JPS59225725A - Catalytic reaction method - Google Patents

Catalytic reaction method

Info

Publication number
JPS59225725A
JPS59225725A JP58098280A JP9828083A JPS59225725A JP S59225725 A JPS59225725 A JP S59225725A JP 58098280 A JP58098280 A JP 58098280A JP 9828083 A JP9828083 A JP 9828083A JP S59225725 A JPS59225725 A JP S59225725A
Authority
JP
Japan
Prior art keywords
particle size
catalyst
catalyst particles
moving
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58098280A
Other languages
Japanese (ja)
Other versions
JPH0153569B2 (en
Inventor
Arikazu Hirano
平野 有和
Yasutaka Kato
加藤 泰孝
Akitoshi Ogoshi
見寿 大越
Kenkichi Sato
佐藤 健吉
Masayoshi Kakiuchi
垣内 正義
Hiroshige Hashimoto
橋本 広茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP58098280A priority Critical patent/JPS59225725A/en
Publication of JPS59225725A publication Critical patent/JPS59225725A/en
Publication of JPH0153569B2 publication Critical patent/JPH0153569B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To enhance the activity of a catalyst by reducing the particle size thereof while supporting a small particle size moving layer by a large particle size moving layer, by dividing a moving layer type reactor in parallel while arranging catalyst particles so as to successively transfer the particle size thereof from a small particle size to a large particle size. CONSTITUTION:The container 7 arranged in a reactor is formed of a metal net, a perforated iron plate or a multifoliate plate and catalyst partitioning plates 7a, 7b each comprising a metal net or a perforated iron plate are further parallelly arranged in a vertical direction in the container 7 so as to divide the interior thereof. The container 7 is packed with catalyst particles comprising an ore or the like to form a plurality of catalyst particle moving layers 81-83. The gaps of the partitioning plates 7a, 7b are made larger than the particle size of the catalyst so as to generate no clogging. In addition, the particle size range of the catalyst particles in the moving layer 81 in the inflow side of exhaust gas 1 is min. and the particle size ranges of catalyst particles in the moving layers 82, 83 in the after-stream side successively become large.

Description

【発明の詳細な説明】 本発明は、排ガスの脱臭(HC,C○の除去を含む)、
脱硝等をおこなう触媒反応方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides deodorization of exhaust gas (including removal of HC and CO),
This invention relates to a catalytic reaction method for denitrification, etc.

この種の触媒反応方法として触媒活性を有する鉱石を用
いたものが知られ、その−例tl−第1図に示す。この
方法は、排ガス1をブロワ−2によって熱交換器3に導
入した後、加熱炉4で−1−IA’ 200〜450℃に予熱する。ついで脱硝の場合アンモ
ニアガス5を添加混合し、この排ガスを移動層式リアク
ター6に導入する。このリアクター6は、内部に容器7
を配置している。容−a7は、側面を金網、多孔鉄板あ
るいは多葉板などで形成し、内部に鉱石等の触媒粒子(
粒径的2〜30mmφ)から々る移動層8を充填形成し
ている。
As this type of catalytic reaction method, one using an ore having catalytic activity is known, and an example thereof is shown in FIG. In this method, exhaust gas 1 is introduced into a heat exchanger 3 by a blower 2, and then preheated in a heating furnace 4 to -1-IA' 200 to 450°C. Then, in the case of denitration, ammonia gas 5 is added and mixed, and this exhaust gas is introduced into a moving bed reactor 6. This reactor 6 has a container 7 inside.
are placed. The side surface of the container-a7 is made of wire mesh, perforated iron plate, multi-leaf plate, etc., and the inside contains catalyst particles (such as ore).
A moving layer 8 having a particle size of 2 to 30 mmφ is filled and formed.

この容器7の上部にはホッパー9が設けられ、触媒粒子
移動層8を気密に保持している。この構成のりアクタ−
6に導入された排ガスは、リアクター6の移動層8を構
成する触媒粒子と接触して脱臭又は脱硝され、上記熱交
換器3を通って煙突10から排気される。
A hopper 9 is provided in the upper part of this container 7, and holds the catalyst particle transfer layer 8 airtightly. This configuration glue actor
The exhaust gas introduced into the reactor 6 is deodorized or denitrated by contacting the catalyst particles constituting the moving bed 8 of the reactor 6, passes through the heat exchanger 3, and is exhausted from the chimney 10.

一方移動層8を構成する触媒粒子は、重力により順次降
下し、下端からスクリューコンベアーII上に排出され
る。コンベアーxrには補給ホッパー12から触媒粒子
が補給されており、これら触姐粒子が篩I3に送られる
。篩13には、細目のスクリーンが設けられ、篩上部分
の1           −2− 触媒ハ、パケットエレベータ−等のエレベータ−14に
よってホッパー9から装入され再使用される。また篩下
部分の触媒はダスト15として排出され、高炉あるいは
焼結用原料等として有効利用される。
On the other hand, the catalyst particles constituting the moving bed 8 descend one by one due to gravity and are discharged onto the screw conveyor II from the lower end. The conveyor xr is supplied with catalyst particles from the supply hopper 12, and these catalyst particles are sent to the sieve I3. The sieve 13 is provided with a fine screen, and the 1-2-catalyst in the upper part of the sieve is charged from the hopper 9 by an elevator 14 such as a packet elevator and reused. Further, the catalyst in the lower part of the sieve is discharged as dust 15 and is effectively used as a raw material for blast furnace or sintering.

しかしてこの方法では、触媒粒子の粒径を小さくして表
面積比((至)2/ωa)を高くし、触媒活性を向上す
ることが望まれるが、粒径を小さくすると触媒粒子の支
持方法につき問題がある。
However, in this method, it is desirable to reduce the particle size of the catalyst particles to increase the surface area ratio ((to)2/ωa) and improve the catalytic activity. There is a problem with this.

即ち鉱石触媒粒は、多葉板(又は多孔板、金網等)を持
つ容器2内に充填されるが、この容器2をコンパクトに
するためには容器2内の鉱石触媒粒の空間速度(ガスの
通過面積X線速ty/触媒体積=ガス通過吐/触媒体槓
)を犬きくする必要がある。しかし空間速度を犬きくす
るために線速間を大きく設計す・る′と、粒径の小さな
触媒粒子は、吹き抜けおよび飛散を引き起こすことにな
る。これを防[トするため、容器2の透き間を細かめに
して対処すると目詰りを生じ、との結果処理ガスの圧力
損失が増大し、隙業不能となる。しかも容器2の強度が
弱まり摩耗や、腐食に対して弱く々る。
That is, the ore catalyst particles are filled in a container 2 having a multi-leaf plate (or perforated plate, wire mesh, etc.), but in order to make this container 2 compact, the space velocity (gas It is necessary to carefully adjust the passing area (X-ray velocity ty/catalyst volume = gas passing discharge/catalyst body volume). However, if the linear velocity is designed to be large in order to increase the space velocity, the small catalyst particles will cause blow-through and scattering. In order to prevent this, if the gaps in the container 2 are made narrower, clogging will occur, resulting in increased pressure loss of the processing gas, making it impossible to operate the gaps. Moreover, the strength of the container 2 is weakened, making it vulnerable to wear and corrosion.

従って従来方法では、触媒粒径範囲がある大きさ以上(
例えば2朋φ以上)に限定されていた。
Therefore, in the conventional method, the catalyst particle size range exceeds a certain size (
For example, it was limited to 2 tomoφ or more).

本発明は、この問題を解消すべくなされたもので、その
目的とするところは、鉱石触媒等の目詰りを防ぎ、かつ
触媒活性の向上、設備のコンパクト化を図ることができ
る触媒反応方法を得んとするものである。
The present invention was made to solve this problem, and its purpose is to provide a catalytic reaction method that can prevent clogging of ore catalysts, improve catalytic activity, and make equipment more compact. It is something that you are trying to gain.

せしめる触媒反応方法において、触媒粒子を複数の粒径
群に区分し、これら粒径群を小粒径群から順次大粒径群
になるように並行配列して複数の移動層を形成し、小粒
後群移動層から大粒後群移動層に向けて排ガスを通過せ
しめることにより、小粒後群移動層を大粒後群移動層で
支持し、触媒の小粒径化による活性向上及び利用率向上
等を図ることを特徴とする。
In the catalytic reaction method, the catalyst particles are divided into a plurality of particle size groups, and these particle size groups are arranged in parallel from the small particle size group to the large particle size group to form a plurality of moving layers. By passing the exhaust gas from the rear group moving layer to the large particle rear group moving layer, the small particle rear group moving layer is supported by the large particle rear group moving layer, improving the activity and utilization rate by reducing the particle size of the catalyst. It is characterized by:

以下本発明を図示する実施例を参照して説明する。The present invention will be described below with reference to illustrative embodiments.

第2図は本発明方法に使用する触媒反応装置の説明図、
第3図は要部拡大図である。この触媒反応装置は、プロ
ワ−2、熱交換器3、加熱炉4、コンベアー11等を備
えているが、その構成は第1図に示す従来のものと同様
であるので、同一番号を付してその説明を省略する。こ
れに対してリアクター6の内部に配置した容器7は、金
網、多孔鉄板あるいは多葉板々どで形彫し、更に内部に
金網、多孔鉄板等からなる触媒層仕切り板7 a r 
7 bを縦方向に並行に区割配ダ1]シている。仕切り
板7a r 7bで区割された容器7の内部には、鉱石
等の触媒粒子が充填され、複数の触媒粒子移動層8.〜
83を形成している。この場合仕切υ板7a、7bは、
その透き間を触骸粒径よシ大きくして目詰りが生じない
ようにしている。また排ガスIの流入側の移動層8Iに
おける触媒粒子の粒径範囲が最も小さく、排ガス1の後
流側の移動層82++!?3の触媒粒子の粒径範囲が順
次大きくなっている。
FIG. 2 is an explanatory diagram of the catalytic reaction apparatus used in the method of the present invention,
Figure 3 is an enlarged view of the main parts. This catalytic reaction apparatus is equipped with a blower 2, a heat exchanger 3, a heating furnace 4, a conveyor 11, etc., but the configuration is the same as the conventional one shown in Fig. 1, so the same numbers are given. Therefore, the explanation will be omitted. On the other hand, the container 7 placed inside the reactor 6 is carved out of a wire mesh, a perforated iron plate, or a multi-leaf board.
7b is divided vertically in parallel. The inside of the container 7 divided by partition plates 7a r 7b is filled with catalyst particles such as ore, and a plurality of catalyst particle movement layers 8. ~
83 is formed. In this case, the partitions υ plates 7a and 7b are
The gap is made larger than the diameter of the tentacles to prevent clogging. Further, the particle size range of the catalyst particles in the moving bed 8I on the inflow side of the exhaust gas I is the smallest, and the moving bed 82++ on the downstream side of the exhaust gas 1! ? The particle size range of the catalyst particles in No. 3 is gradually increased.

ここで移動層81  rat  +88に充填する触媒
粒子の粒径は、上限が5 wφ、下限が0.01Uφと
するのが好ましい。粒径5 mtnφ以下が好ましい理
由は、例えば粒径0.01 mttcφ以下の鉱石等の
破砕触媒をセメント等の結合剤及び水分を混合して、粒
径2〜5間φ程度のペレット状触媒を造粒機で造粒し、
移動層の後段に充填することによって、鉱石等の利用率
を向上することができるためである。また粒径0.01
 mytφ以上が好ましい理由は、これ以上の粒径では
ダスト等と触媒そのものとを容易に分けられるためであ
る。また、各移動層に充填する触媒粒子の粒径範囲は、
後段の移動層に充填された触媒粒子を通過しない範囲に
設定する必要がある。また移動層は、3段に限らないが
、例えば3段に形成した場合の粒径範囲の一例を挙げれ
ば、第1段の移動層が0,4〜0.8 xiφ、第2段
が0.8〜1.6 rnrnφ、第3段が1.6〜3.
2 mmφである。
Here, the particle size of the catalyst particles filled in the moving bed 81 rat +88 is preferably set to have an upper limit of 5 wφ and a lower limit of 0.01 Uφ. The reason why the particle size is preferably 5 mtnφ or less is that, for example, a crushed catalyst such as ore with a particle size of 0.01 mttcφ or less is mixed with a binder such as cement and moisture to form a pellet-like catalyst with a particle size of 2 to 5 mmφ. Granulate with a granulator,
This is because by filling the latter stage of the moving bed, the utilization rate of ore, etc. can be improved. Also, the particle size is 0.01
The reason why mytφ or more is preferable is that if the particle size is larger than this, dust etc. and the catalyst itself can be easily separated. In addition, the particle size range of the catalyst particles packed in each moving bed is
It is necessary to set it within a range that does not pass through the catalyst particles packed in the latter moving bed. Further, the number of moving layers is not limited to three stages, but to give an example of the particle size range when formed in three stages, the first stage moving layer has a particle diameter of 0.4 to 0.8 xiφ, and the second stage has a particle diameter of 0.4 to 0.8 xiφ. .8~1.6 rnrnφ, 3rd stage is 1.6~3.
It is 2 mmφ.

更に上記容器7の上部には、各移動層8.〜8、に対応
してホッパー9皇〜93が設けられ、N、動層8、〜8
3を気密に保持している。この容器7の下部出口I6に
は、これに対応してスクリュ一式等のコンベアー11が
設けられ、このコンベアーIIに対応して複数の篩13
1〜I3.(又は分級器)が縦方向に設けられている。
Further, on the upper part of the container 7, each moving layer 8. Hoppers 9 to 93 are provided corresponding to N, moving layers 8 and 8.
3 is kept airtight. A conveyor 11 such as a set of screws is provided at the lower outlet I6 of this container 7, and a plurality of sieves 13 are provided correspondingly to the conveyor II.
1-I3. (or classifier) is provided in the vertical direction.

各部13.〜13.はそれぞれ触媒粒子を粒径範囲ごと
に分けるもので、その出口はパケットエレベータ−1気
送エレベータ−等のエレベータ−14重〜143により
ホッパー91〜9゜上部に連結している。なおホッパー
9.〜9゜や下部出口16にロータリーフィーダーなど
を設けて、機械的にさらに気密にするようにしてもよい
Each part 13. ~13. Each separates catalyst particles into particle size ranges, and the outlet thereof is connected to the upper part of the hopper 91 to 9 degrees by an elevator 14 to 143, such as a packet elevator 1 and a pneumatic elevator. In addition, hopper 9. A rotary feeder or the like may be provided at ~9° or the lower outlet 16 to further improve mechanical airtightness.

しかして本発明方法は、徘ガス1を次のようにして触媒
粒子と接触させ、所定の触媒反応を行なわせる。
According to the method of the present invention, the wandering gas 1 is brought into contact with catalyst particles in the following manner to cause a predetermined catalytic reaction to occur.

排ガスIをブロワ−2によって熱交換器3に導入した後
加熱炉4で200〜450℃に予熱する。次いでこの排
ガス1に脱硝法の場合はアンモニアガス5を添加混合し
、脱臭法の場合はアンモニアガスの添加を行わずにリア
クター6に導入する。リアクター6に導入された排ガス
Iは、まず小粒後群移動層81内の小粒径触媒粒子と接
触し次いでこの後方側にある移動層8、内の触媒粒子と
接触し、更にこの後方側にある移動層8.内の触媒粒子
と接触し所定の触媒反応を訃こない、無害化、無臭化さ
れて清浄ガス17となり、上記熱交換器3に導入される
After the exhaust gas I is introduced into the heat exchanger 3 by the blower 2, it is preheated to 200 to 450°C in the heating furnace 4. Next, in the case of the denitration method, ammonia gas 5 is added to and mixed with the exhaust gas 1, and in the case of the deodorization method, it is introduced into the reactor 6 without adding ammonia gas. The exhaust gas I introduced into the reactor 6 first comes into contact with the small-sized catalyst particles in the small rear group moving layer 81, then contacts the catalyst particles in the moving layer 8 on the rear side of this, and then further on the rear side. Some mobile layer8. The gas contacts the catalyst particles inside and undergoes a predetermined catalytic reaction, becomes harmless and odorless, and becomes clean gas 17, which is introduced into the heat exchanger 3.

ここで清浄ガスI7の熱を未処理排ガス1の加温に利用
し、かつリアクター6内の圧力調整又は流速調整を行な
い、その後煙突10から排出される。
Here, the heat of the clean gas I7 is used to warm the untreated exhaust gas 1, and the pressure or flow rate inside the reactor 6 is adjusted, after which it is discharged from the chimney 10.

一方移動層81〜83内の触媒粒子は、重力で順次下降
して出口I6からコンベアー11上に排出される。コン
ベアー11上の触媒粒子は、篩13.〜133に送られ
、ここで複数の粒径範囲に分けられる。次いでこれらを
補給ホッパー12から補給された触媒粒子とともにエレ
ベータ−14,〜143を通ってホッパー91〜93か
ら装入し、移動層81〜8.内の触/s:粒子として再
使用する。
On the other hand, the catalyst particles in the moving beds 81 to 83 descend one by one due to gravity and are discharged onto the conveyor 11 from the outlet I6. The catalyst particles on the conveyor 11 are passed through the sieve 13. ~133 where it is divided into multiple particle size ranges. Next, these are charged from the hoppers 91 to 93 through the elevators 14 to 143 together with the catalyst particles replenished from the replenishment hopper 12, and the moving beds 81 to 8. Inner touch/s: Reuse as particles.

篩13.〜13.で分けられた面下部分の触媒を、ダス
ト15として排出し、焼結炉あるいはベレット炉の装入
原料の一部として有効利用する。
Sieve 13. ~13. The separated catalyst in the lower surface portion is discharged as dust 15 and effectively used as part of the charging raw material for a sintering furnace or a pellet furnace.

この方法によれば、小粒径触媒粒子からなる前方の移動
層を大粒径触媒粒子からなる後方の移動層で安定支持し
ているので、小粒径触媒の飛散、吹き抜けがなく、触媒
活性を向上することができる。
According to this method, the front moving bed made of small-sized catalyst particles is stably supported by the rear moving bed made of large-sized catalyst particles, so there is no scattering or blow-through of the small-sized catalyst, and the catalyst becomes active. can be improved.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

実施例1 排ガス中の窒素酸化物の除去実験 下記条件で第2図に示す装置を用い(本発明法)、又比
較のため第1図に示す装fMを用い(従来法)、排煙脱
硝実験を行った、その結果を第1表に示す。
Example 1 Removal experiment of nitrogen oxides in exhaust gas Flue gas denitrification was carried out under the following conditions using the apparatus shown in Figure 2 (method of the present invention) and, for comparison, using the equipment fM shown in Figure 1 (conventional method). An experiment was conducted and the results are shown in Table 1.

9− 焼結炉排ガス量   25.2Nm’/H排ガス中のN
Ox量  200〜220ppm排ガス中のSO2量 
 2 ppm 排ガス中のダスト量   50■/Nm”NH,添加量
     220 ppmリアクター人口品度   3
00°C 区 (: 第1表 ■ 実施例2 塗料排ガス中の炭化水素類の除去実験 下記条件で図示する装置を用いHC除去実験を行った。
9- Sintering furnace exhaust gas amount 25.2Nm'/H N in exhaust gas
Ox amount 200-220ppm SO2 amount in exhaust gas
2 ppm Dust amount in exhaust gas 50■/Nm”NH, addition amount 220 ppm Reactor population grade 3
00°C area (Table 1 ■ Example 2 Experiment for removing hydrocarbons from paint exhaust gas An experiment for removing HC was conducted using the apparatus shown in the figure under the following conditions.

その結果を第2表例示す。The results are illustrated in Table 2.

鋼板塗装排ガス    36.0 Nm3/H18に、
rpA、、1ブタノー ル、エタノール、エチルセ ロソルブ、他をバむ) 排ガス中のダスト量   200 rn9/N m8リ
アクタ一人口温度   300’C 第2表 これらの結果からこの実施例によれば触媒活性即ち脱硝
、脱臭効率を一定とした時の触媒空間速度を従来法の約
2倍程度に向上させることができる。また鉱石等を破砕
して使用した場合、細かい粒径範囲のものまで利用でき
、利用薬を従来法の約2倍程度以上にでき、とくにペレ
ット造粒を行えば利用率を100%に向上させることが
できる。
Steel plate painting exhaust gas 36.0 Nm3/H18,
rpA, 1 butanol, ethanol, ethyl cellosolve, etc.) Amount of dust in exhaust gas 200 rn9/N m8 reactor temperature 300'C Table 2 Based on these results, according to this example, catalyst activity, i.e., denitrification When the deodorizing efficiency is kept constant, the catalyst space velocity can be improved to about twice that of the conventional method. In addition, when ores are crushed and used, even small particle sizes can be used, and the amount of medicine used can be more than twice as much as with conventional methods.In particular, if pellets are granulated, the utilization rate can be increased to 100%. be able to.

またリアクターの前段の移動層は、細粒径の移動層であ
り、集塵機能を有しており、又ダストは後工程で篩分け
られる。このためダスト叶の多い排ガスを未処理のまま
通しても何ら問題がなく、有効に処理できる。
Further, the moving bed in the front stage of the reactor is a moving bed with fine particle size and has a dust collection function, and the dust is sieved in a subsequent process. Therefore, there is no problem even if exhaust gas containing a lot of dust is passed through untreated, and it can be effectively treated.

更に移動層内の触媒粒子は、移動中に一部粉砕され粉末
化されるが、移動速度(量)を制御することによって鉱
石等触媒粒子の表面を摩耗させ、新処女面を創出させ、
結果として触媒活性を高水準に保持させることができる
Furthermore, some of the catalyst particles in the moving bed are crushed and powdered during the movement, but by controlling the moving speed (amount), the surface of the catalyst particles such as ore is worn away and a new virgin surface is created.
As a result, catalyst activity can be maintained at a high level.

以上の如く本発明に、よれば、小粒径触媒を大粒径触媒
で安定して保持するので、従来に比べて小粒径の触媒を
使用して、触媒活性を高め、目詰シを防ぐとともに設備
のコンパクト化を図り、更に鉱石触媒の場合その利用率
を高めることができる顕著な効果を奏する。
As described above, according to the present invention, a small particle size catalyst is stably held by a large particle size catalyst, so a catalyst with a small particle size is used compared to the conventional method, increasing catalytic activity and preventing clogging. This has the remarkable effect of reducing the size of the equipment, and in the case of ore catalysts, increasing the utilization rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の触媒反応方法の説明図、第2図は本発明
の一実施例を示す触媒反応方法の説明図、第3図は同要
部拡大図である。 1・・・排ガス、2・・・ブロワ−13・・・熱交換器
、4・・・加熱炉、5・・・アンモニアガス、6・・・
リアクター、7・・・容器、7a、7b・・・仕切り根
、8゜8I〜8.・・・触媒粒子移動層、9,9I〜9
゜・・・ホッパー、10・・・煙突、II・・・コンベ
アー、I2・・・補給ホッパ 513p13□〜133
・・・篩、14,14.〜14.・・・エレベータ−1
15・・・ダスト、I6・・・下部出口、17・・・清
浄ガス。 出願人代理人  弁理士 鈴 江 武 彦第 1 図 特開昭59−225725(5) 第3図
FIG. 1 is an explanatory diagram of a conventional catalytic reaction method, FIG. 2 is an explanatory diagram of a catalytic reaction method showing an embodiment of the present invention, and FIG. 3 is an enlarged view of the same essential parts. DESCRIPTION OF SYMBOLS 1... Exhaust gas, 2... Blower 13... Heat exchanger, 4... Heating furnace, 5... Ammonia gas, 6...
Reactor, 7... Container, 7a, 7b... Partition root, 8° 8I~8. ...Catalyst particle moving bed, 9,9I~9
゜...Hopper, 10...Chimney, II...Conveyor, I2...Replenishment hopper 513p13□~133
...Sieve, 14,14. ~14. ...Elevator-1
15...Dust, I6...Lower outlet, 17...Clean gas. Applicant's agent Patent attorney Takehiko Suzue No. 1 Figure 3 JP-A-59-225725 (5) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 移動層式リアクター内を重力降下する触媒粒子移動層に
排ガスを通過接触せしめる触媒反応方法において、触媒
粒子を複数の粒径群に区分し、これら粒径群を小粒径群
から順次大粒径群になるように並行配夕II L、て複
数の移動層を形成し、小粒後群移動層から大粒後群移動
層に向けて排ガスを通過せしめることを特徴とする触媒
反応方法。
In a catalytic reaction method in which exhaust gas is passed through and brought into contact with a moving bed of catalyst particles that descend by gravity in a moving bed reactor, the catalyst particles are divided into multiple particle size groups, and these particle size groups are sequentially divided from small particle size groups to large particle size groups. A catalytic reaction method characterized in that a plurality of moving layers are formed in parallel arrays so as to form a group, and exhaust gas is passed from the small particle rear group moving layer to the large particle rear group moving layer.
JP58098280A 1983-06-02 1983-06-02 Catalytic reaction method Granted JPS59225725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58098280A JPS59225725A (en) 1983-06-02 1983-06-02 Catalytic reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58098280A JPS59225725A (en) 1983-06-02 1983-06-02 Catalytic reaction method

Publications (2)

Publication Number Publication Date
JPS59225725A true JPS59225725A (en) 1984-12-18
JPH0153569B2 JPH0153569B2 (en) 1989-11-14

Family

ID=14215516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58098280A Granted JPS59225725A (en) 1983-06-02 1983-06-02 Catalytic reaction method

Country Status (1)

Country Link
JP (1) JPS59225725A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499077A (en) * 1978-01-23 1979-08-04 Babcock Hitachi Kk Treating unit for exhaust gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499077A (en) * 1978-01-23 1979-08-04 Babcock Hitachi Kk Treating unit for exhaust gas

Also Published As

Publication number Publication date
JPH0153569B2 (en) 1989-11-14

Similar Documents

Publication Publication Date Title
KR101520106B1 (en) Method and device for purifying the flue gases of a sintering process of ores and/or other material-containing materials in metal production
JPH0262322A (en) Method of controlling grain size distribution of solid matter in circulating fluidized bed reactor
CA2022376A1 (en) Process and apparatus for coating small solids
US4054640A (en) Method of removing nitrogen oxides from an exhaust
JPH03101812A (en) Method for dry-purifying waste gas
US4744804A (en) Dust pre-removal method in a dry moving bed type adsorption tower
JPS59225725A (en) Catalytic reaction method
JPS61245827A (en) Method and device for removing sulfur dioxide and nitrogen oxide from waste gas
JP3506234B2 (en) Powder material supply device and exhaust gas treatment device
JPS62125821A (en) Treating apparatus for gas
JP4742926B2 (en) Exhaust gas treatment equipment
JPH05261243A (en) Exhaust gas treatment
CN208643233U (en) Active carbon sieve with rectangle sieve pore and the desulfuring and denitrifying apparatus using it
CN207342416U (en) A kind of adsorption tower system and system for desulfuration and denitration
JPH0376963B2 (en)
JP3074622B2 (en) Method and apparatus for discharging particles from fluidized bed apparatus
JPH07116451A (en) Process and device for fluid purification
JPS59196730A (en) Ore catalyst method
JPH03284350A (en) Production of desulfurizing agent for coal gasification gas
JPH07227522A (en) Waste gas treatment
JPS6025178B2 (en) How to treat incinerator exhaust gas
JP2694541B2 (en) Continuous particle treatment equipment consisting of fluidized bed and moving bed
JP3901762B2 (en) Superstructure of moving bed reactor
JPS6161855B2 (en)
SU1636109A1 (en) Method for pneumatic reconditioning of granular material