triangular prism 1 is made of a birefringent material, and the other member is made of a cylindrical distributed index lens 2. The angle and crystal orientation of the joint surfaces in the triangular prism 1 are the same as in the Rothon prism. In this case, the incident light entering the triangular prism 1 and the ordinary ray 0 exiting from the cylindrical distributed index lens 2
can be considered parallel. What should be noted here is that in the conventional Rotchon prism, the extraordinary ray e, which is emitted at an angle to the optical axis, is also emitted parallel to the optical axis. That is, the extraordinary ray e also has its ray trajectory bent by the cylindrical distributed index lens 2, and therefore exits parallel to the optical axis at the end face. In other words, in this embodiment, the ordinary ray 0 and the extraordinary ray e can be separated and both can be emitted parallel to the incident light.
This is a particularly suitable device if you want to use both.
なお、本発明に係る偏光プリズムは、前記光アイソレー
タのほか、光スィッチ、光サーキュレータなど特にレー
ザー光を利用する各種光学装置に広く適用しうるちので
ある。The polarizing prism according to the present invention can be widely applied to various optical devices that utilize laser light, such as optical switches and optical circulators, in addition to the optical isolators described above.
本発明は上記のように構成した偏光プリズムであるから
、一方の部材である円筒型の分布屈折率レンズはガラス
などの透明材料であるので加工性が良く、端面の無反射
コートが行ない易いし、高価な加工性の悪い複屈折材料
の三角プリズムは唯一個のみで済むため、歩留りが向上
し、製作容易で大幅なコストダウンを図ることができる
し、出射光と入射光とが平行になっているので、従来の
偏光プリズムが用いられていたところにそのまま設置で
き、従って従来の光学システムをそのまま利用できるな
ど、数々のすぐれた効果を奏しうるちのである。Since the present invention is a polarizing prism configured as described above, one member, the cylindrical distributed index lens, is made of a transparent material such as glass, so it is easy to process, and the end face can be easily coated with anti-reflection coating. Since only one triangular prism is required, which is made of expensive and difficult-to-process birefringent material, the yield is improved, manufacturing is easy, and costs can be significantly reduced.The output light and the input light are parallel to each other. Because of this, it can be installed in the same place where conventional polarizing prisms are used, and therefore, the conventional optical system can be used as is, providing many excellent effects.
第1図は本発明に係る偏光プリズムの一実施例を示す説
明図、第2図はその動作を示す説明図、第3図は他の実
施例を示′を説明図である。
1・・・三角プリズム、2・・・円筒型の分布屈折率レ
ンズ、3・・・接着剤。
特許出願人 富士電気化学株式会社代 理 人
尾 股 行 離開
茂 兄 積同 荒
木 友之助第1図
第2図
を
第3図FIG. 1 is an explanatory diagram showing one embodiment of a polarizing prism according to the present invention, FIG. 2 is an explanatory diagram showing its operation, and FIG. 3 is an explanatory diagram showing another embodiment. 1... Triangular prism, 2... Cylindrical distributed index lens, 3... Adhesive. Patent applicant: Fuji Electrochemical Co., Ltd. Agent: Yuki Omata
Shigeru's brother Sedo Ara
Tomonosuke Ki Figure 1 Figure 2 Figure 3
Claims (1)
ムの斜面に合致する傾斜端面を有する円筒型の分布屈折
率レンズを接着し、偏光した出射光を光軸と平行に出射
させるようにしたことを特徴とする偏光プリズム。1. A cylindrical distributed index lens having an inclined end surface that matches the slope of the triangular prism is adhered to a triangular prism made of a birefringent material, so that polarized output light is emitted parallel to the optical axis. A polarizing prism featuring
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10403483A JPS59228612A (en) | 1983-06-10 | 1983-06-10 | Polarizing prism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10403483A JPS59228612A (en) | 1983-06-10 | 1983-06-10 | Polarizing prism |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59228612A true JPS59228612A (en) | 1984-12-22 |
JPS6340287B2 JPS6340287B2 (en) | 1988-08-10 |
Family
ID=14369942
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10403483A Granted JPS59228612A (en) | 1983-06-10 | 1983-06-10 | Polarizing prism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59228612A (en) |
-
1983
- 1983-06-10 JP JP10403483A patent/JPS59228612A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6340287B2 (en) | 1988-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2710451B2 (en) | Polarization independent optical isolator | |
JP2795295B2 (en) | Spherical optical isolator | |
US4375910A (en) | Optical isolator | |
US7426325B2 (en) | Compact, high power, fiber pigtailed faraday isolators | |
US7081996B2 (en) | Isolated polarization beam splitter and combiner | |
EP1176451A2 (en) | Isolated polarization beam splitter and combiner | |
JPH02239219A (en) | Lighting system for liquid crystal display system | |
JPH0954283A (en) | Polarization independent type optical isolator device | |
JP2001504947A (en) | Optical isolator | |
US20040218845A1 (en) | Depolarizer | |
US5739951A (en) | Polarization independent optical device | |
JP2572627B2 (en) | Optical isolator and optical circulator | |
JPS59228612A (en) | Polarizing prism | |
JPS59228610A (en) | Polarizing prism | |
JP2000180789A (en) | Optical isolator | |
JPS59228611A (en) | Polarizing prism | |
JPH02211404A (en) | Polarized light eliminator | |
JPH0634916A (en) | Optical isolator | |
RU2082190C1 (en) | Optical insulator | |
JPH04140709A (en) | Optical isolator | |
JPH041718A (en) | Optical collimator and optical coupling parts | |
JPH08334616A (en) | Polarizing prism | |
JPH06265820A (en) | Optical passive component | |
JPS63293519A (en) | Optical isolator | |
JPH0194309A (en) | Laser diode module incorporating isolator |