JPS5922607A - Electrodialysis device - Google Patents

Electrodialysis device

Info

Publication number
JPS5922607A
JPS5922607A JP57131385A JP13138582A JPS5922607A JP S5922607 A JPS5922607 A JP S5922607A JP 57131385 A JP57131385 A JP 57131385A JP 13138582 A JP13138582 A JP 13138582A JP S5922607 A JPS5922607 A JP S5922607A
Authority
JP
Japan
Prior art keywords
layers
ions
permeable membrane
chambers
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57131385A
Other languages
Japanese (ja)
Other versions
JPH0318924B2 (en
Inventor
Hiroyoshi Mizuguchi
博義 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP57131385A priority Critical patent/JPS5922607A/en
Publication of JPS5922607A publication Critical patent/JPS5922607A/en
Publication of JPH0318924B2 publication Critical patent/JPH0318924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To perform electrodialysis without requiring any external power source by providing two kinds of porous material layers having different oxidation-reduction potentials near both surfaces of films. CONSTITUTION:Sodium chloride solns. are introduced through an inlet 5 for concd. liquid, an inlet 4 for dilute liquid and an inlet 4a for capturing liquid into respective concentrating chambers C and dilution chambers D. The porous copper layers 1a and porous nickel layers 1b adhered tightly to ion exchange membranes A, K in this state are impregnated respectively in electrolytes, thus exhibiting respectively different potentials. Potential differences are then generated between said potentials. About 340mV potential difference is generated in, for example, a 0.1N sodium chloride soln. Electric current flows through a short circuiting part 3 in accordance with the potential difference thereof, but nickel ions elute continuously as anode eluting ions from the layers 1b to the chambers D; therefore, the potential difference between both layers are not annihilated. Thus, both layers maintain the polarization state.

Description

【発明の詳細な説明】 この発明は、電気透析装置に関する。 さらに詳しくは
、外部からの電力供給を必要としない省エネルギー形の
構成からなり、海水淡水化や食品脱塩処理等に有用な電
気透析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrodialysis device. More specifically, the present invention relates to an electrodialysis device that has an energy-saving configuration that does not require an external power supply and is useful for seawater desalination, food desalination processing, and the like.

従来から、イオン透過性膜と電解槽とを糾合せた電気透
析装置は電解質溶液の濃縮及び/又は希釈(親電解質)
を目的として種々の用途に用いられている。 これらの
うち多重イオン透過性膜式電気透析装置の概略図を第1
図に示す。 第1図は電解質溶液として塩化ナトリウム
溶液を例としたものであり、濃縮液入口(5)より塩化
ナトリウム溶液が、アニオン透過性膜(A)及びカチオ
ン透過性膜(幻を処理槽(2°)内に交互に張設して区
画形成した濃縮室■に導入される。 一方、希釈液入口
(4)より塩化す)IIウム溶液が希釈室■にも導入さ
れる。 この状態で処理槽内の電極03及び04)に直
流の電圧をかけるとナトリウムイオン(Na”)は陰極
e方向に引かれ、塩素イオン(C1−)は陽極■方向に
引かれるが、希釈室Φ内のNa+とO/−はそれぞれカ
チオン透過性膜(K)及びアニオン透過性膜(A>を通
して隣接しfC濃濃縮室へと透過移行する。 一方、濃
縮室■内のNa+とat−は(幻及び(A)の作用によ
って透過できず、希釈室■に移行しない(図中、矢印参
照)。 すなわち希釈室0内の塩化ナトリウム濃度は低
下【−1濃縮室■内の塩化ナトリウム濃度は上昇する。
Conventionally, electrodialysis devices that combine an ion-permeable membrane and an electrolytic cell have been used to concentrate and/or dilute an electrolyte solution (parent electrolyte).
It is used for various purposes. Among these, the schematic diagram of the multiple ion-permeable membrane electrodialysis device is shown in the first section.
As shown in the figure. Figure 1 shows an example of a sodium chloride solution as an electrolyte solution, and the sodium chloride solution is applied from the concentrate inlet (5) to the anion-permeable membrane (A) and the cation-permeable membrane (phantom) to the treatment tank (2° ) is introduced into the concentration chamber (2), which is partitioned by extending alternately between the diluent (2).Meanwhile, the diluent (II) chloride solution is also introduced into the dilution chamber (2) from the diluent inlet (4). In this state, when a DC voltage is applied to electrodes 03 and 04) in the processing tank, sodium ions (Na") are drawn toward the cathode e, and chlorine ions (C1-) are drawn toward the anode Na+ and O/- in Φ pass through the cation-permeable membrane (K) and anion-permeable membrane (A>, respectively) to the adjacent fC concentration chamber. On the other hand, Na+ and at- in the concentration chamber ■ (Due to the action of phantom and (A), it cannot pass through and does not move to dilution chamber ■ (see arrow in the figure). In other words, the sodium chloride concentration in dilution chamber 0 decreases [-1 The sodium chloride concentration in concentration chamber ■ Rise.

 従って電解質溶液の濃縮及び/又は希釈が行なわれる
こととなる。
Therefore, the electrolyte solution will be concentrated and/or diluted.

しかしながら上記のごとき従来の装置においては処理槽
内の電極(lj及び04)に直流電圧を外部から連続的
に供給する必要があり、高電力を必要とし稼動コストが
高くなる点不利であった。
However, in the conventional apparatus as described above, it is necessary to continuously supply DC voltage from the outside to the electrodes (lj and 04) in the processing tank, which is disadvantageous in that it requires high power and increases operating costs.

この発明は、このような欠点を解消すべくなされたもの
であり、外部からの電力供給を必要としない省エネルギ
ー形の電気透析装置を提供するものである。
The present invention has been made to eliminate these drawbacks, and provides an energy-saving electrodialysis device that does not require an external power supply.

かくしてこの発明に↓れば、処理槽内にアニオン透過性
膜とカチオン透過性膜とを交互に張設して区画し、それ
ぞれの膜の両面近傍に異なる酸化還元電位を有する二種
の多孔性物質層をそれぞれ規則的に設けて濃縮室及び希
釈室を交互に設定すると共に、それぞれの二種の多孔性
物質層を処理液外部で短絡ζせることにより、電解質含
有溶液の濃縮液と希釈液をそれぞれ濃縮室と希釈室に生
成できるよう構成されてなり、ざらに上記多孔性物質層
から溶出されつるイオンと逆性のイオン透過性膜を希釈
室及び/又は濃縮室内の対応する多孔性物質層の近傍に
張設区画し上記イオンの希釈液及び/又は濃縮液中への
混入を防止すべく構成したことからなる外部電源を要し
ない電気透析装置が提供される。
Thus, according to the present invention, anion-permeable membranes and cation-permeable membranes are alternately stretched and partitioned in a treatment tank, and two types of porous membranes having different redox potentials are formed near both sides of each membrane. By providing regular material layers and alternately setting concentration chambers and dilution chambers, and by short-circuiting each of the two porous material layers outside the processing solution, concentrated and diluted electrolyte-containing solutions can be prepared. The ion-permeable membrane is configured to generate ions in the concentration chamber and dilution chamber, respectively, and the ion-permeable membrane, which is opposite to the ions eluted from the porous material layer, is generated in the corresponding porous material in the dilution chamber and/or concentration chamber. There is provided an electrodialysis apparatus which does not require an external power source and is structured so as to prevent the above-mentioned ions from being mixed into the diluted solution and/or concentrated solution by providing a section in the vicinity of the layer.

以下、添付図面に従いこの発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第2図は、この発明の電気透析装置の一具体例を示す構
成説明図である。 図において、まず異なる酸化還元電
位を有する銅多孔質層(la)とニッケル多孔質層(l
b)とを両面にそれぞれ蒸着によって密着形成させたア
ニオン透過性膜(A)と、同様に銅多孔質層(la)及
びニッケル多孔質層(1b)を密着形成させたカチオン
透過性膜(K)が、それぞれ直方体状の処理槽(2)内
に交互に所定間隔で複数張設されており、これらの膜及
び処理槽に工って濃縮室■及び希釈室■が゛交互に多数
区画形成されている。 イオン透過性膜(蜀、(6)の
両面に規則的に密着した銅多孔質層(1a)とニッケル
多孔質層(11))は、それぞれ銅製の結線からなる短
絡部(31によって処理槽外で電気的に接続されている
FIG. 2 is a configuration explanatory diagram showing a specific example of the electrodialysis apparatus of the present invention. In the figure, first a copper porous layer (la) and a nickel porous layer (l) with different redox potentials are shown.
An anion permeable film (A) in which a copper porous layer (la) and a nickel porous layer (1b) are formed in close contact with each other on both sides by vapor deposition, and a cation permeable film (K) in which a copper porous layer (la) and a nickel porous layer (1b) are similarly formed in close contact with each other. ) are installed alternately at predetermined intervals in a rectangular parallelepiped processing tank (2), and these membranes and processing tanks are constructed to form a large number of concentration chambers (■) and dilution chambers (■) alternately. has been done. The copper porous layer (1a) and the nickel porous layer (11) regularly adhered to both sides of the ion-permeable membrane (Shu, (6)) are connected to the outside of the processing tank by short-circuit parts (31) consisting of copper connections, respectively. electrically connected.

そして、各希釈室Φ内のニッケル多孔質層(11))の
近傍にはさらにアニオン透過性膜(la)がそれぞれ張
設されてなシこれにニジニッケルイオン捕集部■が区画
形成されている。 また濃縮室■及び希釈室■には、第
1図に示したと同様な濃縮液入口(5)及び出口(5り
並びに希釈液入口(4)及び出口(4りが液送管を通し
て接続されており、さらに希釈室Φのニッケルイオン捕
集部■には同様に捕集用液入口(4a)及び出口(4a
’)が液送管を通して接続これている。
Further, an anion-permeable membrane (la) is stretched in the vicinity of the nickel porous layer (11) in each dilution chamber Φ, and a nickel ion trapping section (■) is formed in this. There is. In addition, the concentration chamber (■) and the dilution chamber (■) have a concentrated liquid inlet (5) and an outlet (5) and a diluted liquid inlet (4) and an outlet (4) similar to those shown in Fig. 1, which are connected through a liquid feed pipe. In addition, the nickel ion collecting section ■ of the dilution chamber Φ is also provided with a collecting liquid inlet (4a) and an outlet (4a).
') is connected through the liquid feed pipe.

上記構成において、電解質として塩化ナトリウム溶液を
用いた場合の機能を説明する。 まず、従来と同様に濃
縮液入口(5)、希釈液入口(4)及び捕集用液入口(
4a)を通じて各々の濃縮室■及び希釈室Φ内に塩化ナ
トリウム溶液が導入される。
In the above configuration, the function when a sodium chloride solution is used as the electrolyte will be explained. First, as before, the concentrate inlet (5), the diluted liquid inlet (4), and the collection liquid inlet (
Through 4a) a sodium chloride solution is introduced into each concentration chamber ⑦ and dilution chamber Φ.

この状態において、イオン交換膜(A)、(幻に密着さ
れた銅多孔質層(1a)とニッケル多孔質層(1b)と
はそれぞれ電解質中に浸漬された状態となシそれぞれ異
なった電位を示し、その間に電位差を生じる。 例えば
0.INの塩化ナトリウム溶液中においては約840m
’V の電位差が生じる。 そしてこの電位差に基づい
て短絡部(3)を通じて電流が流れるが、ニッケル多孔
質層(1b)からニッケルイオンが連続的にアノード溶
出イオンとして希釈槽■へ七溶出するため両層の電位差
は消滅することなく、従って両層は第2図中に示すとと
く■eの分極状態を維持する。
In this state, the ion exchange membrane (A), the copper porous layer (1a) and the nickel porous layer (1b), which are in close contact with each other, are each immersed in the electrolyte and each has a different potential. For example, in a 0.IN sodium chloride solution, a potential difference of about 840 m
A potential difference of 'V occurs. Based on this potential difference, a current flows through the short circuit part (3), but the potential difference between the two layers disappears because nickel ions are continuously eluted from the nickel porous layer (1b) to the dilution tank 2 as anode eluted ions. Therefore, both layers maintain the polarization state (e) shown in FIG.

従って、捕集部■を除く希釈室の内のNa  はそれぞ
れ矢印の如く銅多孔質層(1a)及びカチオン透過性膜
(幻を透過して隣室の濃縮室■のマイナスに分極したニ
ッケル多孔質層(11))附近に移動する。 また希釈
室Φ内のC1−は同様にニッケル多孔質層(lb)及び
アニオン透過性膜(A)を透過して隣室の濃縮室■内の
プラスに分極した銅多孔質層(Xa)附近に移動する。
Therefore, Na in the dilution chamber except for the collection section (2) passes through the copper porous layer (1a) and the cation-permeable membrane (the negatively polarized nickel porous layer (1a) in the adjacent concentration chamber (2) as shown by the arrows). Move to the vicinity of layer (11)). Similarly, C1- in the dilution chamber Φ passes through the nickel porous layer (lb) and the anion-permeable membrane (A) and enters the vicinity of the positively polarized copper porous layer (Xa) in the adjacent concentration chamber ■. Moving.

 一方、濃縮室■内のNa+及びaZ−は矢印の如く多
孔質層の分極極性及びイオン透過性膜(A)、(幻の作
用にxシ隣接した希釈室の内に移動することはなくその
まま滞留する。
On the other hand, Na+ and aZ- in the concentration chamber (2) do not move into the adjacent dilution chamber (x) due to the polarization of the porous layer and the ion-permeable membrane (A) as shown by the arrow, but remain as they are due to the phantom action. stay.

従って濃縮室■内にはNa+とO/−が濃縮され、希釈
室■内においてはニッケルイオン捕集部■を除いてNa
+とC1−が希釈され、従来と同様にして電解質の濃縮
及び/又は希釈が行なわれる。
Therefore, Na+ and O/- are concentrated in the concentration chamber ■, and Na+ and O/- are concentrated in the dilution chamber ■, except for the nickel ion collection section ■
+ and C1- are diluted, and the electrolyte is concentrated and/or diluted in the conventional manner.

さらに、希釈室■内においてアニオン透過性膜(Ao)
がそれぞれ張設されているためニッケル多孔質層(lb
)から溶出されるニッケルイオンは捕集部■内に滞留保
持され、希釈室[F]内のNa+及びat−が希釈され
た希釈液中に混入することはない。
Furthermore, an anion permeable membrane (Ao) is
nickel porous layer (lb
The nickel ions eluted from ) are retained and retained in the collection section (1), and do not mix into the diluted solution containing Na+ and at- in the dilution chamber [F].

従って、多孔質層からの新たなイオンが混入することな
(Na+及びO/−の濃度が薄められた希釈液を得るこ
とができる。
Therefore, a diluted solution with a diluted concentration of Na+ and O/- can be obtained without contamination with new ions from the porous layer.

この発明における異なる酸化還元電位を有する二つの多
孔性物質層は、上記のごとき金属からなるものに限定さ
れることはなく、少なくとも電解質溶液中に浸漬させた
場合に充分な電位差を生ずる物質の組合せであればよく
、各種金属や導電性物質等が使用できる。 また、多孔
性とは、目的イオンが通過できる程度のものであればよ
く、網状のものであってもよい。
The two porous material layers having different redox potentials in this invention are not limited to those made of metals as mentioned above, but are at least a combination of materials that produce a sufficient potential difference when immersed in an electrolyte solution. Various metals, conductive substances, etc. can be used. Further, the porosity is sufficient as long as it allows the target ions to pass through, and may be in the form of a network.

tfc、アニオン透過性膜及びカチオン透過性膜として
は、イオン選択性ケ有する各種アニオン交換膜やカチオ
ン交換膜等、当該分野で知られたものが種々適用できる
As the TFC, anion-permeable membrane, and cation-permeable membrane, various types known in the art can be used, such as various anion-exchange membranes and cation-exchange membranes having ion selectivity.

一方、二つの多孔性物質層はそれぞれイオン透過性膜の
両面又はその近傍に位置されておればよいが、通常、無
電解メッキ、蒸着又はスパッタリング等の方法によって
両面に密着形成されていることが効率の上昇や覗シ扱い
の簡易さ等の点で好ましい。
On the other hand, the two porous material layers may be located on both sides of the ion-permeable membrane or in the vicinity thereof, but they are usually formed in close contact with both sides by a method such as electroless plating, vapor deposition, or sputtering. This is preferable in terms of increased efficiency, ease of handling, etc.

また、この発明において短絡部とは比較的低い電気抵抗
の物質からなり電源素子のないものであればよく、例え
ば当該膜の端部を貫通してボルトとナツトで固定した程
度のものでもよい。 また、運転状況の管理のためにこ
の短絡回路に電流計等を挿入する場合もあυうるが、こ
れらのインピーダンスが小さいかぎり、所望の電気透析
現象は具現されるので短絡されているものとみなされる
Further, in the present invention, the short-circuit portion may be made of a material with relatively low electrical resistance and has no power supply element, and may be, for example, a short-circuit portion that penetrates the end of the membrane and is fixed with a bolt and nut. It is also possible to insert an ammeter or the like into this short circuit to manage the operating status, but as long as the impedance of these is small, the desired electrodialysis phenomenon will occur, so it is assumed that there is a short circuit. It will be done.

なお、前記具体例において、ニッケルイオンを含有しな
い濃縮液の生成をも所望する場合には、濃縮室O内のニ
ッケル多孔質層(lb)近傍にさらにアニオン透過性膜
を張設して捕集部■を設ければ工く、場合に1つではこ
れのみを行なってもよい。 さらに、かようなアノード
溶出イオンのみならず、カソードから溶出されうる各種
陰イオン(例えば、多孔性物質層としてTTF−TOI
JQ、ポリアセチレン、弗化黒鉛等の有機高分子材料を
カソードとして用いた際にはカソードから陰イオンが溶
出される惧れがある)の希釈液及び/又は濃縮液への混
入を防止するために陽イオン透過性膜−A4 を張設区画してもよい。 すなわち、少なくともアノー
ド及びカソードとなる多孔性物質層から溶出されうるイ
オンと逆性のイオン透過性膜を、希釈室及び/又は濃縮
室内の対応する(イオンを溶出する)多孔性物質層の近
傍に張設区画しておればよい。 これによって希釈液及
び/又は濃縮液への夾雑イオンの混入を防止することが
できる。
In the above specific example, if it is desired to generate a concentrated liquid that does not contain nickel ions, an anion-permeable membrane is further installed near the nickel porous layer (lb) in the concentration chamber O to collect the nickel ions. This can be done by providing a section (3), but in some cases, one section may do just this. Furthermore, in addition to the ions eluted from the anode, various anions that can be eluted from the cathode (for example, TTF-TOI as a porous material layer)
To prevent contamination of diluted and/or concentrated liquids (there is a risk that anions may be eluted from the cathode when organic polymer materials such as JQ, polyacetylene, and fluorinated graphite are used as cathodes) A section may be provided with a cation permeable membrane-A4. That is, at least an ion-permeable membrane having a polarity opposite to the ions that can be eluted from the porous material layer serving as the anode and cathode is placed near the corresponding porous material layer (which elutes ions) in the dilution chamber and/or the concentration chamber. It is sufficient if it is divided into sections. This can prevent contaminant ions from entering the diluted solution and/or concentrated solution.

この発明の電気透析装置は、海水淡水化のみならず、牛
乳や醤油等の食品の脱塩、水の電解、アルカリ電解、造
塩等に適用することができ、いずれにおいても外部電力
を必要としない点で有用である。 そして、船舶や離島
等、電力が得難い場所での電気透析に好適である。
The electrodialysis device of the present invention can be applied not only to seawater desalination but also to desalination of foods such as milk and soy sauce, water electrolysis, alkaline electrolysis, salt production, etc., and in all cases, external power is not required. It is useful in that it does not. Moreover, it is suitable for electrodialysis in places where it is difficult to obtain electric power, such as ships and remote islands.

以下、実施例を示してこの発明をさらに詳しく説明する
Hereinafter, the present invention will be explained in more detail by showing examples.

実施例り 第8図にその溝底を示すごとき電気透析装置を作製した
。 図において(61、(7)、(81はそれぞれ希釈
液、濃縮液、ニッケルイオン捕集液を流量5層V分 1
0− で循環させる流路であり、それぞれ送液ポンプ(91α
01])が付設されてなる。 アニオン透過性膜(A)
 (Aりとしては膜表面積約28i、厚み約0.11〜
0.15Uのアニオン交換膜(セレミオンA8V、旭硝
子(株や商標名)を用いた。 一方、カチオン透過性膜
(K)としては、同じく膜表面積約28d1厚み約0.
16〜0.17ffのカチオン交換膜(ネオセブター0
L−25T、徳山曹達(株)の商標名)を用いた。 そ
してアニオン透過性膜(A)及びカチオン透過性膜((
転)にはそれぞれ図に示した配列で銅多孔質層(la)
及びニッケル多孔質層(lb)が無電解メッキによって
密着形成されている(厚み約0.5μm)。 そして他
の構成は、前記第2図と同様とされている。 なお、各
区画部分の容積はそれぞれ約5.6ゴである。 場合に
よっては捕集部■も濃縮部Oと同程度の容積としてもよ
い。
EXAMPLE An electrodialyzer was prepared as shown in FIG. 8, the groove bottom of which is shown. In the figure, (61, (7), and (81) are the diluted solution, concentrated solution, and nickel ion collection solution, respectively, with a flow rate of 5 layers V min.
This is a flow path that circulates at 0-.
01]) is attached. Anion permeable membrane (A)
(As for A, the membrane surface area is about 28i, the thickness is about 0.11~
A 0.15U anion exchange membrane (Celemion A8V, Asahi Glass Co., Ltd. or trade name) was used. On the other hand, the cation-permeable membrane (K) had a membrane surface area of about 28d1 and a thickness of about 0.15U.
16-0.17ff cation exchange membrane (Neosebuta 0
L-25T (trade name of Tokuyama Soda Co., Ltd.) was used. And an anion permeable membrane (A) and a cation permeable membrane ((
A copper porous layer (la) is placed on each layer (la) in the arrangement shown in the figure.
And a nickel porous layer (lb) is closely formed by electroless plating (thickness: about 0.5 μm). The other configurations are the same as those shown in FIG. 2 above. Note that the volume of each compartment is approximately 5.6 g. Depending on the case, the collection section (2) may also have a volume comparable to that of the concentration section (O).

かような構成において、槽内にそれぞれNap/溶液(
2oooppm)を導入し、循環させた。
In such a configuration, Nap/solution (
2oooppm) was introduced and circulated.

そしてナトリウムイオン選択性ガラス電極、塩素イオン
電極及び参照電極を備えた検出部α2で希釈液の)Ja
il濃度を測定したところ、約50分後に希釈液内のN
apl濃度が約200 ppmと減少していることが確
認された。 さらにこの希釈液をサンプリングし原子吸
光光度計にかけたところ、ニッケルイオンは検出されな
かった(なお、原子吸光光度計によるニッケルイオンの
検出限界dO,02り/jであった)。
Then, in the detection part α2 equipped with a sodium ion-selective glass electrode, a chloride ion electrode, and a reference electrode, the diluted solution is
When the il concentration was measured, it was found that the N in the diluted solution decreased after about 50 minutes.
It was confirmed that the apl concentration had decreased to about 200 ppm. Further, when this diluted solution was sampled and subjected to an atomic absorption spectrometer, no nickel ions were detected (the detection limit for nickel ions by an atomic absorption spectrometer was dO,02/j).

一第4図に、上記実施例におけるNa+及びCI−の希
釈液中の濃度の経時変化を示す。
FIG. 4 shows the changes over time in the concentration of Na+ and CI- in the diluted solution in the above example.

一方、アニオン透過性膜(Aり及び捕集液流路(7)を
除く以外、上記実施例と同様にしてNaC1溶液の電気
透析を行なったところ、Na+とat−の経時変化は同
様であったが、希釈液中にo、axq/1のニッケルイ
オンが混入していることが判明した。
On the other hand, when the NaCl solution was electrodialyzed in the same manner as in the above example except that the anion-permeable membrane (A and the collection liquid channel (7) were removed), the changes over time of Na+ and at- were similar. However, it was found that nickel ions of o, axq/1 were mixed in the diluted solution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の電気透析装置の一例を示す構成説明図
、第2図は、この発明の電気透析装置の一具体例を示す
構成説明図、第8図は、この発明の電気透析装置の他の
具体例を示す構成説明図、第4図は、この発明の電気透
析装置の透析効果の一例を示すグラフである。 (1a)・・・銅多孔質層、(ib)・・−ニッケル多
孔質層、(2)、(2°)・・・処理槽、(3)・・・
短絡部、(4)・・・希釈液入口、(45・・・希釈液
出口、(4a)・・・捕集用液入口、(4a9・・・捕
集用液出口、(5)・・・濃縮液入口、(5°)・・・
濃縮液出口、(6)、(7)、(81−・・流路、t9
1、(ld、 flll・・・送液ポンプ、02・・・
検出部、03・・・陰極、α滲・・・陽極、C9・・・
陰極室、C61・・・陽極室、C71・・・陰極室液、
[1B+・・・陽極室液、(A)・・・アニオン透過性
膜、(K)・−・カチオン透過性膜、■・・・濃縮室、
■・・・希釈室、■・・・ニッケルイオン捕集部。  18− 第1図 第3図 −33− 第4図 時間(分)→
FIG. 1 is a configuration explanatory diagram showing an example of a conventional electrodialysis device, FIG. 2 is a configuration explanatory diagram showing a specific example of the electrodialysis device of the present invention, and FIG. 8 is a configuration explanatory diagram showing an example of the electrodialysis device of the present invention. FIG. 4 is a graph showing an example of the dialysis effect of the electrodialysis apparatus of the present invention. (1a)...Copper porous layer, (ib)...Nickel porous layer, (2), (2°)...Processing tank, (3)...
Short circuit part, (4)... Diluent inlet, (45... Diluent outlet, (4a)... Collection liquid inlet, (4a9... Collection liquid outlet, (5)...・Concentrate inlet, (5°)...
Concentrate outlet, (6), (7), (81-... flow path, t9
1, (ld, flll...liquid pump, 02...
Detection part, 03... cathode, α leak... anode, C9...
Cathode chamber, C61... Anode chamber, C71... Cathode chamber liquid,
[1B+...Anode chamber liquid, (A)...Anion permeable membrane, (K)...Cation permeable membrane, ■...Concentration chamber,
■...Dilution chamber, ■...Nickel ion collection section. 18- Figure 1 Figure 3-33- Figure 4 Time (minutes) →

Claims (1)

【特許請求の範囲】 1、処理槽内にアニオン透過性膜とカチオン透過性膜と
を交互に張設して区画し、それぞれの膜の両面近傍に異
なる酸化還元電位を有する二種の多孔性物質層をそれぞ
れ規則的に設けて濃縮室及び希釈室を交互に設定すると
共に、それぞれの二種の多孔性物質層を処理液外部で短
絡させることにより電解質含有溶液の濃縮液と希釈液を
それぞれ濃縮室と希釈室に生成できるよう構成されてな
り、さらに上記多孔性物質層から溶出されうるイオンと
逆性のイオン透過性膜を希釈室及び/又は濃縮室内の対
応する多孔性物質層の近傍に張設区画し上記イオンの希
釈液及び/又は濃縮液中への混入を防止すべく構成した
ことからなる外部電源を要しない電気透析装置。 2.7ニオン透過性膜及びカチオン透過性膜が、イオン
選択性を有するアニオン交換膜及びカチオン交換膜から
なる特許請求の範囲第1項記載の装置。
[Scope of Claims] 1. Anion-permeable membranes and cation-permeable membranes are alternately stretched and partitioned in the treatment tank, and two types of porous membranes having different redox potentials are formed near both sides of each membrane. Concentration chambers and dilution chambers are set up alternately by providing the material layers regularly, and the two types of porous material layers are short-circuited outside the processing solution to separate the concentrated and diluted electrolyte-containing solutions, respectively. an ion-permeable membrane having a polarity opposite to that of ions that can be eluted from the porous material layer in the vicinity of the corresponding porous material layer in the dilution chamber and/or the concentration chamber; An electrodialysis apparatus that does not require an external power source, and is configured to prevent the above-mentioned ions from being mixed into the diluted solution and/or concentrated solution. 2.7 The device according to claim 1, wherein the ion-permeable membrane and the cation-permeable membrane are an anion-exchange membrane and a cation-exchange membrane having ion selectivity.
JP57131385A 1982-07-27 1982-07-27 Electrodialysis device Granted JPS5922607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57131385A JPS5922607A (en) 1982-07-27 1982-07-27 Electrodialysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57131385A JPS5922607A (en) 1982-07-27 1982-07-27 Electrodialysis device

Publications (2)

Publication Number Publication Date
JPS5922607A true JPS5922607A (en) 1984-02-04
JPH0318924B2 JPH0318924B2 (en) 1991-03-13

Family

ID=15056714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57131385A Granted JPS5922607A (en) 1982-07-27 1982-07-27 Electrodialysis device

Country Status (1)

Country Link
JP (1) JPS5922607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525420A (en) * 2008-06-24 2011-09-22 ソルトワークス テクノロジーズ インコーポレイテッド Desalination method, apparatus and plant for salt water using concentration difference energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011525420A (en) * 2008-06-24 2011-09-22 ソルトワークス テクノロジーズ インコーポレイテッド Desalination method, apparatus and plant for salt water using concentration difference energy

Also Published As

Publication number Publication date
JPH0318924B2 (en) 1991-03-13

Similar Documents

Publication Publication Date Title
Strathmann Ion-exchange membrane separation processes
US10329174B2 (en) Apparatus and process for separation and selective recomposition of ions
US20110042219A1 (en) Non-faraday based systems, devices and methods for removing ionic species from liquid
US20080078672A1 (en) Hybrid Capacitive Deionization and Electro-Deionization (CDI-EDI) Electrochemical Cell for Fluid Purification
US9845252B2 (en) Water desalination/purification and bio-agent preconcentration by ion concentration polarization
US10099945B2 (en) Ion concentration polarization-electrocoagulation hybrid water treatment system
CN104524976A (en) Electric nanofiltration device for selective separation of monovalent/multivalent ions
Strathmann Electrodialysis and its application in the chemical process industry
JP2021526460A (en) Two-membrane acid or alkaline solution online generator
US20080160357A1 (en) Increased Conductivity and Enhanced Electrolytic and Electrochemical Processes
US6798639B2 (en) Fluid deionization flow through capacitor systems
Dermentzis et al. Continuous capacitive deionization–electrodialysis reversal through electrostatic shielding for desalination and deionization of water
Rommerskirchen et al. Mitigating Water Crossover by Crosslinked Coating of Cation‐Exchange Membranes for Brine Concentration
JPH07100391A (en) Electric regeneration type continuous ion exchange device and its use method
NL1036233C2 (en) Device and method for performing an electrodialysis or a reverse electrodialysis process.
JP2002273439A (en) Desalting method and device therefor
JPS5922607A (en) Electrodialysis device
JP2002336865A (en) Desalting apparatus and desalting method
JPS5923842B2 (en) electrodialysis machine
JP2002336864A (en) Desalted water making method and desalted water making apparatus
JP2002210334A (en) Apparatus for desalting and method for desalting
JP2002336866A (en) Desalting apparatus and desalting method
JP2002210468A (en) Demineralizing device and demineralizing method
SU867391A1 (en) Electrodialyzer
JP2003039070A (en) Device and method for producing desalted water