JPS59225889A - Resistance welding method of steel plate treated with high resistance film on surface - Google Patents

Resistance welding method of steel plate treated with high resistance film on surface

Info

Publication number
JPS59225889A
JPS59225889A JP10150083A JP10150083A JPS59225889A JP S59225889 A JPS59225889 A JP S59225889A JP 10150083 A JP10150083 A JP 10150083A JP 10150083 A JP10150083 A JP 10150083A JP S59225889 A JPS59225889 A JP S59225889A
Authority
JP
Japan
Prior art keywords
resistance
inter
chip resistance
reference value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10150083A
Other languages
Japanese (ja)
Inventor
Nobusuke Horikawa
堀川 円佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dengensha Toa Co Ltd
Original Assignee
Dengensha Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dengensha Manufacturing Co Ltd filed Critical Dengensha Manufacturing Co Ltd
Priority to JP10150083A priority Critical patent/JPS59225889A/en
Publication of JPS59225889A publication Critical patent/JPS59225889A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/256Monitoring devices using digital means the measured parameter being the inter-electrode electrical resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Abstract

PURPOSE:To obtain a weld nugget having stable and high quality by detecting the inter-chip resistance at the time when the weld nugget begins to form and controlling the weld time with said resistance value as a reference. CONSTITUTION:The change ratio of the inter-chip resistance is successively compared at every prescribed cycle, and when the change rate attains the value smaller than a set reference value A, the inter-chip resistance at the point of that time as a reference value B is held in a holding circuit 5 for the reference value of the inter-chip resistance and an arithmetic circuit 6 for stopping current conduction is operated so as to start the integration with time of the difference between said value and the succeeding inter-chip resistance. The current conduction is stopped by the next timer circuit 7 for stopping the current conduction according to the output signal therefrom and sure control is thus automatically accomplished so as to form a weld nugget having good quality.

Description

【発明の詳細な説明】 本発明は、シンクロメタル等旨抵抗被膜をもつ表面処理
鋼板のスポット浴接などの重ね抵抗溶接法に関し、さら
に詳しくは、スポット溶接VCおける溶接ナゲツト適応
制御に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to lap resistance welding methods such as spot bath welding of surface-treated steel sheets with a synchrometal resistive coating, and more particularly to adaptive control of weld nuggets in spot welding VC.

最近、自動車のホティ寺にシンクロメタルが多用されて
いる7、一般にシンクロメタル等絶縁性被膜金有するi
+l・fl 4にのスポット溶接は、浴接電流の初期値
及びその電流−」二昇率が微妙でめり、多くは溶接通電
期間の初期に電極チップ間に爆飛が発生[4被溶接材の
表面を損傷したり、チップ先端が溶融炭化したりして、
この釉の溶接作業は一段と困難を極めている。
Recently, Synchro Metal has been widely used in automobiles.In general, Synchro Metal has an insulating coating.
In spot welding of +l・fl 4, the initial value of the bath welding current and its current -2 rise rate are delicate, and explosions often occur between the electrode tips at the beginning of the welding energization period [4 This may damage the surface of the material or cause the tip of the tip to melt and carbonize.
Welding this glaze is even more difficult.

一方、表面処理がされていない、いわゆるミガキ軟鋼板
のチップ間抵抗の波形は、第1図に示すように、通電開
始後2サイクル〜3サイクルの間は、上昇を示し、3サ
イクル〜4サイクルにかけてピークに達し、その局部的
S:犬11μ附近で溶接ナゲツトができはじめ、以後、
浴接ナゲツトが成長するにつれチップ間抵抗は暫減して
ゆく。
On the other hand, as shown in Figure 1, the waveform of the chip-to-chip resistance of a so-called polished mild steel plate that has not been surface-treated shows an increase during the 2nd to 3rd cycles after the start of energization, and then increases during the 3rd to 4th cycles. It reached a peak around S: 11μ, and a welding nugget began to form, and from then on,
As the bath nugget grows, the chip-to-chip resistance gradually decreases.

最近の実験では、シンクロメタルのような高抵抗被膜を
もつ表面処理銅板の場合のチップ間抵抗の波形は、第2
図に示すように、時間t1からt2にかけて、チップ間
抵抗の減少割合が大きい区間と、t2から以降その減少
割合が11−12区間に比べ非常に小さくなる区11]
1の2つの区間があることが確に(されている。
Recent experiments have shown that the waveform of the interchip resistance in the case of a surface-treated copper plate with a high-resistance film such as synchrometal is
As shown in the figure, from time t1 to t2, there is a section where the rate of decrease in the inter-chip resistance is large, and section 11, where the rate of decrease from t2 onwards is much smaller than the section 11-12.
It is certain that there are two intervals of 1.

この第2図のチック間抵抗の波形は次のように説明でき
る、ずなわち、通電、時間t1までの区間は、表面処理
された一I暑おキシ糸絶縁物の被膜が通電による除去が
不充分なため高抵抗ケ示す区間であり、区間tlからt
2は、この被膜が急激に破れで、グーツブ間抵抗が@、
激に減少する区間である。
The waveform of the inter-tick resistance in FIG. 2 can be explained as follows. In the section from energization to time t1, the coating of the surface-treated 1I heat insulation thread cannot be removed by energization. This is a section where high resistance is exhibited due to insufficient resistance, and from section tl to t
2, this film is suddenly torn, and the resistance between grooves is @,
This is an area where the amount decreases sharply.

さらに、通電を続けると、絶縁物は完全に除去図 され、第2の通電時間t2より溶接ナゲツトが生成△ しはじめ、t2以後、ナゲツトが成長するにつれ、その
チップ間抵抗の減少割合は区間t1〜t2に比べ非常に
小でくなって暫減する。
Furthermore, as the current is continued, the insulator is completely removed, and weld nuggets begin to be generated from the second current application time t2, and after t2, as the nuggets grow, the rate of decrease in the inter-chip resistance decreases to the interval t1. - It becomes very small compared to t2 and gradually decreases.

ところで、チップ間抵抗を検出して、その波形の%徴か
ら浴接ナゲツトの生成状態を検知して通電を停止l〜て
適正な溶接ナケット葡得る適応制御方法として、次に挙
げる方法などが採用されている。
By the way, as an adaptive control method to obtain a proper welding nugget by detecting the inter-chip resistance and detecting the generation state of bath welding nuggets from the percentage sign of its waveform and stopping the current supply, the following method is adopted. has been done.

その一つの方法として、第5図に示すように、チップ間
抵抗の変化減少割合を十ト、教判別することなしに局部
的最大値Pmax kサンフルボールドし、その最大値
全基準佃として、それより抵抗1111/\Rが佃%1
ったら通電全停止させ、適正な溶接ナゲツトを得る適応
制御方法がある。
As one method, as shown in FIG. The resistance 1111/\R is %1
There is an adaptive control method that completely stops energization when the welding occurs and obtains a suitable weld nugget.

この場合、第1図に示すようなミヵキ軟銅板のチップ曲
抵抗波形の変化に屋るようVζ、通電途中、たとえば3
〜4ザイクル後に、局部的最大(iM’、 )’max
が生じ、この時点から溶接ナゲツトができ始め、引き続
き通電電流によって溶接ナゲツトが成長するにつれて、
チップ間抵抗が暫減するような場合は、その局部的最大
値をサンフルホールドしてチRの割算の基準値としてよ
いが、第2図に示すシンクロメタルの場合の溶接におい
ては、そのチップ間抵抗の波形は、通電開始からt1才
では高抵抗被IIIAによって41シ抗の高い区間であ
り、この波形を軟鋼と同じように、ピークホールドする
とl’lの値をホールドシ、これを基準イ1自として、
所定の%Rを計算するので、溶接ナゲツトが充分できな
いうちに、%Rが所定の値に璋して通電を停止し7、溶
接不良となる不具合がある− 壕だもう一つの〕■応制飾の一例として、チップ 8− 間抵抗の変化減少割合を比較判別することなしに、チッ
プ間抵抗の局部的最大値Pmaxをサンプルホールドし
、これを基準値とし、これ以降のチップ間抵抗との差の
時間積分を行い、その積分値が所定の積分値になるよう
通電時間を調整し、これに達したとさ、通電を停止させ
、適正ナゲツトを得るという方法、つまシ第1図に示す
Pmax及びQが形作る三角形の斜線部分の面積Cが所
定の値に達したとき、通電を停止し溶接を終了する適応
制御方法もある。この場合も同様に軟鋼の場合はこれで
よいが、シンクロメタルの場合は、第2図に示す如く時
間t1において局部的最大値PIがピークホールドされ
、この時点からこれ以降のチップ間抵抗との差の時間積
分が開始され、充分ナゲツトが生成しないうちvcpv
r定の値に達して通電が停止し、適正な溶接ナゲツトを
得ることができない。
In this case, Vζ is set during energization, for example, at 3
After ~4 cycles, the local maximum (iM', )'max
occurs, and from this point a weld nugget begins to form, and as the weld nugget continues to grow due to the applied current,
If the inter-chip resistance gradually decreases, the local maximum value may be sample-held and used as the reference value for dividing the resistance. The waveform of the inter-resistance has a high resistance of 41 cycles due to the high-resistance IIIA at t1 years after the start of energization, and when this waveform is held at its peak in the same way as for mild steel, the value of l'l is held and this is used as the reference value. As one person,
Since a predetermined %R is calculated, the %R reaches a predetermined value before the welding nugget is fully formed, and the current supply is stopped, resulting in a defective weld. As an example, without comparing and determining the change reduction rate of the chip-to-chip resistance, sample and hold the local maximum value Pmax of the chip-to-chip resistance, use this as a reference value, and calculate the difference from the chip-to-chip resistance from then on. Pmax shown in Figure 1 is a method in which the energization time is adjusted so that the integral value becomes a predetermined integral value, and when this is reached, the energization is stopped to obtain an appropriate nugget. There is also an adaptive control method in which when the area C of the diagonally shaded portion of the triangle formed by Q and Q reaches a predetermined value, the current supply is stopped and welding is completed. In this case as well, this is fine in the case of mild steel, but in the case of synchrometal, the local maximum value PI is peak held at time t1 as shown in Figure 2, and from this point onwards the interchip resistance Time integration of the difference is started, and before enough nuggets are generated, vcpv
When the r value reaches a certain value, the current supply stops, making it impossible to obtain a proper weld nugget.

本発明は、このような溶接不良をなくし、高抵抗被膜表
面処理銅板においても確実な適応制御をなし得る方法を
提供するものである。
The present invention provides a method that eliminates such welding defects and allows reliable adaptive control even for high-resistance coating surface-treated copper plates.

それは、かかる不具合を回避するためPlの位置 4− から減少するチップ間抵抗をたとえ1ザイクル角に順次
比較し、その抵抗変化率が予め設定した変化率、すなわ
ち、基準値Aに到達した時に、その時点におけるチップ
間抵抗の値をホールトシ、以後引き続き暫減するチック
間抵抗の基準値おとし、その基準値Bを溶接ナゲツト適
応制御を行なうための開始点とすることを特徴とする。
In order to avoid such problems, the inter-chip resistance that decreases from the position of Pl is compared sequentially, even in one cycle angle, and when the resistance change rate reaches a preset rate of change, that is, the reference value A, The present invention is characterized in that the value of the inter-chip resistance at that point in time is set as the reference value of the inter-chip resistance which will gradually decrease thereafter, and the reference value B is used as the starting point for performing the weld nugget adaptive control.

以下、本発明の方法全実施するための装置を第3図に示
された実施例に基づいて説明する。図中、符号(1)、
 +23はスポット溶接機の電極チップを示す。
Hereinafter, an apparatus for carrying out the entire method of the present invention will be explained based on the embodiment shown in FIG. In the figure, code (1),
+23 indicates the electrode tip of the spot welder.

(3)はチップ間抵抗検出回路である。この回路(3)
は、電極チップの両端から検出したチッグl’lJj電
圧を溶接電流で除算してチップ間抵抗を検出する。(4
)はチップ間抵抗基準検出回路であって、この回路(4
)の機能を第4図に基づいてh9明すると、すなわち、
チップ間抵抗波形の抵抗価a 、 b 、c・・・は、
■サイクル毎にサンプルホールドした後、マイクロコン
ビヱータの記憶装置に記憶され、1ザイクル毎に次のよ
うな計算を行い、順次その値を十分な溶接ナゲツトが生
育する時のチック間抵抗の減少側 6− 合、すなわち基準値Aと比較1゛る。
(3) is an interchip resistance detection circuit. This circuit (3)
The inter-tip resistance is detected by dividing the voltage l'lJj detected from both ends of the electrode tip by the welding current. (4
) is an interchip resistance reference detection circuit, and this circuit (4
) is explained based on Figure 4, that is,
The resistance values a, b, c... of the inter-chip resistance waveform are as follows:
■After holding the sample for each cycle, it is stored in the memory of the microcombinator, and the following calculations are performed for each cycle, and the values are used to calculate the inter-tick resistance when enough weld nuggets grow. Decreasing side 6- Yes, that is, comparison with reference value A is 1.

n、、:l:、、lンb−c−q、、dd−e6−7f
’a  +  ’Tj  +  c  + −■−r 
 eすなわち、今、」11nの値が−f:ねぞれ旦−W
 =o、a 。
n,,:l:,,lnb-c-q,,dd-e6-7f
'a + 'Tj + c + -■-r
e, that is, now, the value of 11n is -f: Nezoredan -W
= o, a.

b−c      c7曵     d−e’−1,−
=(1,8、。−=0.2.  肩1−−−0.15 
、 q”’ = (1,04であると、十分な溶接ナゲ
ツト生育に関する基準価Aをへ−0,04に設定すると
、溶接過程中、時々刻々変化するチップ間抵抗値が先の
基準f、hi Aの0.04  以下に達した時の基準
値Bをつくるためのプンフルホールド信号と通電停止演
算回路の動作開始する信号を発信する。
b-c c7 d-e'-1,-
=(1,8,.-=0.2. Shoulder 1---0.15
, q''' = (1,04, then if the standard value A for sufficient weld nugget growth is set to -0,04, the inter-chip resistance value that changes from time to time during the welding process will be equal to the previous standard f, When hiA reaches 0.04 or less, a full hold signal to create a reference value B and a signal to start operation of the energization stop calculation circuit are transmitted.

(5)にザンフルホールド回路で、」二記第2の局部的
最大飴に相当する基fv、値B全つくり出す。(6)は
チップ間抵抗基準価検出回路(4)からの動作開始信号
ケ受けて、t、1〜tf (基準値B−1()式の演算
を行ない、その計算結果と基準価Cと比較し、次のタイ
マ通電1苧止回路(7)へタイマ1苧止信号を発信する
(5) Using the full hold circuit, all bases fv and values B corresponding to the second local maximum value are created. (6) receives the operation start signal from the interchip resistance reference value detection circuit (4), calculates t, 1 to tf (reference value B-1 ()), and compares the calculation result with the reference value C. After comparison, a timer 1 stop signal is sent to the next timer energization 1 stop circuit (7).

上記基準価c(4第2図の斜線で示した部分の面積を表
わし、溶接ナゲツトの太ささと相関関係をもつものであ
る。すなわち、基準値Cは溶接ナゲツトの犬き烙を示す
積分値である。
The above standard value c (4) represents the area of the shaded part in Figure 2 and has a correlation with the thickness of the weld nugget.In other words, the standard value C is an integral value that indicates the depth of the weld nugget. It is.

以上の構bV、により、第2図において、通電路間t1
からt2の間は、チップ間抵抗の変化は大きな割合で減
少し、t2からtaの区間は溶接ナゲツト成長区間であ
るので、チップ間抵抗の変化割合C」、小さいというこ
とから、所定のザイクル勿、たとえば1ザイクル毎に順
次チップ間抵抗の変化割合を比較し、その変化割合が設
定さtまた基準価Aよりも小さくなったとき、その時点
のチップ間1((1抗を基準価Bとしてチップ間抵抗基
準価ホールド回路(5)にホールトし、これ以後のチッ
プ間抵抗との差の時間槓分葡15rl EさせるようV
こ、辿市停止演9回路(6)をilr#作でせ、この出
力信号によシ次のタイマ通電停止回路(7)によシ通電
時間t8で通電を停止させ品質良好な溶接ナゲツトを生
)戎させるよう自動的に確実なKIJ御全する。
With the above structure bV, in FIG.
From t2 to t2, the change in inter-chip resistance decreases at a large rate, and since the period from t2 to ta is a weld nugget growth period, the change rate C' in inter-chip resistance is small, so the predetermined cycle is For example, compare the rate of change in resistance between chips sequentially every cycle, and when the rate of change becomes smaller than the set value t and standard value A, the rate of change in resistance between chips at that time ((1 resistance as standard value B Hold the inter-chip resistance reference value hold circuit (5) and set V so that the difference between the inter-chip resistance and the subsequent time is 15 rl.
Here, the 9th circuit (6) for stop operation is made by ILR#, and according to this output signal, the next timer energization stop circuit (7) stops the energization at the energization time t8 and produces a welding nugget of good quality. Raw) Automatically performs a certain KIJ to make it grab.

以上、+:発ツ1にかかる方法によれは、とくに自動車
のボディ等に1史用されているシンクロメタル停絶縁性
被膜全イイする鋼板のスポット溶接の場合に、溶接ナゲ
ツト生育j1φ程において時々刻々変化するチップ間抵
抗の割合を監視しながら、溶接ナゲツトが生育し始める
時間のチップ間抵抗を検出して、この抵抗値を基準とし
て通電時間全制御するから、安定した高品質の溶接ナゲ
ツトを得ることができる。
Above, +: Inconsistency with the method of development 1 can sometimes cause weld nuggets to grow at about While monitoring the ever-changing rate of inter-chip resistance, the inter-chip resistance at the time when weld nuggets begin to grow is detected, and the entire energization time is controlled based on this resistance value, resulting in stable, high-quality weld nuggets. Obtainable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の適応制御の一例を示すだめの、ミガキ
鋼板のチップ間抵抗波形の変化を下すグラフ、第2図は
高抵抗被膜表向処理鮪l板のスポット浴接のチップ間抵
抗波形の変化と不発ψ]にかがる制御方法全貌側するた
めのグラフ、第3図Cま本発明方法を実施するための装
置にかかる電気ブロック図、第4図はチップ間抵抗基準
値検出回路(4)の機能・動作′f:説明するためのチ
ップ間抵抗波形を示すり゛ラフである。 第5図は、従来の他の適応制御の一例を説明するための
ミガキ鋼板のチップ間抵抗波形の変化を示づ一りラフ。 −9−−531 第1図 m−通電時間 第2図 第3図 ] 第5図 通電時間 第4図 ma x △R %R=篩ヤxloO’u
Figure 1 is a graph showing an example of conventional adaptive control, showing changes in the inter-chip resistance waveform of a polished steel plate, and Figure 2 is a graph showing the inter-chip resistance of spot bath welding of a high-resistance surface-treated tuna l plate. Figure 3 is a graph showing the complete picture of the control method related to waveform changes and non-firing ψ], Figure 3 is an electrical block diagram of the device for carrying out the method of the present invention, and Figure 4 is a diagram showing the inter-chip resistance reference value detection. Function/operation 'f' of circuit (4): This is a rough diagram showing inter-chip resistance waveforms for explanation. FIG. 5 is a rough diagram showing changes in the inter-chip resistance waveform of a polished steel plate to explain another example of conventional adaptive control. -9--531 Fig. 1 m-Electrification time Fig. 2 Fig. 3] Fig. 5 Energization time Fig. 4 max △R %R = sieve xloO'u

Claims (1)

【特許請求の範囲】[Claims] 高抵抗被膜をもつ表面処理鋼板の抵抗溶接において、−
1−記鋼板の絶縁被膜を除去しつつ浴接ナゲツトを生成
する過権中、暫滅するチップ間抵抗を所定のサイクル毎
に順次比較し、そのチップ間抵抗の減少割合が予め設定
された基準値Aに達した時、その時点におけるチップ間
抵抗の佃にホールドし、以後引続き暫滅するチップ間抵
抗に対する基準値おとし、その基準値Bを溶接ナゲツト
適応制御を行なうための開始点とすることを特徴とした
高抵抗被膜表面処理鋼板の抵抗溶接方法。
In resistance welding of surface-treated steel sheets with high-resistance coatings, -
1- During the process of generating a bath contact nugget while removing the insulating coating of the steel plate, the inter-chip resistance that fades is compared sequentially at each predetermined cycle, and the reduction rate of the inter-chip resistance is determined to a preset reference value. When A is reached, the current inter-chip resistance is held at that point, and the reference value for the inter-chip resistance that continues to decrease thereafter is set to a reference value, and the reference value B is used as the starting point for performing weld nugget adaptive control. A resistance welding method for high-resistance coating surface-treated steel sheets.
JP10150083A 1983-06-07 1983-06-07 Resistance welding method of steel plate treated with high resistance film on surface Pending JPS59225889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10150083A JPS59225889A (en) 1983-06-07 1983-06-07 Resistance welding method of steel plate treated with high resistance film on surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10150083A JPS59225889A (en) 1983-06-07 1983-06-07 Resistance welding method of steel plate treated with high resistance film on surface

Publications (1)

Publication Number Publication Date
JPS59225889A true JPS59225889A (en) 1984-12-18

Family

ID=14302345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10150083A Pending JPS59225889A (en) 1983-06-07 1983-06-07 Resistance welding method of steel plate treated with high resistance film on surface

Country Status (1)

Country Link
JP (1) JPS59225889A (en)

Similar Documents

Publication Publication Date Title
US6512200B2 (en) Welding control system
US4092517A (en) Electric arc welding processes and apparatus therefor
US3068352A (en) Method for obtaining an improved weld in inert arc welding
CA2215762A1 (en) Method of controlling welding conditions of a resistance welder
JPH07284956A (en) Method and device for controlling current for resistance welding
US4678887A (en) Method and apparatus for resistance welding
US6815631B2 (en) Method and device for multiple stage arc-welding
JP3507843B2 (en) Resistance welding control method and apparatus
JP2742544B2 (en) Resistance welding control method and apparatus
JPS59225889A (en) Resistance welding method of steel plate treated with high resistance film on surface
US3449543A (en) Tig spot welding by means of a pulsating unidirectional current
JP2005313179A (en) Welding method interchanging dc arc welding and pulse arc welding and controlling heat input
JPH09267171A (en) Pulse arc welding ending method, and welding equipment
JP7145344B2 (en) Welding method and apparatus using non-consumable electrodes
JPH0679785B2 (en) Resistance welding control device
JPS619982A (en) Resistance welding method
JPS62234676A (en) Electric current controlling method for resistance welding machine
JPH01241385A (en) Electrification control method for resistance welding machine
JPS6159835B2 (en)
JPH09277063A (en) Resistance welding controller
JP2710939B2 (en) Consumable electrode type bipolar arc welding method
JPS59199173A (en) Method and device for controlling power source for short circuit transfer welding
JPS6016875B2 (en) Resistance welding control method
JPS58196184A (en) Resistance spot welding method and conducting device for welding current
RU2050237C1 (en) Contact spot welding process control method