JPS59228342A - Multiple-cavity klystron - Google Patents

Multiple-cavity klystron

Info

Publication number
JPS59228342A
JPS59228342A JP10190883A JP10190883A JPS59228342A JP S59228342 A JPS59228342 A JP S59228342A JP 10190883 A JP10190883 A JP 10190883A JP 10190883 A JP10190883 A JP 10190883A JP S59228342 A JPS59228342 A JP S59228342A
Authority
JP
Japan
Prior art keywords
section
cavity
electron beam
input
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10190883A
Other languages
Japanese (ja)
Other versions
JPH0216533B2 (en
Inventor
Hajime Fukui
福井 元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10190883A priority Critical patent/JPS59228342A/en
Publication of JPS59228342A publication Critical patent/JPS59228342A/en
Publication of JPH0216533B2 publication Critical patent/JPH0216533B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J25/00Transit-time tubes, e.g. klystrons, travelling-wave tubes, magnetrons
    • H01J25/02Tubes with electron stream modulated in velocity or density in a modulator zone and thereafter giving up energy in an inducing zone, the zones being associated with one or more resonators
    • H01J25/10Klystrons, i.e. tubes having two or more resonators, without reflection of the electron stream, and in which the stream is modulated mainly by velocity in the zone of the input resonator

Landscapes

  • Microwave Tubes (AREA)

Abstract

PURPOSE:To make a permanent magnet focusing device lightweight and facilitate handling and reduce production cost by comprising a part or the whole of at least either of cavity walls of the input and output resonant cavities in resonant cavities with a magnetic body. CONSTITUTION:An electron gun section 1 that generates an electron beam, a high frequency circuit section 2 that performs the interaction between the electron beam generated from this electron gun section 1 and high frequency power, and a collector section 3 that catches the electron beam for which the interaction between it and the high frequency power is completed, and a permanent magnet 4 that forms a magnetic field which focuses the electron beam are provided. The high frequency circuit section 2 in such a multiple cavity klystron is comprised with a number of resonant cavities 10 and a part or the whole of one or both cavity walls of the input and output resonant cavities in the resonant cavities is comprised with a magnetic body. For example, the opposed section of an input section magnetic pole piece 6 for an output section magnetic pole piece 7 is comprised with the cavity wall of the input resonant cavity.

Description

【発明の詳細な説明】 本発明は、多空胴クライストロンの改良に関する0 周知の様に、多空胴タライストロンは電子ビームを射出
する電子銃部と、この電子銃部から射出された電子ビー
ムと高周波電力との相互作用を行なわせしめる高周波回
路部と、高周波回路部において高周波電力との相互作用
を終えた電子ビームを捕促し、熱エネルギーに変換する
コレクタ部と電子銃部から射出された電子ビームを集束
し、高周波回路部中を電子ビームを通過させるための磁
界を発生する集束装置などからなる。これらのうち、高
周波回路部は、通常4〜6個の共振空胴と共振空胴の共
振周波数可変のためのチー−す機構と入出力回路との結
合部などからなシ、入力回路との結合は最も電子銃部側
の共振空胴である入力空胴においてなされ、出力回路と
の結合は最もコレクタ側に位置する共振空胴である出力
空胴においてなされる。また、集束装置は、電磁石ある
いは永久磁石と、高周波回路中へ磁界を漏えいさせるた
めの高周波回路部の両端に置かれた入力部及び出力部の
磁極片などからなる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvement of a multi-cavity klystron. As is well known, a multi-cavity talistron includes an electron gun section that emits an electron beam, and an electron beam emitted from the electron gun section. and a collector section that captures the electron beam that has finished interacting with the radio frequency power in the radio frequency circuit section and converts it into thermal energy, and the electrons emitted from the electron gun section. It consists of a focusing device that generates a magnetic field to focus the beam and pass the electron beam through the high-frequency circuit section. Among these, the high frequency circuit section usually consists of 4 to 6 resonant cavities, a cheese mechanism for varying the resonant frequency of the resonant cavities, and a coupling section between the input and output circuits. Coupling is performed in the input cavity, which is the resonant cavity closest to the electron gun section, and coupling with the output circuit is performed in the output cavity, which is the resonant cavity located closest to the collector. Further, the focusing device is composed of an electromagnet or a permanent magnet, and magnetic pole pieces of an input section and an output section placed at both ends of the high frequency circuit section for leaking a magnetic field into the high frequency circuit.

出力が3 kW程度以下の比較的出力の小さな多空胴タ
ライストロンではクライストロン全体の小型化及び操作
の容易さ等の理由で電子ビームの集束は、比較的弱い磁
界で可能であるので、永久磁石を使用した集束装置が用
いられている。
In a multi-cavity talistron with a relatively low output of about 3 kW or less, the electron beam can be focused with a relatively weak magnetic field due to the miniaturization of the entire klystron and ease of operation, so permanent magnets are used. A focusing device is used.

第1図に従来の永久磁石集束装置を使用した多空胴タラ
イストロンの一例を示す。第1図において、1は電子ビ
ームを発生させる電子銃部、2は高周波回路部、3は電
子ビームを捕促し、熱エネルギに変換するコレクタ部、
4は永久磁石、5はヨーク、6は入力部磁極片、7は出
力部磁極片、8は入力回路、9は出力回路、10は高周
波回路を構成する共振空胴、11は電子ビーム通路のド
リフト管を示す。第1図のでは、入力回路8として同軸
線路、出力回路9として導波管の場合を示している。
FIG. 1 shows an example of a multi-cavity talistron using a conventional permanent magnet focusing device. In FIG. 1, 1 is an electron gun section that generates an electron beam, 2 is a high frequency circuit section, 3 is a collector section that captures the electron beam and converts it into thermal energy;
4 is a permanent magnet, 5 is a yoke, 6 is an input magnetic pole piece, 7 is an output magnetic pole piece, 8 is an input circuit, 9 is an output circuit, 10 is a resonant cavity constituting a high frequency circuit, and 11 is an electron beam path. Drift tube is shown. FIG. 1 shows a case where the input circuit 8 is a coaxial line and the output circuit 9 is a waveguide.

さて第1図において、永久磁石4が作る磁界の強さは、
高周波回路中を通過する電子ビーム電流の大きさ、ドリ
フト管11中を通過する際の電子ビーム径、入力部磁極
片6と出力部磁極片7間の長さtg 、入力部磁極片6
と出力部磁極片7の対向面積Sg等によって決定される
。電子ビーム電流が大きい程、また電子ビーム径が小さ
い程磁界の強さは強いことが必要であり、それだけ永久
磁石4としては大きなものあるいは強磁界が得られる磁
性材料を使用したものが必要となる0磁極片6・7間の
距離tgが長くなれば、高周波回路中を電子ビームを通
過させるに必要な磁界を得るためには、永久磁石4の長
さtmは通常Agに比例して長いものが必要となる。と
ころが、入出力磁極片6゜7間の距離tgは、多空胴ク
ライストロンに要求されfc最高出力や得られる帯域幅
、また電子ビーム電圧・電流によって高周波回路部の長
さが決定されてしまうために必要以上に短くすることは
できない。
Now, in Figure 1, the strength of the magnetic field created by the permanent magnet 4 is
The magnitude of the electron beam current passing through the high frequency circuit, the diameter of the electron beam when passing through the drift tube 11, the length tg between the input magnetic pole piece 6 and the output magnetic pole piece 7, the input magnetic pole piece 6
It is determined by the opposing area Sg of the output magnetic pole piece 7, etc. The larger the electron beam current and the smaller the electron beam diameter, the stronger the magnetic field needs to be, so the permanent magnet 4 needs to be larger or made of a magnetic material that can produce a strong magnetic field. 0 If the distance tg between the magnetic pole pieces 6 and 7 becomes longer, the length tm of the permanent magnet 4 will normally be longer in proportion to Ag in order to obtain the magnetic field necessary to pass the electron beam through the high-frequency circuit. Is required. However, the distance tg between the input and output magnetic pole pieces 6°7 is required for a multi-cavity klystron, and the length of the high frequency circuit section is determined by the fc maximum output, the available bandwidth, and the electron beam voltage and current. cannot be made any shorter than necessary.

また、磁石断面積Smは、磁石4が発生する磁束を飽和
させずに通すだけの面積が必要である。
Further, the magnet cross-sectional area Sm needs to be large enough to pass the magnetic flux generated by the magnet 4 without saturating it.

かつ、入出力磁極片6.7間に有効に磁界分布を得るた
めには、ある程度の磁極片対向面積8gが必要であり、
通常sgが大きな程、磁石断面積Smも大きなものが必
要と19、磁石断面積も必要以上に小さくすることはで
きない。
In addition, in order to effectively obtain a magnetic field distribution between the input and output magnetic pole pieces 6.7, a certain amount of magnetic pole piece opposing area of 8 g is required,
Generally, the larger sg is, the larger the magnet cross-sectional area Sm is required19, and the magnet cross-sectional area cannot be made smaller than necessary.

この様に、多空胴クライストロンの永久磁石4の大きさ
は、電子ビーム集束に必要な磁界の強さと、高周波回路
部の長さと、永久磁石4の材料によつてほとんど決定さ
れてしまう。また上下の永久磁石を結ぶヨーク部5も永
久磁石4が大きくなればそれだけ犬き゛な磁束を通すこ
とが必要となるので大きな断面積のものが必要となる。
In this way, the size of the permanent magnet 4 of the multi-cavity klystron is determined mostly by the strength of the magnetic field necessary for focusing the electron beam, the length of the high frequency circuit section, and the material of the permanent magnet 4. Furthermore, the larger the permanent magnet 4 becomes, the larger the yoke portion 5 that connects the upper and lower permanent magnets is required to pass the magnetic flux, so it is necessary to have a large cross-sectional area.

このことから入出力部の磁極片6,7間の距離を高周波
回路部の形状を変更することなく、短くすることができ
れば永久磁石小屋化の鳴動な手段の一つとすることがで
きる。
Therefore, if the distance between the magnetic pole pieces 6 and 7 of the input/output section can be shortened without changing the shape of the high-frequency circuit section, it can be used as one of the effective means for creating a permanent magnet structure.

本発明は、上記の問題点を解決した多空胴タライストロ
ンを提供することである。
The present invention provides a multi-cavity talistron that solves the above problems.

第2図及び第3図に本発明を採用した多空胴クライスト
ロンの実施例を示す。第1図と同様に、1は電子銃部、
2は高周波回路部、3はコレクタ部、4は永久磁石、5
はヨーク、6は入力部磁極片、7は出力部磁極片、8は
入力回路、9は出力回路、10は共振空胴、11はドリ
フト管を示す0第2図において第1図と異なる点は、入
力部磁極片6の出力部磁極片7との対向部が入力共振空
胴の空胴壁となっていることである。また第3図におい
ては、出力部磁極片70対向部が出力共振空胴の空胴壁
を兼ねていることである。この結果第1図においては、
入力部磁極片6と出力部磁極片7間の間隙距離tgで6
つ几のが、第2図あるいは第3図においては入力部ある
いは出力部の共振空胴を構成している導体板の厚さΔt
gだけ短くな多間隙距離はtg−Δtgとなっている。
FIGS. 2 and 3 show an embodiment of a multi-cavity klystron employing the present invention. Similarly to FIG. 1, 1 is an electron gun section;
2 is a high frequency circuit section, 3 is a collector section, 4 is a permanent magnet, 5
is the yoke, 6 is the input pole piece, 7 is the output pole piece, 8 is the input circuit, 9 is the output circuit, 10 is the resonance cavity, and 11 is the drift tube. is that the portion of the input magnetic pole piece 6 facing the output magnetic pole piece 7 serves as a cavity wall of the input resonant cavity. Further, in FIG. 3, the opposing portion of the output magnetic pole piece 70 also serves as the cavity wall of the output resonant cavity. As a result, in Figure 1,
The gap distance tg between the input magnetic pole piece 6 and the output magnetic pole piece 7 is 6.
In Fig. 2 or 3, the thickness Δt of the conductor plate constituting the resonant cavity of the input section or the output section is
The multi-gap distance shorter by g is tg - Δtg.

5 GHz帯の5空胴を有する多空胴クライストロンの
例をあげれば、磁極片6,7間の距離tgは65聞程度
、また共振空胴を隔てる板厚及び入出力空胴の各磁極片
6,7との間の空胴壁の板厚Δtgは2.5m程度でお
り、本発明を採用すれば間隙、距離tg−Δtg=62
.5mとなり、4%程度の間隙距離の減少と゛なる。こ
のことは直接に永久磁石4の長さ加を4チ短かくしても
間隙間の高周波回路部2に同等の磁界を作り出すことを
可能とする。さらにそれだけでなく磁極片6,7間の間
隙長を短くすれば、それだけ他の部分への不必要な磁界
の漏洩が少なくなるために磁石4の断面積の減少及び磁
石4の長さを1m −11mと短かくすることを可能に
する。
To give an example of a multi-cavity klystron with 5 cavities in the 5 GHz band, the distance tg between the magnetic pole pieces 6 and 7 is about 65 mm, and the thickness of the plate separating the resonant cavity and each magnetic pole piece of the input and output cavities. The thickness Δtg of the cavity wall between 6 and 7 is about 2.5 m, and if the present invention is adopted, the gap, distance tg - Δtg = 62
.. 5m, which is a decrease in the gap distance of about 4%. This makes it possible to create the same magnetic field in the high frequency circuit section 2 in the gap even if the length of the permanent magnet 4 is shortened by 4 inches. Furthermore, if the gap length between the magnetic pole pieces 6 and 7 is shortened, the leakage of unnecessary magnetic fields to other parts will be reduced accordingly. -It makes it possible to make it as short as 11m.

さらに磁石4の発生する全磁束の減少が可能となること
は、ヨーク部5の断面積を小さくすることも可能となシ
この結果、永久磁石4とヨーク部5を合わせた軽量化は
第2図あるいは第3図のクライス)oン構造では10%
近い値が可能となる0また、さらに、第2図と第3図の
構造を合わせ入力共振壁用及び出力共振空胴の各々電子
銃1側及びコレクタ3側の空胴壁を入力部及び出力部の
磁極片で兼ねた形とすれば、磁極片間距離はtg−2Δ
tgとなり約8チの間隙長の減少となシこれは結果的に
永久磁石装置の20%程度の軽量化を可能とする。50
Hz帯5空胴クライストロンの場合の数値を例にあげ、
説明を行なったが、他の周波数帯の場合の多空胴クライ
ストロンでも当然同じ様な結果となることは言うまでも
ない0以上の様に、本発明を採用した多空胴クライスト
ロンでは永久磁石集束装置の大幅な軽量化力!可能とな
り1このことは、多空胴クライストロンの取り扱いの容
易さ、製造費用の低減をもたらすものでおる0 また、本発明を採用した多空胴クライストロンの範囲に
は、入力部あるいは出力部磁極片の表面にOu等のメッ
キを施したものも含まれることは言うまでもない0
Furthermore, since it is possible to reduce the total magnetic flux generated by the magnet 4, it is also possible to reduce the cross-sectional area of the yoke part 5.As a result, the combined weight of the permanent magnet 4 and the yoke part 5 can be reduced. 10% for on structure (Fig. or 3)
In addition, by combining the structures shown in FIGS. 2 and 3, the cavity walls on the electron gun 1 side and the collector 3 side of the input resonance wall and output resonance cavity are used as the input section and the output section, respectively. If the magnetic pole piece of the part doubles as the shape, the distance between the magnetic pole pieces is tg-2Δ
tg, and the gap length is reduced by about 8 inches, which ultimately makes it possible to reduce the weight of the permanent magnet device by about 20%. 50
For example, take the values for a Hz band 5-cavity klystron,
As explained above, it goes without saying that multi-cavity klystrons using other frequency bands will also produce similar results, and as with 0 or more, multi-cavity klystrons employing the present invention have a permanent magnet focusing device. Significant weight reduction! This makes the multi-cavity klystron easier to handle and reduces manufacturing costs.0 In addition, the range of multi-cavity klystrons employing the present invention includes a magnetic pole piece at the input or output section. Needless to say, this includes those whose surfaces are plated with Ou, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多空胴タライストロンの一例の構造を示
した断面図、第2図及び第3図は各々本発明を採用した
多空胴クライストロ・ンの構造を示す断面図である0 1・・・・・・電子銃部、2・・・・・・高周波回路部
、3・・・・・・コレクタ、4・・・・・・永久磁石、
5・・・・・・ヨーク、6−・・・・・入力部磁極片、
7・・・・・・出力部磁極片、8・・・・・・入力回路
、9・・・・・・出力回路、10・・・・・・共振窓8
同、11・・・・・・ドリフト管。
FIG. 1 is a cross-sectional view showing the structure of an example of a conventional multi-cavity klystron, and FIGS. 2 and 3 are cross-sectional views showing the structure of a multi-cavity klystron employing the present invention. 0 1...Electron gun section, 2...High frequency circuit section, 3...Collector, 4...Permanent magnet,
5...Yoke, 6-...Input section magnetic pole piece,
7...Output pole piece, 8...Input circuit, 9...Output circuit, 10...Resonance window 8
Same, 11... Drift tube.

Claims (1)

【特許請求の範囲】[Claims] 電子ビームを発生させる電子銃部と該電子銃部から発生
した電子ビームと高周波電力との相互作用を行わせしめ
る高周波回路部と、該高周波回路部で高周波電力との相
互作用を終えた電子ビームを捕促し、熱エネルギーに変
換するコレクタ部と、電子ビームを集束させるための磁
界をつくる永久磁石等からなる多空胴クライストロンに
おいて、前記高周波回路部は、複数個の共振空胴よりな
り、前記共振空胴のうち入力共振空胴および出力共振空
胴の少なくとも一方の共振空胴の空胴壁の一部または全
体が磁性体によりて作られていることを特徴とする多空
胴クライストロン。
An electron gun section that generates an electron beam, a high frequency circuit section that causes the electron beam generated from the electron gun section to interact with high frequency power, and an electron beam that has finished interacting with the high frequency power in the high frequency circuit section. In the multi-cavity klystron, which is composed of a collector section that captures and converts it into thermal energy, and a permanent magnet that creates a magnetic field for focusing the electron beam, the high-frequency circuit section is composed of a plurality of resonant cavities, and the high-frequency circuit section is composed of a plurality of resonant cavities, A multi-cavity klystron characterized in that a part or the entire cavity wall of at least one of an input resonant cavity and an output resonant cavity is made of a magnetic material.
JP10190883A 1983-06-08 1983-06-08 Multiple-cavity klystron Granted JPS59228342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10190883A JPS59228342A (en) 1983-06-08 1983-06-08 Multiple-cavity klystron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10190883A JPS59228342A (en) 1983-06-08 1983-06-08 Multiple-cavity klystron

Publications (2)

Publication Number Publication Date
JPS59228342A true JPS59228342A (en) 1984-12-21
JPH0216533B2 JPH0216533B2 (en) 1990-04-17

Family

ID=14313003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10190883A Granted JPS59228342A (en) 1983-06-08 1983-06-08 Multiple-cavity klystron

Country Status (1)

Country Link
JP (1) JPS59228342A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724281A2 (en) * 1995-01-28 1996-07-31 Samsung Electronics Co., Ltd. Klystron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724281A2 (en) * 1995-01-28 1996-07-31 Samsung Electronics Co., Ltd. Klystron
EP0724281A3 (en) * 1995-01-28 1998-09-02 Samsung Electronics Co., Ltd. Klystron

Also Published As

Publication number Publication date
JPH0216533B2 (en) 1990-04-17

Similar Documents

Publication Publication Date Title
US2725499A (en) High frequency amplifying device
US2410054A (en) Electron discharge apparatus
US4395655A (en) High power gyrotron (OSC) or gyrotron type amplifier using light weight focusing for millimeter wave tubes
US4558258A (en) Klystron unit
US3324339A (en) Periodic permanent magnet electron beam focusing arrangement for traveling-wave tubes having plural interaction cavities in bore of each annular magnet
US3958147A (en) Traveling-wave tube with improved periodic permanent magnet focusing arrangement integrated with coupled cavity slow-wave structure
US3450930A (en) Permanent magnet focused linear beam tube employing a compensating magnet structure between the main magnet and the beam collector
US2701321A (en) Adjustable magnetic focusing system for beam tubes
US3832596A (en) Magnetic structure for focusing of linear beams
US7315126B2 (en) Folded waveguide traveling wave tube having polepiece-cavity coupled-cavity circuit
US2966610A (en) Electron beam tube
US3896329A (en) Permanent magnet beam focus structure for linear beam tubes
JPS59228342A (en) Multiple-cavity klystron
US4414486A (en) Coupled cavity type traveling wave tube
JP3043120B2 (en) Magnetron magnetic circuit
US3989978A (en) Coupled cavity traveling-wave tube with oblong cavities for increased bandwidth
US3886397A (en) Hybrid slow wave circuit
JPS59114730A (en) Gyrotron oscillator of multibore cavity for reducing mode bycompetition
Harrold et al. Permanent magnets for microwave devices
RU78986U1 (en) MULTI-BEAM PACKAGED KLISTRON
JPH0222930Y2 (en)
JPS5847817B2 (en) microwave tube device
US3324337A (en) High frequency electron discharge device and focusing means therefor
JPS59119649A (en) Electron beam gyrotron apparatus
RU2068595C1 (en) Reflection oscillator