JPS59226122A - Immersion cooling pipe for wire rod and steel bar - Google Patents

Immersion cooling pipe for wire rod and steel bar

Info

Publication number
JPS59226122A
JPS59226122A JP10003283A JP10003283A JPS59226122A JP S59226122 A JPS59226122 A JP S59226122A JP 10003283 A JP10003283 A JP 10003283A JP 10003283 A JP10003283 A JP 10003283A JP S59226122 A JPS59226122 A JP S59226122A
Authority
JP
Japan
Prior art keywords
cooling
cooling water
cooling pipe
pipe
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10003283A
Other languages
Japanese (ja)
Other versions
JPS6358208B2 (en
Inventor
Koro Takatsuka
公郎 高塚
Mitsuru Moritaka
森高 満
Yutaka Ichida
市田 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10003283A priority Critical patent/JPS59226122A/en
Publication of JPS59226122A publication Critical patent/JPS59226122A/en
Publication of JPS6358208B2 publication Critical patent/JPS6358208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0224Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for wire, rods, rounds, bars

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To provide a titled cooling pipe which improves cooling capacity by setting the annular nozzles which are provided at both ends of a cylindrical body and ejects cooling water toward the inside of the cylindrical body at adequate sectional areas according to the flow rate of the cooling water and the bore of the annular nozzles. CONSTITUTION:A cooling pipe 1 is provided with inlet and outlet guide parts 5, 6 at both ends of a horizontally disposed cylindrical body as well as jackets 3 fitted onto the outside circumference thereof and a draining port 7, etc. on the bottom surface in the central part, ejects the cooling water introduced from cooling water supplying pipes 4 through said jackets 3 toward the inside of the body 2 from annular nozzles 8 provided concentrically with the body 2 and cools a wire rod body 9 such as a wire rod, steel bar or the like traveling through the axial center part of the body 2 while filling the cooling water in the body 2. The total Amm.2 of the sectional areas of the slits of said nozzles 8 of such cooling pipe is so set as to satisfy 40.Q<=A<=1,200.Q/D<1/2> (where D; the bore of the annular nozzle, mm., Q; the flow rate of the cooling water, m<3>/hr).

Description

【発明の詳細な説明】 本発明は、線材、棒鋼の浸漬冷却管に関する。[Detailed description of the invention] The present invention relates to an immersion cooling pipe for wire rods and steel bars.

周知の如く、熱間圧延に、1ニジ製造される線材、棒鋼
等の線条材は、仕上圧延機列後に設置された冷却帯にお
いて、機械的性質のコントロール及びスケール生成の抑
制などのために、熱間圧延直後の高温から所定温度にま
で冷却される。このような冷却帯においては、冷却媒体
として通常水が用いられている。この水冷に際しては、
線条材の周囲、長手方向及び断面方向に均一に冷却する
こと、並びに高い冷却能を実現することなどが大切であ
る。冷却能を向上させることは、所定の温度降下量を得
るための冷却水流量を節減できるため、ポンプ動力を小
さくできるなどの利点がある。
As is well known, wire rods, steel bars, and other wire rods manufactured in one step during hot rolling are processed in a cooling zone installed after the finishing mill row in order to control mechanical properties and suppress scale formation. , the high temperature immediately after hot rolling is cooled down to a predetermined temperature. In such cooling zones, water is usually used as the cooling medium. For this water cooling,
It is important to uniformly cool the wire around the wire, in the longitudinal direction and in the cross-sectional direction, and to achieve high cooling performance. Improving the cooling capacity has the advantage that the flow rate of cooling water required to obtain a predetermined temperature drop can be reduced, so that the pump power can be reduced.

また熱間連続圧延においては、中間圧延機列と仕上圧延
機列との間などのスタンド間冷却帯で、圧延材に冷却水
を供給した後、再度仕上圧延機列により圧延する制XI
E延が行なわれている。この制御圧延は、加熱温度、圧
延温度、圧下率等全制御して行なう熱間圧延法であって
、線条材における結晶粒の微細均一化、機械的性質の改
善を目的としており、圧延仕上りの状態で焼ならし処理
材と同等の組織及び機械的性質を有する線条材を製造す
ることができるものである。この制御圧延の温度パター
ン全実現させるためにも、スタンド間冷却帯は出釆るだ
け高い冷却能(熱伝達係数)を有し、かつ制御範囲が大
きなものでなければならない。
In addition, in continuous hot rolling, cooling water is supplied to the rolled material in an inter-stand cooling zone, such as between an intermediate rolling mill row and a finishing rolling mill row, and then the rolling material is rolled again by the finishing rolling mill row.
E extension is being carried out. This controlled rolling is a hot rolling method in which heating temperature, rolling temperature, rolling reduction rate, etc. are fully controlled, and the purpose is to make the crystal grains fine and uniform in the wire material and improve the mechanical properties. In this state, it is possible to produce a wire material having the same structure and mechanical properties as the normalized material. In order to realize the full temperature pattern of controlled rolling, the inter-stand cooling zone must have as high a cooling capacity (heat transfer coefficient) as possible and must have a wide control range.

上記各種の圧延工程における冷却帯においては従来種々
の形式の冷却管が用いられている。
Conventionally, various types of cooling pipes have been used in cooling zones in the various rolling processes described above.

例えば、冷却管内管の両端部付近に内管の周方向に一定
間隔に配置したノ””、t: Iv (スリット)から
、核内管の軸心部を走行する圧延材に対し、圧延材の進
行方向に冷却水をスプレー状に噴射するスプレ一方式の
ものがある。
For example, from the slits arranged at regular intervals in the circumferential direction of the inner tube near both ends of the inner tube of the cooling tube, the rolled material is There is a spray type that sprays cooling water in the direction of travel.

このスプレ一方式のものでは、圧延材に高王水が直接あ
たっている所では冷却能は高いが、他の部分では低いと
いう欠点があり、冷却帯の長さや冷却水流量及びポンプ
動力に比して冷却効率が小さいものである。
This one-spray type has the disadvantage that the cooling capacity is high in the areas where the high aqua regia is directly in contact with the rolled material, but low in other areas, which is compared to the length of the cooling zone, the flow rate of the cooling water, and the pump power. Therefore, the cooling efficiency is low.

そこで本願出願人は、笑公昭57−14965号におい
て冷却能の優れた浸漬型式の冷却管を提供した。
Therefore, the applicant of the present application provided an immersion type cooling pipe with excellent cooling performance in KOKOKU No. 57-14965.

これによると、冷却管両端部に設けた環状ノズルから冷
却水を対向して噴出させて冷却管の開口を施蓋する水膜
を形成子ると共に、゛冷却管の長手方向中央部1為ら冷
却水を管内に供給し、管内部に冷却水を充満させるもの
であった。この浸漬型式の冷却管によれば、冷却管の軸
心部を走行する高温の線条材は、管内に充満した冷却水
に浸漬された状態となシ、冷却水との接触時間が長ぐな
p、かつ均一に冷却されることになシ、極めて高い冷却
能を得ることができる。この浸漬型式の冷却管は、冷却
水をいかにして管内に充満させるかを主眼点として開発
されたものであった。
According to this, the cooling water is jetted out from annular nozzles provided at both ends of the cooling pipe in opposite directions to form a water film that covers the opening of the cooling pipe, and at the same time, Cooling water was supplied into the pipe, and the inside of the pipe was filled with cooling water. According to this immersion type cooling pipe, the high-temperature wire material running along the axis of the cooling pipe is immersed in the cooling water filling the pipe, and the contact time with the cooling water is long. Extremely high cooling performance can be obtained by providing uniform cooling. This immersion type cooling pipe was developed with the main focus on how to fill the pipe with cooling water.

しかし、その後の研究により、浸漬型式の冷却管の冷却
能は、管内での冷却水の流れの状態により大きな影響を
受けることが判明した。そして流れの状態は、冷却水供
給量と冷却水供給部圧力(ノズル部圧力)及び冷却水供
給部内の環状ノズル周方向の冷却水圧力分布に影響を受
け、これらは最終的に環状ノズルの断面積によって左右
されることが判明した。
However, subsequent research has revealed that the cooling capacity of immersion-type cooling pipes is greatly affected by the state of the flow of cooling water within the pipes. The flow condition is affected by the amount of cooling water supplied, the pressure of the cooling water supply (nozzle pressure), and the distribution of cooling water pressure in the circumferential direction of the annular nozzle in the cooling water supply, and these ultimately affect the disconnection of the annular nozzle. It turns out that it depends on the area.

そこで、本発明は、前記研究に基づき、環状ノズμのス
リット断面積を適切なものにすることによル、冷却能の
向上を図った線材、棒鋼用の浸漬冷却管を提供すること
を目的とする。
Therefore, based on the above research, an object of the present invention is to provide an immersion cooling pipe for wire rods and steel bars whose cooling capacity is improved by making the slit cross-sectional area of the annular nozzle μ appropriate. shall be.

従って、その特徴とする処は、水平軸心を有する筒体両
端部に該軸心と同心状に設けられた環状ノズμから筒体
内方に向けて冷却水を噴出せしめて筒体内部に冷却水を
充満させ、該筒体軸心部を貫通して走行する線材又は棒
鋼を浸漬冷却する冷却管において、前記両端部の環状ノ
ズルのスリット断面積の合計ム(−)が、 40・Q≦A≦1,200・Q/σ 但し D;環状ノズルの内径(w) Q;冷却水流量(ゴ/hr ) に設定されている点にある。
Therefore, the feature is that the cooling water is spouted inward from the annular nozzle μ provided at both ends of the cylinder having a horizontal axis and concentrically with the axis to cool the inside of the cylinder. In a cooling pipe filled with water and immersed to cool a wire rod or steel bar that runs through the axial center of the cylinder, the sum (-) of the slit cross-sectional areas of the annular nozzles at both ends is 40.Q≦ A≦1,200・Q/σ However, D: Inner diameter of the annular nozzle (w) Q: Cooling water flow rate (go/hr).

以下、本発明の実施例全図面に基づき詳述する。Hereinafter, embodiments of the present invention will be described in detail based on all the drawings.

第1図に示す本発明に係る浸漬型式の冷却管(1)は、
水平状に配置される筒体(2)と、筒体(2)の両端部
外周面に外嵌されたジャケット(3)と、該ジャケラt
−(31に接続された冷却水供給管(4)と、前記筒体
(2)の両端面に同心状に延設された入口ガイド部(5
)と出口ガイド部(6)とからなる。入口ガイド部(5
)の内面はテーパー面に形成されている。
The immersion type cooling pipe (1) according to the present invention shown in FIG.
A cylindrical body (2) arranged horizontally, a jacket (3) fitted around the outer peripheral surface of both ends of the cylindrical body (2), and the jacket t
- The cooling water supply pipe (4) connected to (31) and the inlet guide part (5) extending concentrically to both end surfaces of the cylinder (2).
) and an exit guide part (6). Entrance guide part (5
) has a tapered inner surface.

前記筒体(2)の軸方向中央部の下面には、排水口(7
)が開設されている。筒体(2]の両端部で前記ジャケ
ット(3)の内方に位置している部分と、入側ガイド部
(5)及び出側ガイド部(6)とは、各々ジャケット(
3)内部と筒体(2)内部とを連通ずる環状のノズ1v
(81を構成している。このノズル(8)は筒体軸心と
同心で筒体(2)の内向きに開口し、筒体(2)の軸心
に対する指向角度を第1図に示すように入口側を01、
出口側音θ、とすると、 30″≦(θ1、θ、)≦60″ になるよう設定されている。尚、環状ノズIV(81の
内径0は約60w5〜120m、筒体(2]の全長に)
は約7叩鱈〜1,000m  とされ、冷却管1木あた
りの供給水量Qは、15〜5otz/hrテ;bル。
A drain port (7) is provided on the lower surface of the axially central portion of the cylinder (2).
) has been established. The parts located inside the jacket (3) at both ends of the cylindrical body (2), the entrance guide part (5) and the exit guide part (6) are respectively connected to the jacket (
3) An annular nozzle 1v that communicates between the inside and the inside of the cylinder (2)
(81) This nozzle (8) is concentric with the axis of the cylinder and opens inward of the cylinder (2), and the orientation angle with respect to the axis of the cylinder (2) is shown in Figure 1. 01 on the entrance side,
The exit side sound θ is set so that 30″≦(θ1, θ,)≦60″. In addition, the annular nozzle IV (inner diameter 0 of 81 is approximately 60w5~120m, total length of cylinder body (2))
The amount of water is approximately 7 to 1,000 m, and the amount of water supplied per cooling pipe is 15 to 5 oz/hr.

環状ノズル(8)のスリット巾(1)は、スリット断面
積の合計ム(−)が、 40・Q≦A≦1.200・Q/σ を満足するように設定される。
The slit width (1) of the annular nozzle (8) is set so that the total slit cross-sectional area (-) satisfies the following: 40.Q≦A≦1.200.Q/σ.

次に、スリット総断面積(〜を前記の如く設定した理由
につき説明する。
Next, the reason why the total slit cross-sectional area (~) is set as described above will be explained.

@記浸漬式の冷却管(1)ヲ用い、ノズル指向角度(の
、スリット巾(1)、及び冷却水供給量0を種々変化さ
せて冷却能に影響を及ばすと考えられる冷却管(1)内
の冷却水の流れの状況を観察した。
Using the immersion type cooling pipe (1), we varied the nozzle orientation angle (, slit width (1), and cooling water supply amount 0) to create a cooling pipe (1) that is thought to affect the cooling performance. ) We observed the flow of cooling water inside.

その結果、一般的な傾向として、冷却水供給部θ)が多
くなるにつれ、また同一冷却水量Qでも、スリット巾(
1)が小さくなる程、ノズ)v(81からの冷却水の噴
出速度が大きくなり、それに伴ない、冷却管(1)入口
側及び出口側からの空気の吸込みが多くなって、冷却管
(1)内で気泡の生成量が多くなる。
As a result, as a general trend, as the number of cooling water supply parts θ) increases, and even for the same amount of cooling water Q, the slit width (
1) becomes smaller, the jetting speed of the cooling water from the nozzle )v(81 increases, and accordingly, more air is sucked in from the inlet and outlet sides of the cooling pipe (1). 1) The amount of bubbles generated increases.

また同一スリット巾(1)であれば、ノズル指向角度C
)が小さい万が気泡が生成しやすい傾向があることが判
明した。
Also, if the slit width (1) is the same, the nozzle orientation angle C
) was found to be more likely to generate bubbles.

気泡の生成は、線材、棒鋼等の線条材と冷却水との間に
断熱層を存在させることになり、冷却表面の沸騰膜除去
のために好ましくなく、冷却能の低下金もたらす。
The generation of bubbles causes a heat insulating layer to exist between the wire material such as a wire rod or steel bar and the cooling water, which is undesirable because of the removal of a boiling film from the cooling surface, resulting in a decrease in cooling performance.

この気泡の生成の稈度は、冷却水の噴出速度、すなわち
冷却水供給部内(ジャケット(3)内)の圧力の高低に
依存すると見なされる。
The degree of bubble generation is considered to depend on the jetting speed of the cooling water, that is, the level of pressure within the cooling water supply section (inside the jacket (3)).

そこで、ノズル指向角度(0)が60≦θ≦60° の
冷却管(1)ヲ用いて、冷却水供給部(3)に圧力計を
取付け、各冷却条件(冷却水供給量@、ノズル指向角度
(の、スリット巾(t))における冷却水供給部(3)
の圧力を測定し、その時の気泡の生成状況を調べた。
Therefore, using a cooling pipe (1) with a nozzle orientation angle (0) of 60≦θ≦60°, a pressure gauge was attached to the cooling water supply part (3), and each cooling condition (cooling water supply amount @, nozzle orientation Cooling water supply section (3) at angle (of, slit width (t))
The pressure was measured and the bubble formation status at that time was investigated.

その結果、冷却水供給部(3)内の圧力水頭Φ)が、お
よそ4m以上になると、いずれの冷却条件の場合も冷却
管(1)内において、冷却管(1)の入口側及び出口側
から空気の吸込みによる気泡の生成がかなり大きくなる
ことが判った。
As a result, when the pressure head Φ) in the cooling water supply section (3) becomes approximately 4 m or more, in any cooling condition, there is a It was found that the generation of bubbles due to air suction becomes considerably large.

従って、この種の浸漬型式冷却管(1)において、気泡
の生成による冷却能の低下全防止するためには、冷却水
供給部(3)の圧力が、 664m(0,4気圧以下)・・・・・・・・・・・・
・・・・・・・・・・・・・・・■とすることが望まし
い。
Therefore, in this type of immersion type cooling pipe (1), in order to completely prevent the cooling capacity from decreasing due to the formation of air bubbles, the pressure of the cooling water supply part (3) must be 664 m (0.4 atmospheres or less)...・・・・・・・・・・・・
・・・・・・・・・・・・・・・■ It is desirable.

ところで、前記冷却管(1)において、冷却水供給−量
(Qm/h)、ノズルのスリット断面積(AIF/)及
び冷却水供給部(3)の圧力(hfn)の関係は、欠式
で表わされる。
By the way, in the cooling pipe (1), the relationship between the cooling water supply amount (Qm/h), the slit cross-sectional area of the nozzle (AIF/), and the pressure (hfn) of the cooling water supply part (3) is an incomplete equation. expressed.

Q = Q!A品 ・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・■C3; 
ノズル係数60.80 g ;重力加速度 より h=C・(S)2  ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・■Δ 0 = −r−−7,97x 10−”0・2g 前記■、■式より、664mとなるノズ/L’ (8)
のスリット断面積(Ariりの範囲は、 = sq、4Q= 40Q  ・・・・・・・・・■と
なる。
Q = Q! A item ・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・■C3;
Nozzle coefficient 60.80 g; From gravitational acceleration h=C・(S)2 ・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・■Δ 0 = −r−−7,97x 10−”0.2g From the above formulas ■ and ■, the nozzle is 664 m/ L' (8)
The slit cross-sectional area (Ari range is = sq, 4Q = 40Q...■).

一万、均一冷却のためには、環状ノズ/l/ (8)周
方向各部における流量の変動ができるだけ小さい方が好
ましい。
For uniform cooling, it is preferable that the fluctuation of the flow rate in each part of the circumferential direction of the annular nozzle is as small as possible.

ところが、環状ノズA/(8)では、その頂部と下端部
とでは高低差により圧力差が生じ、頂部での冷却水供給
部(3)の圧力’k(h)とすると、下端部での圧力d
(h+nX1o  )となる。前述した如く、本発明に
おいてはh≦4ffiであり低圧であるところから、環
状ノズA/(81の内径0による圧力差は無視すること
ができない。
However, in the annular nozzle A/(8), a pressure difference occurs between the top and bottom ends due to the height difference, and if the pressure of the cooling water supply section (3) at the top is 'k(h), then the pressure at the bottom end is pressure d
(h+nX1o). As mentioned above, in the present invention, since h≦4ffi and the pressure is low, the pressure difference due to the zero inner diameter of the annular nozzle A/(81) cannot be ignored.

この圧力差による流量゛変動は少なくとも1096程度
以下にすることが望ましいところから・前記0式よル となる。
Since it is desirable that the fluctuation in flow rate due to this pressure difference be at least about 1096 or less, the equation 0 is satisfied.

従って、0式よ) h≧4.26 X 10  D (4,26X 1O−
4D気圧)・・・・・・■であることが必要である。
Therefore, it is formula 0) h≧4.26 X 10 D (4,26X 1O-
4D atmospheric pressure)...■.

従って0式と0式より 但し単位は A (−) 、 Q Cm’/hr ) 
、 D (fi)となる。
Therefore, from formula 0 and formula 0, the unit is A (-), Q Cm'/hr)
, D (fi).

従って、■式と0式よシ、最適なスリット断面積(勾は
、 40・Q≦A≦1200・Q/F となるのである。
Therefore, according to equations ① and 0, the optimal slit cross-sectional area (gradient) is 40・Q≦A≦1200・Q/F.

第2図は上記の関係をグラフに表わしたものであり、D
−60vn、90朗、120餌において所定冷却水流量
Qに対するスリット断面積(菊の範囲を示している。い
ずれもグラフ中の斜線内の(A)の値を採用すればよい
Figure 2 is a graphical representation of the above relationship, and D
The slit cross-sectional area (the chrysanthemum range is shown) for the predetermined cooling water flow rate Q for -60 vn, 90 ro, and 120 baits. In each case, the value (A) within the diagonal line in the graph may be adopted.

li記木本発明係る冷却管(1)によれば、所定圧力(
h)の冷却水が供給管(4)ヲ介してジャケット(3)
内に供給され、該冷却水は環状ノズル(8)から筒体(
2)内部内方に向って噴出される。このノズA/(81
からの噴出流は筒体(21の中心部に向って流れ、中央
部で衝突して筒体(21内に充満しようとする。このと
き、冷却水の一部は排水口(7)よシ排出されるが、供
、給された冷却水の残りの部分は筒体(2)の両端部開
口から排出され、この開口部を水流によって満たす。
According to the cooling pipe (1) according to the present invention, the predetermined pressure (
h) The cooling water is supplied to the jacket (3) through the supply pipe (4).
The cooling water is supplied from the annular nozzle (8) to the cylinder (
2) It is ejected inward. This nozzle A/(81
The jet flow from the cylinder (21) flows toward the center of the cylinder (21), collides at the center, and tries to fill the cylinder (21).At this time, some of the cooling water flows through the drain port (7). However, the remaining part of the supplied cooling water is discharged from openings at both ends of the cylinder (2), filling these openings with water flow.

これらの結果として、給水開始後迅速VC@体(2)内
部は冷却水で充満されて、浸漬状態に達する。
As a result, after the start of water supply, the inside of the VC body (2) is quickly filled with cooling water and reaches an immersion state.

しかして、上記浸漬状態において、入口ガイド部(5]
よフ線材又は棒鋼の線条材(9)が筒体(2)の軸心部
を貫通して走行することによフ、線条材(9)は冷却水
に浸漬された状態で冷却される。
Therefore, in the immersed state, the entrance guide part (5)
By running the wire material (9), which is a flat wire material or a steel bar, through the axial center of the cylinder (2), the wire material (9) is cooled while being immersed in cooling water. Ru.

この浸漬冷却において、ノズル(8)のスリット断面積
(A)を 40Q≦A≦1200Q//P  に設定し
ているので、冷却管(1)内での気泡の生成量が少なく
、しかも環状ノズル周方向各部から冷却管内へは均一な
冷却水流量が得られるため、冷却能及び冷却の均一性の
向上が図られる。
In this immersion cooling, the slit cross-sectional area (A) of the nozzle (8) is set to 40Q≦A≦1200Q//P, so the amount of bubbles generated in the cooling pipe (1) is small, and the annular nozzle Since a uniform flow rate of cooling water can be obtained from each part in the circumferential direction into the cooling pipe, cooling performance and uniformity of cooling can be improved.

表IVC,この鍾の浸漬型式冷却管(1)において、h
=0・6rn、5fflの場合の冷却能を比較して示し
てい、る・ 表1.浸漬型式冷却管における冷却能の比較この表1か
ら明らかな如(b=0.6mの万が11==5−のもの
J:り冷却能が優れている。即ち、h = 0.6のも
のは40・Q≦Ai満たしており、優れた冷却能を与え
ることがわ704る。
Table IVC, in the immersion type cooling pipe (1) of this h
Table 1 shows a comparison of the cooling capacity when = 0.6rn and 5ffl. Comparison of cooling capacity in immersion type cooling pipes As is clear from Table 1 (b = 0.6 m, 11 = = 5 - J: the cooling capacity is excellent. In other words, h = 0.6) The material satisfies 40·Q≦Ai, and is found to provide excellent cooling performance704.

尚、前記冷却管(1)において、その筒体(2)の中途
部の側面に排水口(7)ヲ設けたので、冷却管(1)内
における冷却水の有効な置換率(冷却水供給量0に対す
る冷却管中央部排水口(7)カらの冷却水の排出量Qc
O比; QO/Q > e高めることができた。
In addition, in the cooling pipe (1), since the drain port (7) is provided on the side surface of the cylindrical body (2), an effective replacement rate of cooling water (cooling water supply) in the cooling pipe (1) is provided. Amount Qc of cooling water discharged from the cooling pipe center drain port (7) relative to the amount 0
O ratio; QO/Q > e could be increased.

一般に、浸漬型式の冷却管に2いては、この冷却水の有
効な置換率が低ければ、それは冷却管内に冷却水の一部
が留まること全意味し、該冷却水の溜まりにより冷却管
内の平均水温が上昇し、圧延材定常部に対する冷却能は
、圧延材先端部に対する冷却能に比べ低くなる。即ち、
線条材の先端部と定常部とでは冷却水温度に差が生じ、
長手方向に不均一な冷却となる。
In general, for immersion type cooling pipes, if the effective displacement rate of this cooling water is low, it means that some of the cooling water remains in the cooling pipe, and the pooling of cooling water causes the average As the water temperature rises, the cooling capacity for the stationary part of the rolled material becomes lower than the cooling capacity for the leading end of the rolled material. That is,
There is a difference in cooling water temperature between the tip of the wire material and the stationary part.
This results in non-uniform cooling in the longitudinal direction.

これに対し、冷却管中央部から冷却水を管内に供給し、
冷却管の両端部より排水する従来の構造の冷却管(英公
昭57−14965号に記載のもの)であれば、冷却管
の長さが短かい場合は冷却水の入れ替わりが良好に行な
われるため問題ないが、冷却管の長さが長くなると(本
実施例では筒体(2)の内径は約60m〜120鱈、長
さに700鱈〜1.000調)、冷却水の一部が管内に
溜まることになり、冷却水の置換率が低下して好ましい
ものではなかった。
In contrast, cooling water is supplied into the pipe from the center of the cooling pipe,
If the cooling pipe has a conventional structure that drains water from both ends of the cooling pipe (as described in British Publication No. 57-14965), if the length of the cooling pipe is short, the cooling water will be replaced well. This is not a problem, but if the length of the cooling pipe becomes long (in this example, the inner diameter of the cylinder (2) is about 60 m to 120 m, and the length is about 700 m to 1,000 m), some of the cooling water will leak into the pipe. As a result, the cooling water replacement rate decreased, which was not preferable.

本実施例では、筒体(2)の中途部の側面に排水口(7
)ヲ設けることにより、冷却水の有効置換率を高めたの
で、このような不均一冷却の問題点が解決された。
In this embodiment, the drain port (7
), the effective replacement rate of cooling water was increased, and this problem of uneven cooling was solved.

尚、本発明は、前記実施例に限定されるものではなく、
第6図に示すように筒体(2〕の上側面に長手方向に沿
って排気孔明を設けた冷却管(1)にも適用される。こ
のように上側に排気孔明ヲ設けることにより、冷却管(
1)内に生成した気泡を有効に排出することができ、更
に冷却能の向上が図られる。
Note that the present invention is not limited to the above embodiments,
As shown in Fig. 6, the cooling pipe (1) is also applied to the cooling pipe (1) in which exhaust holes are provided along the longitudinal direction on the upper side of the cylindrical body (2). tube(
1) Air bubbles generated inside can be effectively discharged, further improving cooling performance.

本発明によれば、40・Q≦A≦1200Q/i  と
したので、環状ノズルからの冷却水の噴出速度は小さく
なル、気泡の生成を防止して冷却能の向上を図ると共に
、冷却管の冷却水供給部内の圧力()ズル部圧力)も小
さくていいため、冷却水供給用ポンプの動力費の大巾な
低減が可能となるものである。
According to the present invention, since 40.Q≦A≦1200Q/i, the jetting speed of the cooling water from the annular nozzle is small, and the generation of bubbles is prevented to improve the cooling capacity, and the cooling pipe Since the pressure in the cooling water supply section (the pressure at the nozzle section) can also be small, it is possible to significantly reduce the power cost of the cooling water supply pump.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を採用した冷却管の断面図、第2図は供
給水量0と環状ノズル径(至)に対する40・Q≦A≦
12ooQ/Jp  の関係を示すグラフ、第3図は本
発明に係る他の実施例を示す断面図である。 (1)・・・冷却管、(2)・・・筒体、(3)・・・
ジャケット(冷却水供給部) 、 (81・・・環状ノ
ズル。 特許出願人  株式会社神戸製鋼所 手続補正書(自発ン 昭和58年8 月311」 1 ・11件の表示 昭和58 年 特 許 願第 1 (l O032シ3
2 発  明 の名称 線口、棒鋼用の浸漬冷却管 3、補iFをする渚 ・1汀I゛との関係  特許出願人 (119)  閉式会社 神戸製鉋屑 プ代P11人 ・ワ577 5111絶理由通知の1印(袖ll−1令のII刊)7
、補正の内容 Ill  明iiF中、 msN第zs行gtv r 
(Qm3/h)」とあるのをr (Qm”/hr)Jと
訂正する〇(2)  同、第ro頁第13行目の 「Aニー Q 、  10゜ ”    3600 J  七あるのを1伊 「Aく−・Q −−J  と訂正する。 h     3600
Fig. 1 is a cross-sectional view of a cooling pipe employing the present invention, and Fig. 2 is a 40・Q≦A≦ for the supply water amount of 0 and the annular nozzle diameter (maximum).
A graph showing the relationship of 12ooQ/Jp and FIG. 3 are cross-sectional views showing another embodiment according to the present invention. (1)...Cooling pipe, (2)...Cylinder, (3)...
Jacket (cooling water supply section), (81... annular nozzle. Patent applicant: Kobe Steel, Ltd. Procedural Amendment (Spontaneous, August 311, 1982) 1. Display of 11 1981 Patent Application No. 1 (l O032shi3
2. Name of the invention, immersion cooling pipe for steel bars 3, relationship with Nagisa 1, which performs IF 1 seal of notification (sleeve ll-1 order II publication) 7
, Correction details Ill Mei II F, msNth row zs gtv r
(Qm3/h)” is corrected to r (Qm”/hr)J 〇(2) Same, page ro, line 13, “A knee Q, 10°” 3600 J Seven of them are 1 Italy: Correct as Aku-・Q--J.h 3600

Claims (1)

【特許請求の範囲】 1、 水平軸心を有する同体両端部に該軸心と同心状に
設けられた環状ノズルから筒体内部に向けて冷却水を噴
出せしめて筒体内部に冷却水全充満させ、該筒体軸心部
を貫通して走行する線材又は棒mを浸漬冷却する冷却管
において、前記両端部の環状ノズμのヌリツF断面積の
合計A(−)が、 40・Q≦A≦1,200・Q/、/T但t、D;環状
ノズルの内径(m) Q;冷却水流量(ゴ/hr ) であることを特徴とする線材、棒鋼用の浸漬冷却管。
[Claims] 1. Cooling water is jetted toward the inside of the cylinder from annular nozzles provided at both ends of the body having a horizontal axis and concentric with the axis, so that the inside of the cylinder is completely filled with cooling water. In the cooling pipe for immersion cooling the wire or rod m running through the axial center of the cylinder, the total A(-) of the cross-sectional areas of the annular nozzles μ at both ends is 40·Q≦ A immersion cooling pipe for wire rods and steel bars, characterized in that A≦1,200·Q/, /T, D: inner diameter of annular nozzle (m) Q: cooling water flow rate (g/hr).
JP10003283A 1983-06-02 1983-06-02 Immersion cooling pipe for wire rod and steel bar Granted JPS59226122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10003283A JPS59226122A (en) 1983-06-02 1983-06-02 Immersion cooling pipe for wire rod and steel bar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10003283A JPS59226122A (en) 1983-06-02 1983-06-02 Immersion cooling pipe for wire rod and steel bar

Publications (2)

Publication Number Publication Date
JPS59226122A true JPS59226122A (en) 1984-12-19
JPS6358208B2 JPS6358208B2 (en) 1988-11-15

Family

ID=14263186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10003283A Granted JPS59226122A (en) 1983-06-02 1983-06-02 Immersion cooling pipe for wire rod and steel bar

Country Status (1)

Country Link
JP (1) JPS59226122A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803484B1 (en) 2007-04-09 2008-02-14 현대제철 주식회사 Apparatus for guiding a rolled steel of a cooling stand trough
CN107537870A (en) * 2017-10-26 2018-01-05 中冶赛迪工程技术股份有限公司 A kind of high-quality big rod controlled cooling device
CN109261730A (en) * 2018-11-06 2019-01-25 重庆诺林工程技术有限公司 A kind of cooling tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5305192B2 (en) * 2008-06-26 2013-10-02 高周波熱錬株式会社 Steel bar coating equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803484B1 (en) 2007-04-09 2008-02-14 현대제철 주식회사 Apparatus for guiding a rolled steel of a cooling stand trough
CN107537870A (en) * 2017-10-26 2018-01-05 中冶赛迪工程技术股份有限公司 A kind of high-quality big rod controlled cooling device
CN109261730A (en) * 2018-11-06 2019-01-25 重庆诺林工程技术有限公司 A kind of cooling tube
CN109261730B (en) * 2018-11-06 2024-05-28 安徽中钢诺泰工程技术有限公司 Cooling pipe

Also Published As

Publication number Publication date
JPS6358208B2 (en) 1988-11-15

Similar Documents

Publication Publication Date Title
CN101247902B (en) Cooling device for thick steel plate
JPS59226122A (en) Immersion cooling pipe for wire rod and steel bar
JPS6358209B2 (en)
JPS629163B2 (en)
JP3801145B2 (en) High temperature steel plate cooling device
JP3293794B2 (en) Cooling system for continuous casting machine
KR101253898B1 (en) Cooling header
JPH04313417A (en) Immersion cooling device for wire rod and bar steel or the like
JPS59226121A (en) Immersion cooling pipe for wire rod and steel bar
KR100368283B1 (en) A submerged entty nozzle in strip caster of twin roll
JP5609143B2 (en) Thermal steel plate cooling device
JP2820812B2 (en) Cooling roll of twin roll continuous casting machine
JP4682669B2 (en) H-shaped steel cooling equipment and cooling method
JPS62270254A (en) Method and apparatus for producing directly metal strip
JPH09201661A (en) Method for secondary-cooling continuously cast slab
JPH064893B2 (en) How to cool wire rods and steel bars
JPH09287026A (en) Method for hot treatment of metal bar material and cooling device
JP2007260748A (en) Facility and method for cooling wide flange shape steel
JP3190239B2 (en) Nozzle top cooling header tube for steel strip cooling
JPS638752Y2 (en)
JPH05200427A (en) Apparatus and method for dipping and cooling wire rod, bar steel, etc.
JP4752252B2 (en) H-shaped steel cooling method
JPH0114284B2 (en)
JPS63123552A (en) Cooling apparatus for belt in belt type continuous casting machine
JPH05177312A (en) Pouring nozzle for twin roll type continuous caster