JPS59227159A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59227159A
JPS59227159A JP10119983A JP10119983A JPS59227159A JP S59227159 A JPS59227159 A JP S59227159A JP 10119983 A JP10119983 A JP 10119983A JP 10119983 A JP10119983 A JP 10119983A JP S59227159 A JPS59227159 A JP S59227159A
Authority
JP
Japan
Prior art keywords
layer
melting point
wiring
high melting
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10119983A
Other languages
Japanese (ja)
Inventor
Juri Kato
樹理 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP10119983A priority Critical patent/JPS59227159A/en
Publication of JPS59227159A publication Critical patent/JPS59227159A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To obtain an MOSFET having no increase in contact resistance even when an aperture measurements are made smaller by a method wherein source and drain regions are formed on the surface layer part of a semicondutor substrate, a gate electrode is provided between said two regions through the intermediary of a gate insulating film while an interlayer insulating film covers the whole surface, an aperture is provided, and when the Al wiring located on the insulating film and said regions are connected, a high melting point metal is provided not only on the inside of the aperture but also on the whole connected surface. CONSTITUTION:A thick SiO2 film 22 to be used for element isolation is formed on the circumferential part of an Si substrate 21, a source and drain region 23 is formed on the surface layer part of the substrate 21 surrounded by said film 22, and a polycrystalline electrode 29 is provided on the surface located between the source and the drain regions through the intermediary of a gate SiO2 interlayer insulating film 26 is covered on the whole surface, an Al wiring layer 23 is coated on the surface of the insulating film 26, an aperture is provided on the film 26, and a wiring 23, a region 23 and an electrode 29 are connected. At this time, high melting point metals 25 and 31 are buried in each aperture, and high melting point metals 24, 30, 32, and 27 are interposed on the surface of the region 23, on both front and back sides of the electrode 29, and on the back side of a wiring layer 33 respectively.

Description

【発明の詳細な説明】 本発明は、LSIの高集積化を可能にする半導体装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device that enables high integration of LSI.

従来、層間絶縁膜で絶縁分離された半導体層と金属層と
を接続する時、半導体層上の絶縁層に選択的にコ1ツタ
クト・ホールを形成後金Miを蓄積することによル金属
層と#導体層がコンタクト・ポール領域の面積部分のみ
で接触していた。一方、縮小化の進むLSIにおいて、
コンタクト9ホール寸法はサブミクロンの大きさになる
。しかしながらコンタクト・ホール面積が小さくなるこ
とによシ、金属と半導体の接触抵抗が増大し、LSIの
電気特性を劣化させる。例えば84層とA1層の接触抵
抗は1μm口のコンタクト−ホールで1000を起える
。またサブミクロン寸法を持つコンタクト拳ホールでは
、オーミックなコンタクト特性を碍ることか困難になる
。従って従来の半導体装置で社コンタクト・ホール寸法
を1μm より小さくすることができずLSIの微細化
に制限を与えるという欠点があった。本発明は、かかる
従来の欠点を取シ除き、接触抵抗がコンタクト・ホール
寸法に依存しないことを特長としコンタクト・ホールの
微細化を可能にし、LSIの高集積化を可能にする半導
体装置を提供する。以下実施例を用いて説明する。第1
図・第2図は、従来の金R層とF3i基板拡散層との接
憂・麦を示す断面図と平面図である。E3i基板1には
、拡散層2が形成され、へ!配線屑5と拡散N2は層間
絶縁膜s4o、3で、1!、縁分離されている。AI配
線層と拡散層の接続柱、層間絶縁膜に選択的に形成され
たコンタクト・ホール4を通して接続される。従来の構
造ではA!配線層5と拡散層2の接触面積は第2図の4
の領域になる。A!配線層と拡散層の接触面積はコンタ
クト・ホール面積に等しいため、コンタクト・ホール寸
法が小さくなるに伴込、Aj配線と拡散層との接触抵抗
が増大し、コンタク)jポールの微細化に制限を与える
。このためLSIの高集積化が困難になる。
Conventionally, when connecting a semiconductor layer and a metal layer that are insulated and separated by an interlayer insulating film, a contact hole is selectively formed in the insulating layer on the semiconductor layer, and then gold Mi is accumulated in the metal layer. The and # conductor layers were in contact only in the area of the contact pole region. On the other hand, in LSIs that are becoming smaller,
The contact 9-hole dimensions are on the submicron scale. However, as the contact hole area becomes smaller, the contact resistance between the metal and the semiconductor increases, degrading the electrical characteristics of the LSI. For example, the contact resistance between the 84th layer and the A1 layer is 1000 for a 1 μm contact hole. Furthermore, in contact holes with submicron dimensions, it is difficult to improve ohmic contact characteristics. Therefore, in conventional semiconductor devices, the size of the contact hole cannot be made smaller than 1 .mu.m, which limits the miniaturization of LSIs. The present invention eliminates such conventional drawbacks, and provides a semiconductor device which is characterized in that the contact resistance does not depend on the contact hole dimensions, enables miniaturization of the contact hole, and enables high integration of LSI. do. This will be explained below using examples. 1st
FIG. 2 is a sectional view and a plan view showing the relationship between the conventional gold R layer and the F3i substrate diffusion layer. A diffusion layer 2 is formed on the E3i substrate 1, and then! Wiring waste 5 and diffusion N2 are interlayer insulating film s4o, 3, 1! , the edges are separated. Connection pillars between the AI wiring layer and the diffusion layer are connected through contact holes 4 selectively formed in the interlayer insulating film. With the conventional structure, A! The contact area between the wiring layer 5 and the diffusion layer 2 is 4 in FIG.
becomes the area of A! Since the contact area between the wiring layer and the diffusion layer is equal to the contact hole area, as the contact hole size becomes smaller, the contact resistance between the Aj wiring and the diffusion layer increases, limiting the miniaturization of the contact)j pole. give. This makes it difficult to achieve high integration of LSI.

帛3図・第4図は、本発明による金属層とS<基板拡散
層との接続を示す断面図と平面図である。
3 and 4 are a cross-sectional view and a plan view showing the connection between the metal layer and the S<substrate diffusion layer according to the present invention.

SZ基板1】には、拡散[12が形成され、AA配線胎
16と拡散#I2は層間絶縁膜sho、玲で分離されて
いる。A7配#層16と拡散層12の接続は、拡散層上
に形成された高融点金属17@コンタクト・ホール領域
の高融点金属14及びAA配線層底面の高融点食[15
によ多形成される。高融点食F%14・15・17は同
一物質で構成される。このU、AA配線層16と拡散層
12の接続における接触抵抗は、A1層と高融点金属の
接触領域(第4図i5.16 )の接触抵抗及び高融点
金属と拡散層の接触領域(第4図12 、17 )の接
触抵抗の2つに分けられる。本発明によれば、接触領域
の大きさは、コンタクト・ホール領域の面積(第4図1
4)に依存せず、へ!配線領域の面積(第4図16 )
及び拡散領域の面*、 (m 4図12 )に依存する
。従って、コンタクト・ホール寸法が小さくなってもA
!配線層と拡散層の接触抵抗は、tlとんど変化しない
。このためコンタクト・ホール寸法がLSIの電気的特
性に与える影響が無視でき、コンタクト・ホールの微細
化が可能になp、LSIの高集積化が可能になる。亀5
図は本発明によるMOB・FF!Tの断面図である。8
i基板21上には、 Po1y8i電極29・ゲート族
オ・ソース・ドレインおからなるMOB・FFTが形成
されている。22は素子分離sho!  膜である。A
!配線層33とゲート電極29・ソース・ドレイン領域
邪の接続は、拡散層表面の高融点金JIjg24拳ゲー
ト電極表面の高融点金属3o・コンタクト・ホール領域
の高融点食FA25・31及びA1層下の高融点食JF
J27・32によル行なわれる。ここで高融点金属を用
いたのは高温熱処理を可能にするためである。本発明に
よれば、AJ配線層とゲート電極の接触抵抗は、コンタ
クト・ホール面積に依存せず、AJ配線面積とゲート′
電極面fJfに依存する。又、A71配線層とソース・
Wビレ4フ層の接触抵抗杖、コンタクト・ホール面積に
依存せず、へ!配線面積とソース・ドレイン拡散層の面
積に依存する。従ってMOB−FETが縮小化され、コ
ンタクト・ホール寸法が1μm2以下になっても、A!
配線面積・ゲート電極面積及びソース・ドレイン拡散層
面積は1μm2より大きく取ることができ、接触抵抗の
増大を防ぐことができる。
A diffusion #12 is formed on the SZ substrate 1, and the AA wiring layer 16 and the diffusion #I2 are separated by interlayer insulating films. The connection between the A7 wiring layer 16 and the diffusion layer 12 is achieved by the high melting point metal 17 formed on the diffusion layer @ the high melting point metal 14 in the contact hole region and the high melting point corrosion [15] at the bottom of the AA wiring layer.
Formed in polymorphism. High melting point foods F%14, 15, and 17 are composed of the same substance. The contact resistance in the connection between the U, AA wiring layer 16 and the diffusion layer 12 is the contact resistance of the contact area between the A1 layer and the high melting point metal (Fig. 4 i5.16) and the contact area of the high melting point metal and the diffusion layer (Fig. It can be divided into two types: contact resistance (Figures 12 and 17). According to the present invention, the size of the contact area is determined by the area of the contact hole area (see FIG.
4) Don't rely on it! Area of wiring area (Fig. 4 16)
and the plane * of the diffusion region, depending on (m 4 Fig. 12). Therefore, even if the contact hole size becomes smaller, A
! The contact resistance between the wiring layer and the diffusion layer hardly changes at tl. Therefore, the influence of the contact hole dimensions on the electrical characteristics of the LSI can be ignored, making it possible to miniaturize the contact hole and achieve high integration of the LSI. Turtle 5
The figure shows MOB/FF according to the present invention! It is a sectional view of T. 8
On the i-substrate 21, a MOB/FFT consisting of a Po1y8i electrode 29, a gate group, a source, and a drain is formed. 22 is element isolation sho! It is a membrane. A
! Connections between the wiring layer 33 and the gate electrode 29/source/drain region are made using the high melting point gold JIjg24 on the surface of the diffusion layer, the high melting point metal 3o on the surface of the gate electrode, and the high melting point corrosion FA25/31 in the contact hole region and under the A1 layer. High melting point food JF
It will be held on J27/32. The reason why a high melting point metal is used here is to enable high temperature heat treatment. According to the present invention, the contact resistance between the AJ wiring layer and the gate electrode does not depend on the contact hole area;
It depends on the electrode surface fJf. In addition, the A71 wiring layer and the source
Contact resistance rod with 4 layers of W fins, independent of contact hole area, to! It depends on the wiring area and the area of the source/drain diffusion layer. Therefore, even if the MOB-FET is downsized and the contact hole size becomes less than 1 μm2, A!
The wiring area, gate electrode area, and source/drain diffusion layer area can be set to be larger than 1 μm 2 , and an increase in contact resistance can be prevented.

以上説明したように、本発明によれば、微細化されたコ
ンタクト・ホール寸法に接触抵抗が依存せず、MOEI
@FETの縮小ができ、LSI工の高集積化が可能にな
る。
As explained above, according to the present invention, the contact resistance does not depend on the miniaturized contact hole dimensions, and the MOEI
@FET can be downsized, and high integration of LSI technology is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図:従来の金属層とSZ基板拡散層との接続を示す
断面図 第2図;従来の金属層とsi基板拡散層との接続を示す
平面図 第3図二本発明による金属層とsi基板拡散層との接続
を示す断面図 第4図二本発明による金属層とsi基板拡散層との接続
を示す平面図 第5図二本発明によるMO8alPJ!iTの断面図i
 −n O21・・8i基板 2・12・−拡散層 a @ 1B +1 @ F3i0sIT8縁膜4・・
コンタクト・ホール 5・@Aノ配線 14−−コンタクト・ホール 15・17・・高融点金属 16・・AA配線 22・嗜素子分離sio! お・・ソース・ドレイン拡散層 鴎・・ソース・ドレイン表面高融点金属層5・轡コンタ
クト・ホール高融点金属 あ・・層間絶縁膜szo。 27・・高融点金属配線層 あ・・ゲート絶縁膜sho。 四・ ・Po1y8iゲート電極 (資)・・ゲート電極表面高融点金属層31・・コンタ
クト・ホール高融点金属32拳・高融点金属配線層 以   上 出願人 株式会社諏訪精工舎 代理人 弁理土星 上  務
Figure 1: A cross-sectional view showing the connection between a conventional metal layer and an SZ substrate diffusion layer. Figure 2: A plan view showing a connection between a conventional metal layer and an Si substrate diffusion layer. FIG. 4 is a cross-sectional view showing the connection to the Si substrate diffusion layer. FIG. 5 is a plan view showing the connection between the metal layer and the Si substrate diffusion layer according to the present invention. MO8alPJ! Cross section of iT
-n O21...8i substrate 2, 12... -diffusion layer a @ 1B +1 @ F3i0sIT8 edge film 4...
Contact hole 5, @A wiring 14--Contact holes 15, 17, high melting point metal 16, AA wiring 22, element isolation sio! Oh...source/drain diffusion layer...source/drain surface high melting point metal layer 5/contact hole high melting point metal...interlayer insulating film szo. 27...High melting point metal wiring layer...Gate insulating film sho. 4. Po1y8i gate electrode (capital) Gate electrode surface high melting point metal layer 31 Contact hole High melting point metal 32 layers High melting point metal wiring layer and above Applicant Suwa Seikosha Co., Ltd. Agent Benri Saturn Senior Managing Director

Claims (1)

【特許請求の範囲】 il1層間絶縁股で絶縁分離されている半導体層と金j
ii層との接続において、該半d1体層表面・該絶縁層
に選択的に形成されたコンタクト書ホール及び該金属層
底面には該金属層と同aまたは異種の金属が蓄積してな
ることを特長とする半導体装置。 t2+シリコンゲート及びA!配線を持つMOS・FI
ICTにおいて、ソース・ドレイン拡散領域表面・ゲー
ト電極表面・AJ配線層底面及びコンタクト9ホール領
域には高融点全屈が蓄積してなることを特徴とする特許
請求の!#、囲第1項記載の半導体装置。
[Claims] A semiconductor layer and gold j that are insulated and separated by an interlayer insulating crotch.
In connection with layer II, metal of the same type as or different from that of the metal layer is accumulated on the surface of the semi-d1 layer, the contact hole selectively formed in the insulating layer, and the bottom of the metal layer. A semiconductor device featuring: t2+silicon gate and A! MOS/FI with wiring
In ICT, a patent claim characterized in that high melting point total bending is accumulated on the surface of the source/drain diffusion region, the surface of the gate electrode, the bottom surface of the AJ wiring layer, and the contact 9 hole region! #, the semiconductor device described in box 1.
JP10119983A 1983-06-07 1983-06-07 Semiconductor device Pending JPS59227159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10119983A JPS59227159A (en) 1983-06-07 1983-06-07 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10119983A JPS59227159A (en) 1983-06-07 1983-06-07 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS59227159A true JPS59227159A (en) 1984-12-20

Family

ID=14294261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10119983A Pending JPS59227159A (en) 1983-06-07 1983-06-07 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59227159A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257234A (en) * 1985-09-06 1987-03-12 Hitachi Ltd Wiring structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840301A (en) * 1971-09-23 1973-06-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840301A (en) * 1971-09-23 1973-06-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257234A (en) * 1985-09-06 1987-03-12 Hitachi Ltd Wiring structure

Similar Documents

Publication Publication Date Title
US5310699A (en) Method of manufacturing a bump electrode
JPS59227159A (en) Semiconductor device
JPS54136176A (en) Manufacture of beam lead type semiconductor device
US20020000657A1 (en) Plated chrome solder dam for high power mmics
JPS6074658A (en) Semiconductor ic device
JPS58116763A (en) Mos type rom
JPS6037770A (en) Semiconductor device
JPH01268150A (en) Semiconductor device
JPS60121769A (en) Manufacture of mis semiconductor device
JPS6151848A (en) Manufacture of semiconductor device
JPS6140133B2 (en)
JPS6141138B2 (en)
JPS6113383B2 (en)
JPS58116753A (en) Semiconductor device
JPS56160052A (en) Semiconductor device
JPS5864069A (en) Semiconductor device and manufacture thereof
JPS59130443A (en) Multilayer interconnection
JPH04159754A (en) Semiconductor device
JPS57147252A (en) Multilayer wiring method
JPS5967656A (en) Semiconductor device
JPS58202539A (en) Semiconductor device
JPH04313265A (en) Semiconductor device
JPS58180041A (en) Semiconductor integrated circuit device
JPS63116448A (en) Semiconductor integrated circuit device
JPS59204276A (en) Insulated gate field effect semiconductor device