JPS59227422A - Preparation of traverse uniaxially stretched film - Google Patents

Preparation of traverse uniaxially stretched film

Info

Publication number
JPS59227422A
JPS59227422A JP58103479A JP10347983A JPS59227422A JP S59227422 A JPS59227422 A JP S59227422A JP 58103479 A JP58103479 A JP 58103479A JP 10347983 A JP10347983 A JP 10347983A JP S59227422 A JPS59227422 A JP S59227422A
Authority
JP
Japan
Prior art keywords
film
rolling
stretching
traverse
uniaxially stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58103479A
Other languages
Japanese (ja)
Other versions
JPH0414054B2 (en
Inventor
Katsuya Yazaki
矢崎 勝哉
Masato Kimura
正人 木村
Hoko Takahashi
高橋 奉孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP58103479A priority Critical patent/JPS59227422A/en
Publication of JPS59227422A publication Critical patent/JPS59227422A/en
Publication of JPH0414054B2 publication Critical patent/JPH0414054B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/18Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets by squeezing between surfaces, e.g. rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/08Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique transverse to the direction of feed

Abstract

PURPOSE:To improve traverse stretchability without losing the physical properties of a traverse uniaxially streched film, by stretching a thick film to a traverse axis direction after lightly rolling the same to a longitudinal axis direction in a solid phase state. CONSTITUTION:It is necessary that a thick film is subjected to rolling treatment to reduce and uniformize the thickness thereof and rolling magnification is set to a range of 1.1-2.5. If the rolling magnification is smaller than said range, rolling effect is hardly recognized and, contrarily, when larger than said range, the longitudinal tearing property of a film becomes remarkable. Therefore, it is necessary that the rolling magnification by a roll is set to 2.5 or less and, at the same time, traverse uniaxial stretching magnification is set to 4 or more. By preliminarily applying light rolling in a longitudinal direction as mentioned above, traverse uniaxial stretching treatment can be drastically stabilized and facilitated.

Description

【発明の詳細な説明】 本発明は横一軸延伸体の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a transversely uniaxially stretched body.

更に詳しくは、本発明は、熱可塑性樹脂からなる原フィ
ルムを縦軸方向に固相状態でロール圧延し、さらに該フ
ィルムを横軸方向に4倍以上延伸することを特徴とする
横一軸延伸体の製造方法に係り、フィルム延伸時の延伸
切れや延伸むらを発生させずに、均質で良好な横一軸延
伸フィルムまたは横一軸延伸割繊体を製造する方法に関
するものである。
More specifically, the present invention provides a transversely uniaxially stretched body, which is characterized in that an original film made of a thermoplastic resin is roll-rolled in a solid state in the vertical axis direction, and the film is further stretched four times or more in the horizontal axis direction. The present invention relates to a method for producing a homogeneous and good horizontally uniaxially stretched film or horizontally uniaxially stretched splitting material without causing stretch breakage or stretching unevenness during film stretching.

幅方向(横軸方向)に−軸延伸された長尺フィルムは、
易カット性を有し、粘着テープ等の商品に使用されてい
る。また、横一軸延伸体を、長さ方向(縦軸方向)に−
軸延伸された縦−軸延伸フィルムと貼り合せることによ
り、交叉配向性積層体として、あるいは、縦横に強化さ
れた包装用資材として使用されている。
A long film that is axially stretched in the width direction (horizontal direction) is
It is easy to cut and is used in products such as adhesive tapes. In addition, the horizontally uniaxially stretched body is -
It is used as a cross-oriented laminate or as a packaging material strengthened in the vertical and horizontal directions by laminating with an axially stretched longitudinally-axially stretched film.

一方、縦および横一軸延伸フィルムを各々延伸方向に割
繊した割繊フィルムも交叉積層することによって、一種
の不織布とも言うべき強化網状体が得られる。このよう
な網状体は、紙、アルミ箔などと貼り合せることによっ
て、他種の包装用資材の強化材として使用され、あるい
は、単体としては通気性を有する強化網状材料として使
用されている。
On the other hand, by cross-laminating split films obtained by splitting longitudinally and transversely uniaxially stretched films in the stretching direction, a reinforced network that can be called a type of nonwoven fabric can be obtained. Such a net-like material is used as a reinforcing material for other types of packaging materials by bonding it with paper, aluminum foil, etc., or it is used alone as a reinforced mesh material having air permeability.

従来から、上記のような横−軸延伸体を得る方法として
は、一般的には、原反フィルムの両耳端部を把持して、
その両把持部の間隔を機械的に徐々に拡大することによ
って延伸を行なうテンター法、あるいは、特開昭55−
85522号公報、特開昭55−128427号公報、
特開昭55−101424号公報等に記載されているよ
うに、一対のプーリー間にフィルムを導入し、末広がり
の延伸軸跡となるように延伸する方法およびその装置等
が提案されている。
Conventionally, the method for obtaining the transversely-axially stretched body as described above is generally to grasp both ends of the raw film,
The tenter method, in which stretching is carried out by gradually expanding the distance between the two gripping portions mechanically, or the JP-A-55-
No. 85522, Japanese Patent Application Laid-open No. 128427/1985,
As described in Japanese Unexamined Patent Publication No. 55-101424, etc., a method and an apparatus thereof have been proposed in which a film is introduced between a pair of pulleys and stretched so as to form a stretching axis trace that widens at the end.

しかるに、これらの従来の方法において、横一軸延伸を
行なう場合には、僅かな厚みむらによる未延伸部分の発
生、あるいは原反フィルムの僅かな不均一・部分等によ
る延伸時の延伸切れなどの破断が発生し易く、良好な延
伸処理を施すためには原反フィルムの成形条件および延
伸条件等に高い精度の制御管理が要求される。
However, in these conventional methods, when transverse uniaxial stretching is performed, unstretched portions may occur due to slight thickness unevenness, or breakage such as stretch breakage during stretching may occur due to slight unevenness or portions of the original film. This tends to occur, and in order to perform a good stretching process, highly accurate control and management of the forming conditions, stretching conditions, etc. of the original film is required.

例えば、特開昭52”47070号公報、特開昭54−
71173号公報、特開昭55−65522号公報等に
記載されているように、その条件設定および制御には厳
しい精度が要求されるのが現状である。
For example, JP-A-52-47070, JP-A-54-
As described in Japanese Patent Laid-Open No. 71173, Japanese Patent Laid-Open No. 55-65522, etc., the current situation is that strict precision is required for setting and controlling the conditions.

本発明は、このような現状に鑑み、種々検討した結果、
汎用の適宜の成形法によって得られた熱可塑性樹脂フィ
ルムの横一軸延伸を行なう際に、予め軽度の縦方向ロー
ル圧延処理を施すことによって、得られる横−軸延伸体
の物性を何ら損なうことなく、横延伸性を著しく改善し
得ることを見出し、本発明を完成するに至ったものであ
る。
In view of the current situation, the present invention was developed based on various studies.
When transversely uniaxially stretching a thermoplastic resin film obtained by a general-purpose appropriate forming method, it is possible to perform a slight longitudinal roll rolling treatment in advance without impairing the physical properties of the resulting transversely-axially stretched product. It was discovered that the lateral stretchability could be significantly improved, and the present invention was completed.

すなわち本発明は、熱可塑性樹脂からなる原フィルムを
、圧延倍率 1.1から2.5の範囲において縦軸方向
に固相状態でロール圧延し、更に該フィルムを横軸方向
に4倍以上延伸することを特徴とする構−軸延伸体の製
造方法に係るものである。
That is, in the present invention, an original film made of a thermoplastic resin is roll-rolled in a solid state in the vertical axis direction at a rolling ratio of 1.1 to 2.5, and the film is further stretched 4 times or more in the horizontal axis direction. The present invention relates to a method for producing a structurally axially stretched body, characterized in that:

上記固相状態の圧延とは、熱可塑性樹脂の融点または軟
化点よりも低い温度領域における圧延を意味し、その圧
延温度は、熱可塑性樹脂の融点よりも5°C以」−低く
、かつ60°C以」二低くない範囲であることが好まし
い。
The above-mentioned rolling in a solid state means rolling in a temperature range lower than the melting point or softening point of the thermoplastic resin, and the rolling temperature is 5°C or more lower than the melting point of the thermoplastic resin, and 60°C lower than the melting point of the thermoplastic resin. It is preferable that the temperature is not lower than 2°C.

圧延温度が上記範囲よりも高いと、フィルムと圧延ロー
ルとの粘着性が増加するので不都合であり、逆に圧延温
度が低過ぎる場合には、所要圧下刃が大きくなり過ぎ、
圧延ロールをより強力にしなければならないので望まし
くない。
If the rolling temperature is higher than the above range, the adhesiveness between the film and the rolling roll will increase, which is disadvantageous.On the other hand, if the rolling temperature is too low, the required rolling blade will become too large.
This is undesirable because the rolling rolls must be made more powerful.

原フィルムは、圧延処理によって厚さを減少し均一化す
ることが必要である。圧延倍率は前記のように 1.1
から2.5の範囲であり、圧延倍率がこの範囲よりも小
さい場合には圧延の効果が殆ど認められず、逆に圧延倍
率が前記範囲よりも大きい場合には、フィルムの縦裂は
性が顕著となり、横延伸時に却って延伸切れが増加する
結果となる。
The original film needs to be rolled to reduce its thickness and make it uniform. The rolling ratio is 1.1 as mentioned above.
When the rolling ratio is smaller than this range, almost no effect of rolling is observed, and on the other hand, when the rolling ratio is larger than the above range, the longitudinal cracks in the film are weak. This becomes noticeable and results in an increase in stretch breakage during lateral stretching.

すなわち、圧延倍率を2.5よりも大きくすることは、
フィルムの配向結晶の襞間が起り易くなり、縦裂けを起
し、却って横延伸性を減殺してしまうこと、あるいは得
られる横一軸延伸フィルムが二軸延伸特性を帯び、本来
の横一軸延伸フィルムとしての物性が低下する。従って
、ロールによる圧延倍率を2.5以下にすると同時に、
横一軸延伸倍率を4以上にすることが必要である。
In other words, making the rolling ratio larger than 2.5 means that
Folds between the oriented crystals of the film tend to occur, causing longitudinal tearing, which actually reduces the transverse stretchability, or the resulting transversely uniaxially stretched film takes on biaxially stretched characteristics, and the original transversely uniaxially stretched film As a result, physical properties deteriorate. Therefore, at the same time as reducing the rolling ratio by rolls to 2.5 or less,
It is necessary to set the horizontal uniaxial stretching ratio to 4 or more.

また、上記のような圧延倍率および横一軸延伸倍率によ
って処理した熱可塑性樹脂フィルムが、従来の横−軸延
伸体の物性と同様な挙動をとることは予想さえされず、
全く新規な知見である。例えば、ロール圧延の代りに他
の引張力による延伸法、すなわち近接ロール延伸法等に
よる場合においては、2.5倍以下の縦軸延伸は困難で
ある事、ロール圧延のように横一軸延伸時の未延伸部の
発生の原因となる偏肉を均らす効果がない事、更に工・
ンジビードが発生しトリミングが必要となり、ロスが増
大する事など、多くの問題点が発生し、本発明の目的と
する改善効果は得られない。
Furthermore, it is not even expected that a thermoplastic resin film treated with the above-mentioned rolling ratio and transverse uniaxial stretching ratio would behave in the same way as the physical properties of a conventional transversely-axially stretched product.
This is completely new knowledge. For example, when using another tensile force-based stretching method instead of roll rolling, such as the close roll stretching method, it is difficult to achieve longitudinal stretching of 2.5 times or less, and unlike roll rolling, when horizontal uniaxial stretching is used, In addition, there is no effect on leveling out the uneven thickness that causes unstretched parts, and
Many problems arise, such as the occurrence of a zigzag bead, which requires trimming, and an increase in loss, and the improvement effect aimed at by the present invention cannot be obtained.

以上のように、本発明は軽度の縦方向のロール圧延をあ
らかじめ施しておくことによって、従来から安定化する
ことが困難であった横一軸延伸処理を飛躍的に安定化さ
せ、かつ容易ならしめることが可能となる。また得られ
る延伸体の物性も、従来の横−軸延伸体と同等もしくは
それ以上のものとなるので、本発明の方法によって得ら
れた横−軸延伸体は、通例の二軸延伸体とは相違するも
のである。
As described above, the present invention dramatically stabilizes and facilitates the transverse uniaxial stretching process, which has conventionally been difficult to stabilize, by performing slight longitudinal roll rolling in advance. becomes possible. In addition, the physical properties of the obtained stretched body are equivalent to or better than those of the conventional transversely stretched body, so the transversely stretched body obtained by the method of the present invention is different from the usual biaxially stretched body. They are different.

本発明の効果を更に増大せしめる条件として、原フィル
ムの溶融成形時の調製条件がある。すなわち、適宜の製
膜方法において、溶融状態から固相状態に移行する冷却
時間が著しく短い、いわゆる急冷条件下で製膜された原
フィルムにロール圧延を施すことによって、横軸延伸性
が更に顕著に改善されるものである。
Conditions that further enhance the effects of the present invention include preparation conditions during melt molding of the original film. In other words, in an appropriate film-forming method, by rolling a raw film formed under so-called quenching conditions, in which the cooling time for transition from a molten state to a solid state is extremely short, the transverse axis stretchability is even more remarkable. This will be improved.

上記冷却条件は、樹脂がダイリップから溶融押出しされ
、冷却が開始されてから固化する迄の平均降温速度によ
って表わされる。降温速度が15°C/秒以上、好まし
くは20°C/秒以上の急冷条件とすることが望ましい
The above-mentioned cooling conditions are expressed by the average temperature drop rate from the time when the resin is melt-extruded from the die lip and cooling is started until solidification. It is desirable to use rapid cooling conditions such that the temperature decrease rate is 15°C/second or more, preferably 20°C/second or more.

このような条件を満足させる一般的な製膜法としては、
フラットダイから冷却ロール上に溶融樹脂を押出し、固
化させつつこれを引取るキャスティングロールによる製
膜法、あるいは円環ダイから押出されたバブルを直接冷
却水に接触固化せしめた後に引取る水冷インフレーショ
ン製膜法等が挙げられるが、もちろん、本発明は上記の
2方法に限定されるものではない。
General film forming methods that satisfy these conditions include:
A film forming method using a casting roll in which molten resin is extruded from a flat die onto a cooling roll and taken off as it solidifies, or a water-cooled inflation method in which bubbles extruded from an annular die are directly contacted with cooling water to solidify and then taken off. Examples include a membrane method, but of course the present invention is not limited to the above two methods.

本発明の効果を更に発揮せしめる他の方法としては、イ
ンフレーションフィルム成形法によって得られる扁平化
されたチューブ状の2枚重ねのフィルムを、そのまま原
フィルムとして使用することである。すなわち、フィル
ム成形工程からインフレーションフィルムのチューブを
連続的にロール圧延工程へ導入することにより、1枚の
原フィルムから得たものと全く同様の横−軸延伸体を得
ることが可能である。このことは、生産効率、あるいは
装置効率等の観点から、−・つの大きな利点となる。
Another method for further exerting the effects of the present invention is to use a flattened two-ply tube-shaped film obtained by a blown film molding method as an original film as it is. That is, by continuously introducing the tube of blown film from the film forming process into the roll rolling process, it is possible to obtain a transversely stretched body that is exactly the same as that obtained from a single original film. This provides two major advantages in terms of production efficiency, equipment efficiency, etc.

通常、1枚の原フィルムを用いる場合においては、前記
キャスティングフィルムを用いるか、あるいはインフレ
ーションフィルムを切開いて用いることが一般的である
が、前者のキャスティングフィルムはエツジビードが発
生し、この部分のトリミング工程等が必要となり、工程
が繁雑化し、生産効率の低下、あるいはロスの発生が生
ずる。
Normally, when using a single sheet of raw film, it is common to use the casting film described above or to cut out a blown film, but the former casting film has edge beads, which are removed during the trimming process. etc., which complicates the process, reduces production efficiency, or causes losses.

一方、後者のインフレーションフィルムを使用する場合
には、チューブ状のフィルムを切開く工程が必要である
が、連続的に切開くことは困難であり、また、切開き速
度を高めることができないので、インフレーション工程
と延伸工程とを連続化することは困難であった。
On the other hand, when using the latter blown film, it is necessary to cut the tube-shaped film, but it is difficult to cut continuously and the cutting speed cannot be increased. It has been difficult to make the inflation process and stretching process continuous.

また、上記の難点を解決するために、インフレーション
法によって得られるチューブ状フィルムを扁平化した2
層からなるフィルムを原フィルムとして用いることが考
えられる。しかしながら、この2層フィルムを直接従来
の条件で横軸延伸しても、延伸体は満足なものとはなら
ず、延伸体の一部分が2枚に分離したり、一部分は強固
にブロンキングして1枚化されているなどの現象が起り
、中途半端な状態のものしか得られない。
In addition, in order to solve the above-mentioned difficulties, we flattened the tubular film obtained by the inflation method.
It is conceivable to use a film consisting of layers as the base film. However, even if this two-layer film is directly horizontally stretched under conventional conditions, the stretched product will not be satisfactory, and some parts of the stretched film will separate into two sheets, or some parts will be strongly bronched. Phenomena such as being combined into one sheet occur, and you can only obtain one in a halfway state.

一方、本発明においては、ロール圧延による圧縮力で2
枚重ねのフィルムが高度にブロッキングして、以降の工
程においても1枚のフィルムと同様な挙動を示し、得ら
れる延伸体も剥離部分は全く発生せず、1枚のフィルム
から得たものと何ら変らないものとなる。このことは、
後述する割繊体の製造において更に有利となる。
On the other hand, in the present invention, the compressive force due to roll rolling is
The stacked film blocks to a high degree and behaves in the same way as a single film in the subsequent steps, and the resulting stretched product does not have any peeling parts and is no different from that obtained from a single film. It becomes something that does not change. This means that
This is further advantageous in the production of a splitting body, which will be described later.

本発明における横−軸延伸体とは、フィルム、テープ、
割繊体などを包含するものであり、横−軸延伸割繊体の
製造法として、特にその効果は顕著である。
The transversely-axially stretched body in the present invention refers to a film, a tape,
This method includes splittable bodies and the like, and its effects are particularly remarkable as a method for producing transversely-axially stretched splittable bodies.

一般には、延伸割繊体は縦−軸および横一軸の延伸割繊
体を重ね合せた交叉積層網状体、または不織布状の強化
積層体として用いられる。上記横一軸延伸割繊体は、原
フィルムをあらかじめ割繊した後に横延伸を行なって得
るものである。割繊体は、その−木一本が細い線条から
成っており、横延伸時には破断し易く、かつ未延伸部分
も残り易いので、前記フィルムの延伸の場合に比較して
横軸延伸処理は非常に困難である。
In general, the stretched splitting material is used as a cross-laminated net structure in which vertically-axis and horizontally uniaxially stretched splittings are superimposed, or as a reinforced laminate in the form of a nonwoven fabric. The above-mentioned transversely uniaxially stretched splitting body is obtained by splitting the raw film in advance and then laterally stretching it. Splitable fibers are made up of thin filaments, and are easily broken during transverse stretching, and unstretched portions also tend to remain. Very difficult.

本発明の方法は、上記のような横軸延伸を困難にする阻
害因子に対しても効果を有している。
The method of the present invention is also effective against the above-mentioned inhibitory factors that make transverse stretching difficult.

すなわち、本発明における横−軸延伸割繊体の製造法は
、前記ロール圧延工程と横一軸延伸工程との間に割繊工
程を挿入することにより達成されるものである。
That is, the method for producing a transversely-axially stretched splitting body in the present invention is achieved by inserting a splitting process between the roll rolling process and the horizontal uniaxial stretching process.

」−記割繊工程においては、フィルムの幅方向に平行、
あるいは千鳥目状等にスリットを入れる。
” - In the splitting process, parallel to the width direction of the film,
Alternatively, make slits in a staggered pattern.

割繊方法としてはヤスリ等による方法等でも良いが、最
も好ましい方法は、特開昭58−51114号公報に開
示されているような加熱刃の押伺けによる方法である。
The fiber splitting method may be a method using a file or the like, but the most preferable method is a method using a heating blade as disclosed in Japanese Patent Laid-Open No. 58-51114.

本発明のように軽度に縦方向にロール圧延されたフィル
ムは、上記加熱刃による方法で割繊したときに、切目に
対して直角方向に収縮力が(動き、エンヂで切り離され
ると同時に、切目から互いに離れようとするために、割
繊が完全に施され、前述の横軸延伸時の破断等の現象が
解消される。
When a film that has been lightly rolled in the longitudinal direction as in the present invention is split by the heating blade method described above, the shrinkage force (moves) in the direction perpendicular to the cut line, and at the same time it is separated by the edge, the cut line Since the fibers tend to separate from each other, the fibers are completely split, and the above-mentioned phenomena such as breakage during horizontal axis stretching are eliminated.

すなわち、熱力に触れたフィルムは、溶融されながら切
断さる際に、その熱により溶断縁は収縮して互いに離れ
、ノツチなどのない平滑な切断縁が形成され、切れ残り
などの望ましくない状態の発生が皆無になる。その結果
、次に続く横延伸は安定化し、破断、未延伸部の発生な
どがなくなるものである。
In other words, when the film is melted and cut when exposed to heat, the heat causes the fused edges to contract and separate from each other, forming a smooth cut edge without any notches, resulting in undesirable conditions such as uncut edges. will all disappear. As a result, the subsequent transverse stretching is stabilized, and no breakage or unstretched portions occur.

本発明の特徴が顕著に発揮されるものとして、前述の横
一軸延伸フィルムの製造法と同様に、インフレーション
フィルム成形法によって得られる扁平化チューブ状フィ
ルムを用いて割繊体を製造する方法がある。インフレー
ションフィルムを用いて横−軸延伸割繊体を得ることは
、前述のように延伸切れや未延伸部分が発生するので、
従来から極めて困難であった。しかるに、本発明の方法
によれば、ロール圧延によるブロッキング効果と相俟っ
て、前記の熱力による割繊によって割繊された各切断縁
部が完全に溶着し、延伸時の剥離や未延伸部分が発生し
ないという好ましい結果を与える。
As a method in which the features of the present invention are clearly exhibited, there is a method of manufacturing a splitting body using a flattened tubular film obtained by a blown film forming method, similar to the method of manufacturing a horizontally uniaxially stretched film described above. . Obtaining a transversely-axially stretched split fiber body using a blown film causes stretching breakage and unstretched portions as described above.
This has traditionally been extremely difficult. However, according to the method of the present invention, together with the blocking effect caused by roll rolling, the split edges of the fibers split by the above-mentioned thermal force are completely welded, and there is no peeling during stretching or unstretched portions. The desirable result is that this does not occur.

本発明の方法を適用できる熱可塑性樹脂とは、低、中、
高密度ポリエチレン、アイソタクチックポリプロピレン
、ポリブテン−1、ポリ−4−メチルペンテン−1など
の単独重合体、エチレンまたはプロピレンを主成分とす
る他のα−オレフィンとの共重合体、例えば、エチレン
−プロピレン共重合体、エチレン−ブテン−1共重合体
、エチレン−ヘキセン−1共重合体、エチレン−4−メ
チルペンテン−1共重合体、あるいはプロピレン−ブテ
ン−1共重合体、またはエチレン−酩酊ビニル共重合な
どのポリオレフィン系樹脂、ナイロン−6、ナイロン−
6,8,ナイロン−11,ナイロン−12等のポリアミ
ド系樹脂、ポリエステル系樹脂、ポリビニルアルコール
系樹脂、ポリカーボネート系樹脂、ポリ塩化ビニル系樹
脂、ポリ塩化ビニリデン系樹脂、およびそれらの少なく
とも一種を含む混合物などが挙げられるが、特に延伸性
を有する結晶性樹脂が好ましい。
Thermoplastic resins to which the method of the present invention can be applied include low, medium,
Homopolymers such as high-density polyethylene, isotactic polypropylene, polybutene-1, poly-4-methylpentene-1, etc.; copolymers containing ethylene or propylene as a main component with other α-olefins, such as ethylene-1; Propylene copolymer, ethylene-butene-1 copolymer, ethylene-hexene-1 copolymer, ethylene-4-methylpentene-1 copolymer, or propylene-butene-1 copolymer, or ethylene-drunken vinyl Polyolefin resins such as copolymerization, nylon-6, nylon-
6, 8, polyamide resins such as nylon-11 and nylon-12, polyester resins, polyvinyl alcohol resins, polycarbonate resins, polyvinyl chloride resins, polyvinylidene chloride resins, and mixtures containing at least one thereof. Among these, crystalline resins having stretchability are particularly preferred.

本発明においては、上記樹脂に酸化防止剤、紫外線吸収
剤、顔料、カーボンブラック、無機充填剤等の通常の添
加剤を添加しても良い。
In the present invention, usual additives such as antioxidants, ultraviolet absorbers, pigments, carbon black, and inorganic fillers may be added to the resin.

また、原フィルムとして異種、同種異質の樹脂を同時に
押出す共押出し積層フィルム、異種の樹脂フィルムを貼
り合わせた積層フィルム等の複合フィルムを使用するこ
とも差支えない。
Further, as the raw film, it is also possible to use a composite film such as a coextruded laminated film in which different or similar resins are simultaneously extruded, or a laminated film in which different resin films are laminated together.

上述のように、本発明は従来の横−軸延伸体の製法と比
較して次のような利点を有する。
As mentioned above, the present invention has the following advantages compared to the conventional method for producing a transversely stretched body.

(1)従来のような精密な温度管理を必要とせず、簡易
な圧延処理により原フィルムの偏肉が均らされ、その後
の延伸性が改善され、未延伸部分の発生や延伸切れなど
が起らず、均一な延伸が可能となる。
(1) A simple rolling process that does not require precise temperature control and evens out uneven thickness of the original film, improves subsequent stretchability, and prevents unstretched areas and stretch breaks. Uniform stretching is possible.

(2)圧延処理により、通常のフィルムの他に、多層フ
ィルム、インフレーションフィルムラ扁平化したものな
ど各種の原反フィルムを使用できると共に、横−軸延伸
割繊体をも容易に製造することが可能である。
(2) Through the rolling process, in addition to regular films, various types of raw films such as multilayer films and flattened blown films can be used, and transversely-axially stretched splitting bodies can also be easily produced. It is possible.

(3)インフレーション成形法による2層からなる扁平
化チューブ状フィルムを原反フィルムとして使用でき、
フィルム製造工程からそのまま連続的に供給することが
できるので、生産効率および装差動率を高めることが可
能である。
(3) A flattened tubular film consisting of two layers formed by the inflation molding method can be used as the base film,
Since it can be continuously supplied directly from the film manufacturing process, it is possible to increase production efficiency and loading differential rate.

本発明の方法によって製造した横−輔延伸体は、前述の
交叉配向積層体、あるいは強化網状体、他種包装資材の
強化材、粘着テープ、熱収縮性フィルム等に用いられ、
産業用資材、包装用資材などに広く使用することができ
る。
The transversely stretched body produced by the method of the present invention can be used for the above-mentioned cross-oriented laminates, reinforced nets, reinforcing materials for other types of packaging materials, adhesive tapes, heat-shrinkable films, etc.
It can be widely used for industrial materials, packaging materials, etc.

以下に本発明を実験例により更に詳述するが、本発明の
主旨を逸脱しない限り、本発明はこれらの例に限定さる
ものではない。
The present invention will be explained in more detail below using experimental examples, but the present invention is not limited to these examples unless it departs from the gist of the present invention.

実施例 高密度ポリエチレン(MI:1.(+、密度:0.95
B、融点:127°C)を使用して、インフレーシJン
製膜法およびキャスティングロール法により、400m
m幅の種々の厚さの原フィルムを得た。このフィルムを
温度110°Cにて、種々の圧延倍率でロール圧延し、
いずれも厚さ0.1mmのフィルムとし、横軸延伸を行
なった。横軸延伸処理では、特開昭55−126427
号公報に開示されている末広がりの延伸軌跡を示す装置
を使用して、延伸速度:40m/winおよび延伸倍率
ニアで延伸を行ない横延伸性を調べた。
Example High density polyethylene (MI: 1. (+, density: 0.95
B, melting point: 127°C), by the inflated film forming method and casting roll method, 400 m
Original films of m width and various thicknesses were obtained. This film was rolled at a temperature of 110°C at various rolling ratios,
Both films were made into films with a thickness of 0.1 mm, and were horizontally stretched. In the horizontal axis stretching process, JP-A-55-126427
The transverse stretchability was examined by stretching at a stretching speed of 40 m/win and a near-stretching ratio using an apparatus that shows a divergent stretching locus as disclosed in the above publication.

その結果を第1表に示す。The results are shown in Table 1.

なお横延伸性の評価基準は以下の通りである。The evaluation criteria for lateral stretchability are as follows.

××:破断、未延伸部発生、連続延伸1分未満X:破断
発生、連続延伸2〜3分未満 ○:連続延伸、1時間に1〜2回破断発生0:連続延伸
、1時間以上安定な状態で延伸またフィルム強度は、引
張速度:300mm/winおよび掴み間隔:3001
11111における破断点強度を示す。
XX: Breakage, unstretched portions occur, continuous stretching for less than 1 minute Stretched in this state, the film strength was as follows: tensile speed: 300 mm/win and grip interval: 3001
The strength at break at 11111 is shown.

第1表に示すように、ロール圧延を行なわないものおよ
び圧延倍率が1.1から2.5の範囲以外のもの(実験
例1.2.4)は、横延伸性が劣ることが解る。また、
原フィルムの製膜冷却速度も高くしたほうが良いことが
解る。
As shown in Table 1, it can be seen that those without roll rolling and those with a rolling ratio outside the range of 1.1 to 2.5 (Experimental Example 1.2.4) have poor transverse stretchability. Also,
It can be seen that it is better to increase the film forming cooling rate of the original film.

実施例 ポリプロピl/ 7 (Ml: 1.5、密度: 0.
90、融点=187°C)を使用して、ロール圧延の温
度を 130 ’0とした他は全て実験例1〜8と同様
に行なった。
Example polypropyl l/7 (Ml: 1.5, density: 0.
90, melting point = 187°C), and the roll rolling temperature was changed to 130'0.

その結果を第2表に示す。同表から解るようにポリプロ
ピレンフィルムについても同様な結果が得られる。
The results are shown in Table 2. As can be seen from the table, similar results are obtained for polypropylene film.

実施例 実験例1〜6において、ロール圧延工程と横軸延伸工程
との間に割繊工程を設けた。割繊工程では、特開昭58
−51114号公報に記載された熱力(刃のIB、 g
 :250〜280℃)を使用して、フィルムの横方向
に2m+n間隔で切れ口を入れた割繊フィルムを形成し
た。これについて、実験例1〜6と同様番こして横延伸
性を調べた。第3表にその結果を示すなお、横延伸速度
は、連続延伸を行なった場合に、破断が1時間に1〜2
回程度起る状態番こお(する最大延伸速度で示した。従
って、延伸速度カー大なる程延伸性が良好であることを
示す。
EXAMPLES In Experimental Examples 1 to 6, a fiber splitting process was provided between the roll rolling process and the horizontal axis stretching process. In the splitting process, JP-A-58
Thermal force (IB of the blade, g
: 250 to 280°C) to form a split film in which cuts were made at intervals of 2m+n in the transverse direction of the film. Regarding this, the transverse stretchability was examined by straining in the same manner as in Experimental Examples 1 to 6. The results are shown in Table 3.The transverse stretching speed was 1 to 2 times per hour when continuous stretching was performed.
It is shown by the maximum stretching speed at which the condition occurs several times. Therefore, the higher the stretching speed, the better the stretching property is.

割繊体強度は、横軸延伸後の割繊体を約10本実束して
、引張速度:300mm/winおよび掴み間隔=30
0ff1mにおける最高破断強度を集束本数で除した値
を求め、この値をデニール当りの強度に換算した。
The splitting body strength was determined by bundling approximately 10 splitting bodies after horizontal axis stretching, tensile speed: 300 mm/win, and gripping interval = 30.
A value was obtained by dividing the maximum breaking strength at 0ff1m by the number of bundles, and this value was converted into strength per denier.

第3表に示す結果から解るように、本発明の方法によれ
ば、割繊体の延伸速度を大幅に高くすることができる。
As can be seen from the results shown in Table 3, according to the method of the present invention, the drawing speed of the split fibers can be significantly increased.

第1表 第2表 第3表Table 1 Table 2 Table 3

Claims (5)

【特許請求の範囲】[Claims] (1)熱可塑性樹脂からなる原フィルムを、圧延倍率1
.1から2.5の範囲において、縦軸方向に固相状態チ
ロール圧延し、更に該フィルムを横軸方向に4倍以上延
伸することを特徴とする横一軸延伸体の製造方法。
(1) A raw film made of thermoplastic resin is rolled at a rolling ratio of 1
.. 1 to 2.5. A method for producing a transversely uniaxially stretched product, which comprises subjecting the film to solid-state tyrol rolling in the longitudinal direction, and further stretching the film four times or more in the transverse direction.
(2)前記ロール圧延工程と横軸延伸工程との間に割繊
工程を加えてなる特許請求範囲第1項に記載の横一軸延
伸体の製造方法。
(2) The method for producing a transversely uniaxially stretched body according to claim 1, wherein a splitting process is added between the roll rolling process and the transversely stretching process.
(3)前記原フィルムとして、成形時の平均冷却速度が
15℃/秒以上で成形されたフィルムを使用してなる特
許請求範囲第1項または第2項に記載の横一軸延伸体の
製造方法。
(3) A method for producing a horizontally uniaxially stretched body according to claim 1 or 2, which uses a film molded at an average cooling rate of 15° C./sec or more during molding as the raw film. .
(4)前記ロール圧延処理を、前記熱可塑性樹脂の融点
よりも5℃から60℃低い温度で行なうことを特徴とす
る特許請求範囲第1項から第3項のいずれかに記載の横
一軸延伸体の製造方法。
(4) Horizontal uniaxial stretching according to any one of claims 1 to 3, characterized in that the roll rolling treatment is performed at a temperature from 5°C to 60°C lower than the melting point of the thermoplastic resin. How the body is manufactured.
(5) 前記IJXフィルムが、インフレーションフィ
ルム成形法によって得られたチューブ状フィルムを扁平
化したものからなる特許請求範囲第1項から第4項のい
ずれかに記載の横一軸延伸体の製造方法。
(5) The method for producing a transversely uniaxially stretched body according to any one of claims 1 to 4, wherein the IJX film is obtained by flattening a tubular film obtained by a blown film molding method.
JP58103479A 1983-06-09 1983-06-09 Preparation of traverse uniaxially stretched film Granted JPS59227422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58103479A JPS59227422A (en) 1983-06-09 1983-06-09 Preparation of traverse uniaxially stretched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58103479A JPS59227422A (en) 1983-06-09 1983-06-09 Preparation of traverse uniaxially stretched film

Publications (2)

Publication Number Publication Date
JPS59227422A true JPS59227422A (en) 1984-12-20
JPH0414054B2 JPH0414054B2 (en) 1992-03-11

Family

ID=14355142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58103479A Granted JPS59227422A (en) 1983-06-09 1983-06-09 Preparation of traverse uniaxially stretched film

Country Status (1)

Country Link
JP (1) JPS59227422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011351A (en) * 2009-06-30 2011-01-20 Sekisui Chem Co Ltd Method for manufacturing stretched thermoplastic polyester resin sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107427A (en) * 1979-02-14 1980-08-18 Polymer Processing Res Inst Manufacturing method of laterally oriented web from film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107427A (en) * 1979-02-14 1980-08-18 Polymer Processing Res Inst Manufacturing method of laterally oriented web from film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011351A (en) * 2009-06-30 2011-01-20 Sekisui Chem Co Ltd Method for manufacturing stretched thermoplastic polyester resin sheet

Also Published As

Publication number Publication date
JPH0414054B2 (en) 1992-03-11

Similar Documents

Publication Publication Date Title
US6045923A (en) Co-extruded tape or yarn
EP1409244B1 (en) Polyolefin film, tape or yarn
US4561920A (en) Biaxially oriented oxygen and moisture barrier film
JP2894743B2 (en) High-strength, high-modulus polyolefin composite with improved drawability in the solid state
AU2002318061A1 (en) Polyolefin film, tape or yarn
DE60022455T2 (en) Heat-sealable multilayer films of polyolefins
JPH0899394A (en) Polypropylene type heat-shrinkable laminated film
US4767488A (en) Method and apparatus for the manufacture and stretching of a laminate
EP2258545A1 (en) Easily opened packaging
JP4650019B2 (en) Polypropylene-based laminated film and package using the same
JP2002523266A (en) Biaxially oriented polyethylene film with high water vapor permeability
JP2571612B2 (en) Film production method
JPS59227422A (en) Preparation of traverse uniaxially stretched film
JP4150957B2 (en) Polyester film and method for producing the same
JPS6319329B2 (en)
DE102019220384A1 (en) Monoaxially stretched polyolefin film
JP4879412B2 (en) Ethylene-vinyl alcohol copolymer film
JP4726353B2 (en) Method for producing polyamide-based simultaneous biaxially stretched laminated film
JPH054276A (en) Manufacture of polyethylene biaxially oriented film
JPH0671745A (en) Transversely tearable film and its production
DE102019220381A1 (en) Pure monoaxially stretched polyolefin film
JP3029229B2 (en) Method for producing gas barrier sheet and thermoformed product
JPS61242820A (en) Laminating method
CN117651643A (en) Biaxially oriented laminated polypropylene film
JPH0631879A (en) Wrapping material for tire