JPS5922672A - Supersonic wave atomizing device - Google Patents

Supersonic wave atomizing device

Info

Publication number
JPS5922672A
JPS5922672A JP13158382A JP13158382A JPS5922672A JP S5922672 A JPS5922672 A JP S5922672A JP 13158382 A JP13158382 A JP 13158382A JP 13158382 A JP13158382 A JP 13158382A JP S5922672 A JPS5922672 A JP S5922672A
Authority
JP
Japan
Prior art keywords
liquid
honeycomb structure
container
small holes
atomized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13158382A
Other languages
Japanese (ja)
Other versions
JPH028783B2 (en
Inventor
Hiroshi Ishikawa
浩 石川
Takashi Kurahashi
崇 倉橋
Kazuma Matsui
松井 数馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP13158382A priority Critical patent/JPS5922672A/en
Publication of JPS5922672A publication Critical patent/JPS5922672A/en
Publication of JPH028783B2 publication Critical patent/JPH028783B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • B05B17/0615Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers spray being produced at the free surface of the liquid or other fluent material in a container and subjected to the vibrations

Abstract

PURPOSE:To increase and stabilize amount of atomizing by providing a honeycomb structure on the bottom of a container excluding the upper part of a supersonic vibrator. CONSTITUTION:Liquid introduced into a cylindrical container 6 from a liquid supply pipe 1 and kept at a fixed liquid level is atomized by a supersonic wave vibrtor 2. Atomized droplets of liquid are passed through a spherical guide 4 and led out. On the other hand, liquid remaining without becoming atomized particles drops from the liquid column 10 to many small holes 7a of a honeycomb structure 7 projecting on the liquid surface A by its own weight. The liquid is filled in many small holes 7a of the honeycomb structure 7 through cavities C. This liquid acts as a buffer and prevents shaking of liquid surface of the upper part 8 of the supersonic wave vibrator 2. Consequently, the liquid column 10 is made stable. Thus, uniform atomizing flow is obtained and the amount of atomizing is also increased.

Description

【発明の詳細な説明】 本発明は霧化すべき液体を収納した容器底部に設置した
超音波振動子によって、液体中に超音波を放射し、液体
を霧化する超音波霧化装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic atomizer that atomizes a liquid by emitting ultrasonic waves into the liquid using an ultrasonic vibrator installed at the bottom of a container containing the liquid to be atomized. be.

(1) 元来、超音波霧化装置においては、液面より突出する液
柱が液体の自重により液面方向に落下するため、液面を
揺らし、霧化量を不安定なものにしている。そこで、こ
の問題対策のために従来では、fa1通孔を有する遮蔽
板を液面に浮上させる方法と、(b)液体落下位置に水
滴受けを設置するという方法がとられているが、前者(
alは液面の揺れで浮上物も揺動するという問題があり
、また後者(blは構造上、液面の上下変化に対応でき
ないなどの問題がある。
(1) Originally, in ultrasonic atomizers, the liquid column that protrudes from the liquid surface falls toward the liquid surface due to the liquid's own weight, which causes the liquid surface to shake and make the amount of atomization unstable. . To counter this problem, the conventional methods have been to float a shielding plate with fa1 holes on the liquid surface, and (b) install a water droplet tray at the position where the liquid falls, but the former method (
Al has a problem in that the floating object also swings due to the fluctuation of the liquid level, and the latter (bl) has problems such as being unable to respond to vertical changes in the liquid level due to its structure.

本発明は上記問題を解消することを目的としてなされた
もので、超音波霧化装置における霧化量を増大させると
ともに、霧化量を安定化しようとするものである。
The present invention has been made to solve the above problems, and aims to increase the amount of atomization in an ultrasonic atomization device and to stabilize the amount of atomization.

以下本発明を図示の実施例により説明する。第1図は、
本発明の第1実施例を示す断面図で、第2図は第1図の
ハニカム構造体の実施例を示す部分斜視図である。
The present invention will be explained below with reference to illustrated embodiments. Figure 1 shows
2 is a sectional view showing a first embodiment of the present invention, and FIG. 2 is a partial perspective view showing an embodiment of the honeycomb structure shown in FIG. 1. FIG.

給液パイプ1は円筒状容器6の側面下部の穴に、また給
気パイプ3は円筒状容器6の側面上部の穴(2) にそれぞれ密閉接合され、互いに円筒状容器6の内部と
連通している。容器底部9は円筒状容器6の下面で密閉
され、容器底部9の中央附近の開口穴9aには、ゴムシ
ール材と一体となった超音波振動子2がゴムシール材を
はさむ形でビス止めされている。円筒状容器6の上面に
は球状ガイド5が相互の内部を連通するように密閉接合
されている。また、円筒状容器6の内部には、多数の小
孔7aを有したハニカム構造体7が超音波振動子2の上
内部8を除く部分全域にハニカム構造体7の小孔7aと
給液パイプ1とが連通し、かつ液面A上に突出するよう
に円筒状容器6の側面で嵌合固定されている。このハニ
カム構造体7について更に詳述すると、その外周は円形
をなし、その全体形状は円柱状を形成しているが、前記
振動子上内部8に相当する部分には円形中空部を有する
形状となっている。そして、ハニカム構造体7の底面と
容器底部9との間に若干の隙間Cを設けることにより、
すべての小孔7aと給液バイブ1とが連通ずる。なお、
7bは小孔7aを区画する隔壁で(3) ある。さらに円筒状容器6の内部には超音波により立て
られた液柱10を包囲し、給気パイプ3より導入された
気体がハニカム構造体7との間から入りこむようにガイ
ド4が密閉接合されている。
The liquid supply pipe 1 is hermetically connected to a hole at the bottom of the side of the cylindrical container 6, and the air supply pipe 3 is hermetically connected to the hole (2) at the top of the side of the cylindrical container 6, so that they communicate with the inside of the cylindrical container 6. ing. The container bottom 9 is sealed with the lower surface of the cylindrical container 6, and an ultrasonic vibrator 2 integrated with a rubber sealing material is screwed into an opening hole 9a near the center of the container bottom 9 with the rubber sealing material sandwiched therebetween. There is. A spherical guide 5 is hermetically connected to the upper surface of the cylindrical container 6 so that the insides thereof communicate with each other. In addition, inside the cylindrical container 6, a honeycomb structure 7 having a large number of small holes 7a is arranged over the entire area of the ultrasonic vibrator 2 except for the upper inner part 8. 1 and is fitted and fixed on the side surface of the cylindrical container 6 so as to protrude above the liquid surface A. To explain this honeycomb structure 7 in more detail, its outer periphery is circular and its overall shape is cylindrical, but it has a circular hollow part in the portion corresponding to the upper inner part 8 of the vibrator. It has become. By providing a slight gap C between the bottom surface of the honeycomb structure 7 and the container bottom 9,
All the small holes 7a and the liquid supply vibrator 1 communicate with each other. In addition,
7b is a partition wall (3) that partitions the small hole 7a. Furthermore, a guide 4 is hermetically bonded inside the cylindrical container 6 so as to surround the liquid column 10 erected by the ultrasonic waves and allow gas introduced from the air supply pipe 3 to enter between the honeycomb structure 7 and the honeycomb structure 7. There is.

上記構成において作動を説明する。給液バイブ1より円
筒状容器6内に導入され液位を一定に保たれた液体を、
超音波振動子2に図示しない回路から通電することによ
り霧化し、その霧化された液滴を給気パイプ3およびガ
イド4に沿って導入された気体によって球状ガイド5の
内部を通過し導出する。液柱10から霧化量にならず残
った液体は自重でハニカム構造体7の多数の小孔7aに
落下するが、その場合小孔7aに充填された液体が緩衝
体の役割を果し、超音波振動子2の上内部8の液面の揺
れを防止することが可能となる。このため、液柱10が
安定し、均一な霧化流になり霧化量をも増大することが
可能となる。
The operation in the above configuration will be explained. The liquid is introduced into the cylindrical container 6 from the liquid supply vibrator 1 and the liquid level is kept constant.
The ultrasonic vibrator 2 is atomized by being energized from a circuit not shown, and the atomized droplets are guided out through the inside of the spherical guide 5 by the gas introduced along the air supply pipe 3 and the guide 4. . The liquid remaining from the liquid column 10 without being atomized falls into the large number of small holes 7a of the honeycomb structure 7 due to its own weight, but in this case, the liquid filled in the small holes 7a plays the role of a buffer, It becomes possible to prevent the liquid level in the upper interior 8 of the ultrasonic transducer 2 from shaking. For this reason, the liquid column 10 becomes stable and becomes a uniform atomized flow, making it possible to increase the amount of atomization.

ハニカム構造体7として第2図に示すような小孔7aを
有するアルミニウム製ハニカムを用いることによりすべ
ての条件下で霧化量を増大させる(4) ことが可能である。例えば、本発明者の実験によれば、
ハニカム構造体7として、高さ30mm、正六角形小孔
7aの開口面積23.4wJ、隔壁7bの厚さ0.01
mmのものを用い、液温21℃、振動子2の中心部より
の液面高さを301璽に保ち、ハニカム構造体7の上端
を液面より5g程度突消させて、気体流量を変化させ実
験を行なった結果、ハニカム構造体7のある場合は、な
い場合に比較して霧化量を20〜25%増大させること
ができた。
By using an aluminum honeycomb having small holes 7a as shown in FIG. 2 as the honeycomb structure 7, it is possible to increase the amount of atomization under all conditions (4). For example, according to the inventor's experiments,
The honeycomb structure 7 has a height of 30 mm, an opening area of regular hexagonal small holes 7a of 23.4 wJ, and a thickness of partition walls 7b of 0.01 mm.
The gas flow rate was varied by using a liquid with a diameter of 21 mm, keeping the liquid temperature at 21°C, the liquid level height from the center of the vibrator 2 at 301 mm, and making the upper end of the honeycomb structure 7 about 5 g higher than the liquid level. As a result of conducting an experiment, it was found that when the honeycomb structure 7 was present, the amount of atomization could be increased by 20 to 25% compared to when the honeycomb structure 7 was not present.

第3図はハニカム構造体7の形状に関する第2の実施例
を示すものであって、本例ではハニカム構造体7の多数
の小孔7Cおよびこの小孔7Cを区画する隔壁7dの形
状が四角形としである。隔壁7dの材質は給液バイブ1
より導入される液体に腐食されず、超音波を吸収しない
物質であればよく、例えば金属、セラミックなどのもの
である。
FIG. 3 shows a second embodiment regarding the shape of the honeycomb structure 7, and in this example, the shapes of the large number of small holes 7C of the honeycomb structure 7 and the partition walls 7d that partition the small holes 7C are square. It's Toshide. The material of the partition wall 7d is the liquid supply vibrator 1.
Any material may be used as long as it is not corroded by the liquid introduced and does not absorb ultrasonic waves, such as metal or ceramic.

また、第3図の小孔7Cは四角形、第2図の小孔7aは
六角形にそれぞれ形成したが、小孔形状は、第4図の第
3の実施例に示すような円状であってもよく、また第5
図の第4の実施例に示すへ角形(5) のような多角形であってもよい。第4図、第5図におい
て、7e、7gは小孔、7f、7hは隔壁である。さら
に、本発明でいうハニカム構造体7としては、それ自体
単独で、ハニカム形状を形成するものに限らず、円筒状
容器6の内部を金属、セラミック等で区切って小孔を形
成するものであってもよい。
Furthermore, although the small hole 7C in FIG. 3 is formed in a square shape and the small hole 7a in FIG. 2 in a hexagonal shape, the small hole shape may be circular as shown in the third embodiment in FIG. may also be the fifth
It may also be a polygon such as the hexagon (5) shown in the fourth embodiment of the figure. In FIGS. 4 and 5, 7e and 7g are small holes, and 7f and 7h are partition walls. Furthermore, the honeycomb structure 7 according to the present invention is not limited to one that forms a honeycomb shape by itself, but can also be one in which the inside of the cylindrical container 6 is partitioned with metal, ceramic, etc. to form small holes. It's okay.

これら第2、第3、第4の実施例において小孔7c、7
e、7g、はいずれも上端面と下端面が連通し、下端面
で他の小孔と連通ずるため、一つの小孔に液体が落下し
、液面を揺らしても、その小孔に充填された液体が緩衝
体の役割を果し、他の小孔の液面をほとんど揺らすこと
はない。それゆえ、第1の実施例と同様の効果が期待で
きる。
In these second, third and fourth embodiments, the small holes 7c, 7
In both e and 7g, the upper end surface and lower end surface are connected, and the lower end surface communicates with other small holes, so even if liquid falls into one small hole and shakes the liquid level, that small hole will not be filled. This liquid acts as a buffer, and hardly shakes the liquid level in other small holes. Therefore, the same effects as in the first embodiment can be expected.

なお、ハニカム構造体7の取付は、第1の実施例におい
ては円筒状容器6と側面にて嵌合固定しであるが、ハニ
カム構造体7の底面に部分的に突起を設け、この突起に
よりハニカム構造体7を容器底部9に接合することによ
り、多数の小孔7a及び給気パイプ1が連通するように
してもよい。ま(6) た、第1の実施例では振動子上田部8を除く容器底部9
の全域にハニカム構造体7を設置したが、前記容器底部
9のうち、特に液滴の落下しやすい部分のみにハニカム
構造体7を設置してもよい。  。
In addition, in the first embodiment, the honeycomb structure 7 is installed by fitting and fixing it with the cylindrical container 6 on the side surface, but a projection is partially provided on the bottom surface of the honeycomb structure 7, and this projection By joining the honeycomb structure 7 to the container bottom 9, the large number of small holes 7a and the air supply pipe 1 may be communicated with each other. (6) In the first embodiment, the container bottom 9 excluding the vibrator upper part 8
Although the honeycomb structure 7 is installed in the entire area of the container, the honeycomb structure 7 may be installed only in the part of the container bottom 9 where droplets are particularly likely to fall. .

第6図はハニカム構造体をハニカムヒータとして燃焼器
に用いた実施例を示す断面図である。
FIG. 6 is a sectional view showing an embodiment in which a honeycomb structure is used as a honeycomb heater in a combustor.

給液パイプ1より円筒状容器15内に導入された液体(
灯油のごとき液体燃料)を容器底部9′に取付けられた
2つの超音波振動子2により霧化し、その霧化された燃
料液滴は、2つの給気パイプ3より導入され、円筒状の
外側フローガイド16及び内側フローガイド17に沿っ
て容器15内に流入する気体によって容器15上部へ導
出される。容器15の上端部はジヨイントケース19が
シール部材18および内側フローガイド17の上端部を
挾み込むように密閉接合され、ジヨントケース19の上
端部は多数の小孔を有するプレート22とシール部材2
3を挾み込むようにしてバーナヘッド20と密閉接合さ
れている。容器15上部へ導出された霧化液滴はジヨイ
ントケース19の(7) 内部及びプレート22の多数の小孔を通過しバーナーヘ
ッド20に設けたスリットから外部へ導出され火炎を形
成せしめる。21は火炎の熱を回収するアルミ、ステン
レス等の金属製熱回収板であり、11は容器15内を2
分割する仕切り板である。容器15内部には、2つのハ
ニカム構造体70が超音波振動子2の上内部8を除く部
分にガイド17の下端と液面Aとの間にその上端面を突
出させ、かつ容器底部9′とハニカム構造体70の下端
の部分的突起は小孔70a (第7図)がこの間で連通
でき゛るだけの隙間を設けて、互いに接着で接合固定さ
れている。容器15側壁の液面より下にシール部材12
を介して温度センサ13が設けられ、またシール部材2
4を介してハニカム構造体70の電気ヒータ26(第7
図)のリード線25が取出しである。そして、温度セン
サ13の検出信号を温度コントローラ14に人力し、こ
の検出信号に応じてハニカム構造体70の電気ヒータ2
6への供給電力を断続することにより液温を一定の値に
保つ。ハニカム構造体70の具体的構造(8) は、第7図に示すように電気ヒータ26を充填剤27で
囲み、さらに多数の小孔70aを有したセラミック70
bで一体成形したものである。これはヒータ26が直接
燃料に接しないように配慮したものであるが、ヒータ2
6の表面が引火点以上にならなければ、直接燃料を加熱
してもよい。このように液温を上げ一定に保つことによ
り、霧化量をハニカム構造体70による液面安定化効果
に加え、さらに増大できる利点がある。また霧化流を混
合ガスとして用い燃焼させるため、ハニカム構造体70
による霧化流の均一化が安定的な火炎を形成し、かつ霧
化量の増大が小電力での強燃焼を可能ならしめるという
効果をもたらす。
The liquid introduced into the cylindrical container 15 from the liquid supply pipe 1 (
Liquid fuel (such as kerosene) is atomized by two ultrasonic vibrators 2 attached to the bottom part 9' of the container, and the atomized fuel droplets are introduced from two air supply pipes 3 to the cylindrical outside. The gas flowing into the container 15 along the flow guide 16 and the inner flow guide 17 is led out to the upper part of the container 15. The upper end of the container 15 is hermetically joined to the joint case 19 so as to sandwich the upper end of the sealing member 18 and the inner flow guide 17, and the upper end of the joint case 19 is connected to a plate 22 having a large number of small holes and the sealing member 2.
3 is sandwiched between the burner head 20 and the burner head 20 in a hermetically sealed manner. The atomized droplets led to the upper part of the container 15 pass through the inside of the joint case 19 (7) and a large number of small holes in the plate 22, and are led out through the slit provided in the burner head 20 to form a flame. 21 is a metal heat recovery plate made of aluminum, stainless steel, etc. that recovers the heat of the flame;
It is a partition plate for dividing. Inside the container 15, two honeycomb structures 70 have their upper end surfaces protruding between the lower end of the guide 17 and the liquid level A in a portion other than the upper interior 8 of the ultrasonic transducer 2, and the upper end surfaces of the honeycomb structures 70 protrude between the lower end of the guide 17 and the liquid level A. and the partial protrusions at the lower end of the honeycomb structure 70 are bonded and fixed to each other with a gap sufficient to allow communication between the small holes 70a (FIG. 7). A sealing member 12 is placed below the liquid level on the side wall of the container 15.
A temperature sensor 13 is provided via the seal member 2.
4 to the electric heater 26 (seventh) of the honeycomb structure 70.
The lead wire 25 in the figure) is taken out. Then, the detection signal of the temperature sensor 13 is manually inputted to the temperature controller 14, and the electric heater 2 of the honeycomb structure 70 is controlled according to this detection signal.
The liquid temperature is maintained at a constant value by intermittent power supply to 6. The specific structure (8) of the honeycomb structure 70 is as shown in FIG.
It is integrally molded in b. This is to prevent the heater 26 from coming into direct contact with the fuel, but the heater 26
As long as the surface of No. 6 does not rise above the flash point, the fuel may be heated directly. By raising the liquid temperature and keeping it constant in this manner, there is an advantage that the amount of atomization can be further increased in addition to the liquid level stabilizing effect provided by the honeycomb structure 70. In addition, in order to burn the atomized flow as a mixed gas, the honeycomb structure 70
The uniformity of the atomization flow by this method forms a stable flame, and the increase in the amount of atomization has the effect of enabling strong combustion with low electric power.

本発明は、第6図の実施例のごとき液体燃料燃焼装置へ
の適用の他に、空調用加湿器等にも適用できる。
The present invention can be applied not only to liquid fuel combustion apparatuses such as the embodiment shown in FIG. 6, but also to air conditioning humidifiers and the like.

以上詳述したごとく本発明によれば、ハニカム構造体の
設置によって、超音波振動子上方の液面を安定化して、
霧化量を増大できるとともに、霧化量を安定させること
ができるという優れた効果(9) がある。
As detailed above, according to the present invention, the liquid level above the ultrasonic transducer is stabilized by installing the honeycomb structure,
There is an excellent effect (9) in that the amount of atomization can be increased and the amount of atomization can be stabilized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例を示す縦断面図、第2図
〜第5図は第1図図示のハニカム構造体7の具体例を示
す斜視図、第6図は本発明装置の他の実施例を縦断面図
、第7図は第6図図示のハニカム構造体70の具体的構
造を示す部分斜視図である。 ■・・・給液パイプ、2・・・超音波振動子、3・・・
給気パイプ、6.15・・・容器、9.9′・・・容器
底部。 7.70・・・ハニカム構造体。 代理人弁理士 岡 部   隆 (10) 第2図 7a 第5図 Q 第3図 r 第4図 7ρ 第7図 404−
FIG. 1 is a longitudinal sectional view showing an embodiment of the device of the present invention, FIGS. 2 to 5 are perspective views showing a specific example of the honeycomb structure 7 shown in FIG. 1, and FIG. Another embodiment is a longitudinal sectional view, and FIG. 7 is a partial perspective view showing the specific structure of the honeycomb structure 70 shown in FIG. 6. ■...Liquid supply pipe, 2...Ultrasonic vibrator, 3...
Air supply pipe, 6.15... Container, 9.9'... Bottom of the container. 7.70...honeycomb structure. Representative Patent Attorney Takashi Okabe (10) Figure 2 7a Figure 5 Q Figure 3 r Figure 4 7ρ Figure 7 404-

Claims (2)

【特許請求の範囲】[Claims] (1)霧化すべき液体を収納した容器底部に設置した超
音波振動子によって、液体中に超音波を放射し液体を霧
化する超音波霧化装置において、超音波振動子上部を除
く、容器底部の一部または全域に多数の小孔を有するハ
ニカム構造体をその上端面が液面上へ突出し、かつ給液
口と全液面が連通ずるよう設置したことを特徴とする超
音波霧化装置。
(1) In an ultrasonic atomization device that atomizes a liquid by emitting ultrasonic waves into the liquid using an ultrasonic transducer installed at the bottom of a container containing a liquid to be atomized, the container, excluding the top of the ultrasonic transducer, Ultrasonic atomization characterized by a honeycomb structure having a large number of small holes in a part or the entire area of the bottom, the upper end surface of which protrudes above the liquid surface, and installed so that the liquid supply port and the entire liquid surface communicate with each other. Device.
(2)上記ハニカム構造体が、液体に非接触な状態で加
熱体を収納したことを特徴とする特許請求の範囲第1項
記載の超音波霧化装置。
(2) The ultrasonic atomization device according to claim 1, wherein the honeycomb structure accommodates a heating element in a state that does not contact the liquid.
JP13158382A 1982-07-27 1982-07-27 Supersonic wave atomizing device Granted JPS5922672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13158382A JPS5922672A (en) 1982-07-27 1982-07-27 Supersonic wave atomizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13158382A JPS5922672A (en) 1982-07-27 1982-07-27 Supersonic wave atomizing device

Publications (2)

Publication Number Publication Date
JPS5922672A true JPS5922672A (en) 1984-02-04
JPH028783B2 JPH028783B2 (en) 1990-02-27

Family

ID=15061444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13158382A Granted JPS5922672A (en) 1982-07-27 1982-07-27 Supersonic wave atomizing device

Country Status (1)

Country Link
JP (1) JPS5922672A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101346U (en) * 1984-12-09 1986-06-28
JP2011131140A (en) * 2009-12-22 2011-07-07 Honke Matsuura Shuzojo:Kk Ultrasonic atomization method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101346U (en) * 1984-12-09 1986-06-28
JPH0320682Y2 (en) * 1984-12-09 1991-05-02
JP2011131140A (en) * 2009-12-22 2011-07-07 Honke Matsuura Shuzojo:Kk Ultrasonic atomization method and apparatus

Also Published As

Publication number Publication date
JPH028783B2 (en) 1990-02-27

Similar Documents

Publication Publication Date Title
US3392916A (en) Ultrasonic atomizer
CN206025223U (en) Oil storage formula surface acoustic wave atomizer
CN106174706A (en) A kind of acoustic surface wave atomizer
CN206025224U (en) Surface acoustic wave atomizer
CN202238481U (en) Atomizing device and ultrasonic humidifier
WO2023124515A1 (en) Heating assembly, atomizer, and electronic atomization device
KR20160061012A (en) Water tank structure of floating type humidifier
JPS5951352B2 (en) Ultrasonic atomizer
JPS5922672A (en) Supersonic wave atomizing device
JPS6321541B2 (en)
JPS621789B2 (en)
JPS5842816Y2 (en) ultrasonic humidifier
JPH0724375A (en) Atomization induction structure for supersonic atomizing device
JPS6244985B2 (en)
JPS5827823Y2 (en) Ultrasonic atomizer
JPH0549067U (en) Atomizer with liquid supply means
WO2023124162A1 (en) Heating assembly, atomizer, and electronic atomization device
JPS636567Y2 (en)
CN218474041U (en) Atomization assembly and aerosol generating device
JP2754798B2 (en) Ultrasonic humidification unit
JPH0512668Y2 (en)
JPS6020439Y2 (en) Ultrasonic atomizer
JPS6226824B2 (en)
SU1192862A1 (en) Ultrasound sprayer of aerosol for mass-spectral and spectral analises
JPS6049028B2 (en) atomization device