JPS59225310A - Surface roughness measuring apparatus by scanning type electronic microscope - Google Patents

Surface roughness measuring apparatus by scanning type electronic microscope

Info

Publication number
JPS59225310A
JPS59225310A JP10031983A JP10031983A JPS59225310A JP S59225310 A JPS59225310 A JP S59225310A JP 10031983 A JP10031983 A JP 10031983A JP 10031983 A JP10031983 A JP 10031983A JP S59225310 A JPS59225310 A JP S59225310A
Authority
JP
Japan
Prior art keywords
surface roughness
cross
measured
sectional curve
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10031983A
Other languages
Japanese (ja)
Other versions
JPH0246083B2 (en
Inventor
Hisayoshi Sato
壽芳 佐藤
Masataka Ohori
大堀 真敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO DAIGAKU
Original Assignee
TOKYO DAIGAKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO DAIGAKU filed Critical TOKYO DAIGAKU
Priority to JP10031983A priority Critical patent/JPS59225310A/en
Publication of JPS59225310A publication Critical patent/JPS59225310A/en
Publication of JPH0246083B2 publication Critical patent/JPH0246083B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures

Abstract

PURPOSE:To make it possible to impart an accurate barometer to a surface roughness cross-sectional curve obtained by observing an object to be measured, by parallelly arranging a standard roughness test piece and the object to be measured in the specimen chamber of a scanning type electronic microscope. CONSTITUTION:The specimen 15 and a standard roughness test piece 16 placed on a specimen stand 14 are alternately irradiated with the scanning electron beam of a scanning electronic microscope 12 and reflected electrons are collected by a collector electrode 13 to form an image signal of a surface cross-sectional shape while operation is performed on the basis of magnification set by a manification controller in a calculator 22 through an amplifier 17 and an AD conerter 20. Calibration due to the comparison with the cross-sectional curve obtained with respect to the standard roughness test piece 16 is applied to the surface roughness cross-sectional curve obtained with respect to the specimen 15 to input a barometer and plotted by an output apparatus while the surface rougness cross-sectional curve with the barometer is displayed to a cathode ray tube display apparatus 21.

Description

【発明の詳細な説明】 技術分野 本発明は、被測定物体の表面を電子ビームにより走査し
て得た反射電子による画像信号を積分して被測定物体の
表面の断面形状を測定する走査型電子顕微鏡による表面
粗さ測定装置に関し、特に、被測定物体め表面粗さ断面
曲線に尺度を付して較正し得るようにしたものである。
Detailed Description of the Invention Technical Field The present invention relates to a scanning electron beam that measures the cross-sectional shape of the surface of an object to be measured by integrating image signals from reflected electrons obtained by scanning the surface of the object with an electron beam. This invention relates to a surface roughness measuring device using a microscope, and in particular, is capable of calibrating a surface roughness cross-sectional curve of an object to be measured by attaching a scale to the surface roughness cross-sectional curve.

従来技術 この種走査型電子顕微鏡による表面粗さ測定装置は、本
発明者の提案に係る特開昭56−150303号公報に
記載の「走査型電子顕微鏡による表面形状測定装置」に
より知られているが、従来のこの種走査型電子顕微鏡に
よる表面粗さ測定装置においては、被測定物体を電子ビ
ームにより走査して得られる反射電子画像を構成する画
像信号を積分することによって被測定物体の表面粗さを
求めていたが、画像表示装置に適切な形態にして表面粗
さを表わす画像を表示するためには出力レベルや倍率等
を調整する必要があるので、画像信号の信号レベルがそ
れらの調整によって変化してしまい、積分して得られる
表面粗さ断面曲線は、曲線の形状自体は被測定物体の表
面形状を正確に再現して表わしているが、その曲線の振
幅値を較正して尺度を何づ“ことは容易でなかった。
Prior Art This type of surface roughness measuring device using a scanning electron microscope is known from ``Surface shape measuring device using a scanning electron microscope'' described in Japanese Patent Application Laid-Open No. 150303/1983, which was proposed by the present inventor. However, in conventional surface roughness measurement devices using this type of scanning electron microscope, the surface roughness of the object to be measured is determined by integrating image signals that constitute a backscattered electron image obtained by scanning the object to be measured with an electron beam. However, in order to display an image that represents surface roughness in an appropriate format on an image display device, it is necessary to adjust the output level, magnification, etc. The surface roughness cross-sectional curve obtained by integrating the curve itself accurately reproduces the surface shape of the object to be measured, but the amplitude value of the curve is calibrated to measure the surface roughness. It wasn't easy to figure out what to do.

すなわち、従来、走査型電子顕微鏡を用いて被測定物体
の表面粗さを測定する場合には、表面粗さを正確に表わ
した断面曲線は求められても、その断面曲線の振幅に尺
度を入れてその絶対値を求めることは容易ではないとさ
れていた。被測定物体の表面粗さ断面曲線、に尺度を入
れるには、絶対値が既知の振幅を有する断面形状、例え
ば三角形の断面形状をなした標準粗さ試験片について同
様の表面粗さ断面曲線を測定し、両者間の比較によって
被測定物体について得た断面曲線の振幅の絶対値を知っ
て尺度を入れることが考えられたが、従来は、被測定物
体と標準粗さ試験片とについて、走査型電子顕微鏡によ
る前述したような観察条件をそれぞれ最適に調整して別
個に観察して得た各表面粗さ断面曲線にはそれぞれの観
察条件の調整の微妙な相違に基づき振幅の絶対値に微妙
な相違が生ずるので、被測定物体の表面粗さ断面曲線に
入れる尺度の精度が低トづ−るために、実用に耐える信
頼度を得るのが困難とされていた。
In other words, conventionally, when measuring the surface roughness of an object using a scanning electron microscope, although a cross-sectional curve that accurately represents the surface roughness is obtained, it is difficult to measure the amplitude of the cross-sectional curve. It was believed that it was not easy to determine its absolute value. To put a scale into the surface roughness cross-sectional curve of the object to be measured, a similar surface roughness cross-sectional curve is drawn for a standard roughness test piece with a cross-sectional shape whose absolute value is a known amplitude, for example, a triangular cross-sectional shape. It was thought to use the absolute value of the amplitude of the cross-sectional curve of the object to be measured and compare the two to determine the scale. Each surface roughness cross-sectional curve obtained by separately observing the above-mentioned observation conditions using a type electron microscope has a slight difference in the absolute value of the amplitude due to subtle differences in the adjustment of each observation condition. As a result, the accuracy of the scale used in the surface roughness cross-sectional curve of the object to be measured is low, making it difficult to obtain reliability sufficient for practical use.

発明の要点 本発明の目的は、上述した従来の困難を克服してその欠
点を除去し、被測定物体について得た表面粗さ断面曲線
に充分な信頼度をもって尺度を入れ寄るようにした走査
型電子顕微鏡による表面粗さ測定装置を提供することに
ある。
SUMMARY OF THE INVENTION The object of the present invention is to overcome the above-mentioned conventional difficulties and eliminate their drawbacks, and to provide a scanning type that allows the scale to be approximated with sufficient reliability to the surface roughness cross-sectional curve obtained for the object to be measured. An object of the present invention is to provide a surface roughness measuring device using an electron microscope.

Jなわら、本発明の表面粗さ測定装置は、走査型電子顕
微鏡の試料室内にて標準粗さ試験片を被測定物体と並置
することにより、任意所望の倍率をもって被測定物体を
観察して得た表面粗さ断面曲線に対して正確な尺度を容
易に与え得るようにしたものであり、被測定物体の表面
を電子ビームにJ−り走査して得た反射電子による画像
信号を積分して前記被測定物体の表面の断面形状を測定
する走査型電子顕微鏡において、前記被測定物体の近傍
に表面粗さ断面曲線の基準となる標準粗さ試験片を載置
して前記被測定物体の表面粗さ断面曲線を較正ジる手段
を設りた−ことを特徴とするものである。
However, the surface roughness measuring device of the present invention allows the object to be measured to be observed at any desired magnification by placing a standard roughness test piece alongside the object to be measured in the sample chamber of a scanning electron microscope. It is designed to easily give an accurate measure to the obtained surface roughness cross-sectional curve, and integrates the image signal from the reflected electrons obtained by scanning the surface of the object to be measured with an electron beam. In a scanning electron microscope that measures the cross-sectional shape of the surface of the object to be measured, a standard roughness test piece that serves as a reference for the surface roughness cross-sectional curve is placed near the object to be measured. The present invention is characterized in that a means for calibrating the surface roughness cross-sectional curve is provided.

したがって、本発明の測定装置においては、切削加工面
、研削加工面をはじめとする各種の加工面、あるいtよ
、摩耗面、蝕刻面等の形状をその振幅の絶対値をイ」シ
て容易に測定することができ、かかる各種の面に関連す
る各種の(幾械装置の11能向上に大いに資するもので
ある。
Therefore, in the measuring device of the present invention, the absolute value of the amplitude of various machined surfaces such as cut surfaces and ground surfaces, as well as the shapes of worn surfaces, etched surfaces, etc. It can be easily measured and greatly contributes to improving the capabilities of various mechanical devices related to these various aspects.

実施例 以下に図面を参照して本発明の実施の一例態様について
詳細に説明する。
EXAMPLE An embodiment of the present invention will be described in detail below with reference to the drawings.

まず、第1図は本発明の走査型電子顕微鏡の一部を破断
して示づ概略構成とその試料室内の拡大して示づ試わl
架台とを示す。図示の走査型電子顕微鏡1にa−3いて
は、電子銃2から放射した電子ビームを、集束コイル3
により集束するとどもに偏向コイル4により偏向させな
がら、試料架台5上の試lAS、ずなわら、被測定物体
Sに射突させ、その反射電子を捕捉して画像信号を形成
し、後述するような演算処理により被測定物体の尺度を
付した表面粗さ断面曲線が得られるが、その際、調整つ
まみ6および7ににり試料架台5を互いに直交づる2方
向に微細に移動させて、その試料架台5−トに載置した
被測定物体Sおよび標準粗さ試験片9.11を走査電子
ビームの視野内の適所にそれぞれ位置さゼる。
First, Figure 1 shows the schematic configuration of a scanning electron microscope according to the present invention, with a part cut away, and an enlarged view of the interior of the sample chamber.
The frame is shown. In the illustrated scanning electron microscope 1 a-3, the electron beam emitted from the electron gun 2 is transferred to the focusing coil 3.
While converging the electrons and deflecting them by the deflection coil 4, the sample AS on the sample holder 5 impinges on the object S to be measured, captures the reflected electrons, and forms an image signal, as will be described later. A scaled surface roughness cross-sectional curve of the object to be measured can be obtained through arithmetic processing. The object to be measured S and the standard roughness test piece 9.11 placed on the sample holder 5-1 are positioned at appropriate positions within the field of view of the scanning electron beam.

第1図の右側に拡大して示す試料架台5の上面には試1
’4台8を区画して設けてあり、その試料台8の中心部
に試N’3110 @載置づ−るとともに、その試料1
0に近接して標準粗さ試験片9.11をも試料架台5上
に載置づ゛る。づなわち、試お110の形状、大きさ等
に応じ、図の上段に示すように、標準粗さ試験)千9を
試料10に極く近接させて試料台8上に載置し、あるい
は、図の下段に示すように、標準粗さ試験片11を、試
$3110から多少離隔さゼて、試料台8を区画した部
分における試料架台5の縁辺部に載置する。なお、かか
る載置に際しては、同−条件にて観察ゴーベき試料10
と標準粗さ試料片9.11との表面が同一調整状態にあ
る走査電子ビームの焦点深度内に位置するように、試料
10J5よび標?!t=粗さ試験片9.11の少なくと
も一方を適切な高さの台に載Uて、双方の表面の高さを
揃え、双方の表面粗さを充分に同一の条件下にて?jT
A察し得るようにする必要がある。かかる状態にて、試
料10と標準粗さ試験片9.11とを試料架台5上に近
接載置すれば、他の調整個所には全く触れずに、単に、
試料架台5の位置を微動させる位置調整つまみ6.7の
みをわずかに調整づ−るのみのほぼ完全に同一の観察条
件下にて、試料10と標準粗さ試験片9.11との表面
粗さを測定し、求める表面粗さ断面曲線の較正を高い信
頼度をもって容易に行なうことができる。
A sample 1
The sample N'3110 @ is placed in the center of the sample table 8, and the sample 1 is placed in the center of the sample table 8.
A standard roughness test piece 9.11 is also placed on the sample stand 5 close to 0. That is, depending on the shape, size, etc. of the sample 110, as shown in the upper part of the figure, the standard roughness test) is placed on the sample stage 8 very close to the sample 10, or As shown in the lower part of the figure, the standard roughness test piece 11 is placed on the edge of the sample pedestal 5 in the partitioned part of the sample pedestal 8, with a slight distance from the sample 3110. In addition, when mounting in this way, the observation sample 10 must be placed under the same conditions.
Specimen 10J5 and standard roughness specimen 9.11 were prepared so that their surfaces were located within the depth of focus of the scanning electron beam in the same condition. ! t=Roughness At least one of the test specimens 9.11 is placed on a stand of an appropriate height, the heights of both surfaces are the same, and the surface roughness of both is sufficiently the same under the same conditions. jT
A: It is necessary to make it easy to understand. In such a state, if the sample 10 and the standard roughness test piece 9.11 are placed close to each other on the sample mount 5, the other adjustment points will not be touched at all, and simply,
The surface roughness of the sample 10 and the standard roughness test piece 9.11 was measured under almost completely the same observation conditions by only slightly adjusting the position adjustment knob 6.7 that slightly moves the position of the sample holder 5. It is possible to easily calibrate the obtained surface roughness cross-sectional curve with high reliability.

つぎに、上述のようにして表面粗さ断面曲線の較正を行
ない得るようにした本発明表面粗さ測定装置の信号処理
系の構成例を第3図に示す。図示の構成による信号処理
系は、破線にて囲んで示す表面粗さ測定部に、その測定
部にて得た表面粗さ測定データを演算処理するディジタ
ル演算部を付加したものである。ずなわら、図示の構成
においては、走査型電子顕微鏡12の偏向コイル16に
走査電源25から供給する偏向電流の電流値を倍率調整
器18によって切換え、適切な倍率にて試料架台14上
に載置した試料15d5よび標準粗さ試験片16を、架
台14を矢印り向に移動させて交互に走査電子ビームに
より照射し、その反射電子をコレクタ電極13により補
集してそれぞれの表面のに面形状の微分波形に相当する
画像信号を形成し、その画像信号を、増幅器17を介し
、走査N源25により走査型電子顕微鏡12と同判して
作動させた陰極線管表示装・置21に供給して表示する
Next, FIG. 3 shows an example of the configuration of the signal processing system of the surface roughness measuring apparatus of the present invention, which is capable of calibrating the surface roughness cross-sectional curve as described above. The signal processing system having the illustrated configuration has a surface roughness measuring section shown enclosed by a broken line, and a digital calculating section for processing surface roughness measurement data obtained by the measuring section. However, in the illustrated configuration, the current value of the deflection current supplied from the scanning power supply 25 to the deflection coil 16 of the scanning electron microscope 12 is switched by the magnification adjuster 18, and the sample is placed on the sample holder 14 at an appropriate magnification. The placed sample 15d5 and the standard roughness test piece 16 are alternately irradiated with a scanning electron beam by moving the mount 14 in the direction of the arrow, and the reflected electrons are collected by the collector electrode 13 to form a surface on each surface. An image signal corresponding to a differential waveform of the shape is formed, and the image signal is supplied via an amplifier 17 to a cathode ray tube display device 21 operated by a scanning N source 25 in the same manner as the scanning electron microscope 12. and display it.

図示の構成による本発明表面粗さ測定装置においては、
上述のようにして得た物体表面の断面形状の微分波形を
表わす画像信号を、表面粗さ測定部から取出してディジ
タル演算処理部のアナログ・ディジタル変換器20に供
給し、走査電源25がらの電子ビーム走査に同期したク
ロック信号により駆動してディジタル画像信号に変換し
たうえて計算@22に供給する。その計算機22におい
ては、端末装置19の制御のもとに、倍率調整器18に
より設定した倍率に基づいてディジタル演算を行ない、
被測定物(本たる試料15について得た表面粗さ断面曲
線に、標準粗さ試料片16について得た同様の断面曲線
との比較による較正を施して尺度を入れ、かかる尺度付
き表面粗さ断面曲線のデータを出力装置23に供給して
ブロロトするとともに、陰極線管表示装置21にも供給
して尺度付き表面粗さ断面曲線を表示する。
In the surface roughness measuring device of the present invention having the configuration shown in the figure,
The image signal representing the differential waveform of the cross-sectional shape of the object surface obtained as described above is extracted from the surface roughness measurement section and supplied to the analog-to-digital converter 20 of the digital processing section, and the electronic signal from the scanning power supply 25 is It is driven by a clock signal synchronized with beam scanning, converted into a digital image signal, and then supplied to the calculation@22. The calculator 22 performs digital calculations based on the magnification set by the magnification adjuster 18 under the control of the terminal device 19.
The surface roughness cross-section curve obtained for the object to be measured (the main sample 15 is calibrated by comparison with a similar cross-section curve obtained for the standard roughness sample 16, and a scale is added to the surface roughness cross-section curve with the scale). The curve data is supplied to the output device 23 for viewing, and is also supplied to the cathode ray tube display device 21 to display the scaled surface roughness cross-sectional curve.

しかして、標準粗さ試験片16を倍率αにて観察して得
た表面粗さ断面曲線について計算機22により演算した
結果、尺度Sμm/cmが得られた場合に、被測定物体
たる試料10を倍率βにて観察して得た表面粗さ断面曲
線については、同様の演算処理の結果として、尺度(α
/β)Sμm、/Crn1が容易に得られる。したがっ
て、被測定物体の表面粗さ断面曲線には、装置の倍率設
定の精度に応じた精度にて絶対値の尺度を入れることが
できる。
Therefore, when the surface roughness cross-sectional curve obtained by observing the standard roughness test piece 16 at the magnification α is calculated by the computer 22, and the scale S μm/cm is obtained, the sample 10 as the object to be measured is calculated. Regarding the surface roughness cross-sectional curve obtained by observation at magnification β, the scale (α
/β)Sμm, /Crn1 can be easily obtained. Therefore, an absolute value scale can be included in the surface roughness cross-sectional curve of the object to be measured with an accuracy corresponding to the accuracy of the magnification setting of the apparatus.

つきに、上述したと同様の信号処理をアナログ演算によ
り行なうようにした場合における本発明表面粗さ測定装
置の構成例を第3図に示す。図示の構成例においても、
第2図系の構成例におけると全く同様に、走査型電子顕
微鏡27の偏向コイル28に走査電源35から供給する
偏向電流の電流値を倍率調整器34によって切換え、適
切な倍率にて試料架台30上に載置した試料31および
標準粗さ試験片32を、架台30を矢印方向に移動させ
て交互に走査電子ビームにより照射し、その反射電子を
コレクタ電極29により捕集してそれぞれの表面の断面
形状の微分波形に相当する画像信号を形成し、その画像
信号を、増幅器33を介し、走査電源35により走査型
電子顕微鏡27と同期して作動させた陰極線管表示装置
42に供給して表示する。
FIG. 3 shows an example of the structure of the surface roughness measuring apparatus of the present invention in which signal processing similar to that described above is performed by analog calculation. Also in the illustrated configuration example,
Just as in the configuration example shown in Figure 2, the current value of the deflection current supplied from the scanning power supply 35 to the deflection coil 28 of the scanning electron microscope 27 is switched by the magnification adjuster 34, and the sample mount 30 is adjusted to an appropriate magnification. The sample 31 and the standard roughness test piece 32 placed on the top are alternately irradiated with a scanning electron beam by moving the pedestal 30 in the direction of the arrow, and the reflected electrons are collected by the collector electrode 29 to measure the surface of each surface. An image signal corresponding to a differential waveform of the cross-sectional shape is formed, and the image signal is supplied via an amplifier 33 to a cathode ray tube display device 42 operated in synchronization with a scanning electron microscope 27 by a scanning power supply 35 for display. do.

図示の構成による本発明表面粗さ測定装置においては、
上述のようにして得た物体表面の断面形状の微分波形を
表わす画像信号を、積分器36を介して乗算器38に供
給する。一方、表面粗さ試験片32および試料31につ
いて倍率調整器34によりそれぞれ設定した倍率αおよ
びβにそれぞれ比例させて、スイッチ41および40に
より抵抗分圧器をそれぞれ切換えて得た直流電圧Eの分
圧出力電圧を演算器37に供給して求めた倍率比(α/
β)をも乗算器38に供給し、積分器36の積分出力に
乗算する。
In the surface roughness measuring device of the present invention having the configuration shown in the figure,
The image signal representing the differential waveform of the cross-sectional shape of the object surface obtained as described above is supplied to the multiplier 38 via the integrator 36. On the other hand, for the surface roughness test piece 32 and the sample 31, the divided voltage of the DC voltage E obtained by switching the resistance voltage divider using the switches 41 and 40 is proportional to the magnification α and β set by the magnification adjuster 34, respectively. The magnification ratio (α/
β) is also supplied to the multiplier 38 and multiplied by the integral output of the integrator 36.

かかる乗算によって得られた絶対値尺度のデータを陰極
線管表示装置42に供給すれば、被測定物体の表面粗さ
断面曲線に、標準粗さ試験片に基づいた尺度を入れて表
示することができる。
By supplying the absolute value scale data obtained by such multiplication to the cathode ray tube display device 42, the surface roughness cross-sectional curve of the object to be measured can be displayed with a scale based on the standard roughness test piece. .

以上に説明したように、本発明表面粗さ測定装置におい
ては、第1図示の構成における走査型電子顕微鏡の試料
架台5上に試料10に近接して表面粗さ試験片9.11
を併置することにより、観察画像を良好な調整状態に保
持したままにて、標準粗さ試験片9.11の観察画像か
ら試料10の観察画像に切換えることができ、したがっ
て、両者の観察に、他の調整状態は一定に保持した状態
にて、倍率のみをそれぞれ最適の倍率αおよびβに選択
して設定することができる。また、第2図示の構成によ
る信号処理系においては、試料15および標準粗さ試験
片16を載置した試料架台14を移動させるにあたり、
まず、標準粗さ試験片16を倍率αにて観察し、その反
則電子像信号を、アナログ・ディジタル変換器20によ
りディジタル化したうえで、計算機22により積分して
表面粗さ断面曲線を得ると、その標準粗さ試験片16の
表面粗さは既知であるから、試料15の表面粗さ断面曲
線に入れるべき尺度SμIll /印が得られる。つい
で、走査型電子顕微鏡12の調整を同一状態に保持した
ままで、観察視野内に試料15が位置するように試料架
台14を移動さぜ、倍率βにて観察した試料15の反射
電子像信号から同様にしてその表面粗さ断面曲線を求め
、(α/β)Sなる演算を行なえば、その表面粗さ断面
曲線に尺度を入れることができる。したがって、標準粗
さ試験片を試料とは別個に観察していIc従来装置に比
して格段に信頼性の高い正確な尺度を容易に入ることが
できる。さらに、第3図示の構成例においては、試料と
標準粗さ試験片との入れ替え、倍率の選択に対応して、
倍率に比例した電圧を発生さゼることにより、倍率比(
α/β)の演算およびその倍率比を反射電子像信号の積
分結果に乗する演算を行ない、標準粗さ試験片に対する
同様の積分結果を参照して、第2図示の構成例にお(プ
ると同様の尺度付与を容易に行なうことができる。
As explained above, in the surface roughness measuring apparatus of the present invention, the surface roughness test piece 9.
By arranging them side by side, it is possible to switch from the observation image of standard roughness test piece 9.11 to the observation image of sample 10 while maintaining the observation image in a good adjustment state. While the other adjustment states are held constant, only the magnification can be selected and set to the optimal magnification α and β, respectively. In addition, in the signal processing system having the configuration shown in FIG. 2, when moving the sample stand 14 on which the sample 15 and the standard roughness test piece 16 are placed,
First, the standard roughness test piece 16 is observed at a magnification α, and the resulting electronic image signal is digitized by the analog-to-digital converter 20, and then integrated by the computer 22 to obtain a surface roughness cross-sectional curve. Since the surface roughness of the standard roughness test piece 16 is known, the scale SμIll /mark to be included in the surface roughness cross-sectional curve of the sample 15 can be obtained. Next, while keeping the adjustment of the scanning electron microscope 12 in the same state, the sample mount 14 is moved so that the sample 15 is located within the observation field, and the backscattered electron image signal of the sample 15 observed at the magnification β is obtained. By similarly determining the surface roughness cross-sectional curve from , and performing the calculation (α/β)S, it is possible to insert a scale into the surface roughness cross-sectional curve. Therefore, it is possible to easily obtain a much more reliable and accurate measure than with the conventional Ic apparatus, which observes the standard roughness test piece separately from the sample. Furthermore, in the configuration example shown in Figure 3, in response to changing the sample and the standard roughness test piece and selecting the magnification,
By generating a voltage proportional to the magnification, the magnification ratio (
α/β) and multiplying the integration result of the backscattered electron image signal by the magnification ratio, and referring to the similar integration result for the standard roughness test piece, the configuration example shown in Figure 2 (printed) is performed. Similar scaling can be easily done.

以上に詳述したように動作する本発明表面粗さ測定装置
による被測定物体の表面粗さ断面曲線の実測結果の一例
を第4図に示す。
FIG. 4 shows an example of the actual measurement results of the surface roughness cross-sectional curve of the object to be measured using the surface roughness measuring apparatus of the present invention which operates as described in detail above.

効  果 以上の説明から明らかなように、本発明によれば、走査
型電子顕微鏡による表面粗さの測定について、つぎのよ
うな顕著な効果が得られる。すなわち、従来は、第4図
に示したように、被測定物体の表面粗さ断面曲線に尺度
を入れることが容易でなく、仮に、尺度を入れたとして
も、標準粗さ試験片を被測定物体とは別個に観察してい
たために、走査型電子顕微鏡の調整状態が相違するがた
めに、尺度付与の精度が低下せざるを得ながったのに対
し、本発明によれば、第4図に示したように、測定結果
の表面粗さ断面曲線の縦軸に正確な単位目盛を付するこ
とか極めて容易となり、従来は測定結果の表示画面によ
って被測定物体の表面形状を観察し得るに止まっていた
のに対し、表示画面の垂直方向に表われる皿凸について
尺度を付I)、表面粗さを実測し得るという顕著な効果
が得られる。
Effects As is clear from the above explanation, according to the present invention, the following remarkable effects can be obtained in measuring surface roughness using a scanning electron microscope. In other words, as shown in Figure 4, conventionally it was not easy to insert a scale into the surface roughness cross-sectional curve of the object to be measured, and even if a scale was inserted, the standard roughness test piece could not be easily measured. Because the scanning electron microscope was observed separately from the object, the adjustment state of the scanning electron microscope was different, and the accuracy of scale assignment had to be reduced.However, according to the present invention, As shown in Figure 4, it has become extremely easy to attach accurate unit scales to the vertical axis of the surface roughness cross-sectional curve of the measurement results. However, by adding a scale to the platen convexity appearing in the vertical direction of the display screen, a remarkable effect can be obtained in that the surface roughness can be actually measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明表面粗さ測定装置における走査型電子顕
微鏡の概略構成を模式的に示す斜視図、第2図は同じ(
その信号処理系の構成例を示すブロック線図、 ′M3図は同じ(その信号処理系の他の構成例を示すブ
ロック線図、 第4図は同じくその測定結果の一例を示す特性曲線図で
ある。 1、12.27・・・走査型電子顕微鏡2・・・電子銃
     3・・・集束コイル4.26.’28・・・
偏向コイル 5、14.30・・・試料架台 6.7・・・調整っまみ 8・・・試料台9、11.1
6.32・・・標準粗さ試験片10、15.31・・・
試料  13.29・・・コレクタ電極17.33・・
・増幅器   18.34・・・倍率調整器19・・・
端末装置 20・・・アナログ・ディジタル変換器21、42・・
・陰極線管表示装置 22、37・・・計算機   23・・・出力装置25
、35・・・走査電源  36・・・積分器38・・・
乗算器     39.40.41・・・スイッチ。 特許出願人   東 京 人 学 長
Fig. 1 is a perspective view schematically showing the general configuration of a scanning electron microscope in the surface roughness measuring device of the present invention, and Fig. 2 is the same (
Figure 4 is a block diagram showing an example of the configuration of the signal processing system, and Figure 4 is a characteristic curve diagram showing an example of the measurement results. Yes. 1, 12.27...Scanning electron microscope 2...Electron gun 3...Focusing coil 4.26.'28...
Deflection coil 5, 14.30... Sample stand 6.7... Adjustment knob 8... Sample stand 9, 11.1
6.32... Standard roughness test piece 10, 15.31...
Sample 13.29...Collector electrode 17.33...
・Amplifier 18.34...Magnification adjuster 19...
Terminal device 20...analog-digital converter 21, 42...
- Cathode ray tube display device 22, 37... Computer 23... Output device 25
, 35...Scanning power supply 36...Integrator 38...
Multiplier 39.40.41...Switch. Patent applicant Tokyo President

Claims (1)

【特許請求の範囲】 1、被測定物体の表面を電子ビームにより走査して得た
反射電子による画像信号を積分して前記被測定物体の表
面の断面形状を測定する走査型電子顕微鏡において、前
記被測定物体の近傍に表面粗さ断面曲線の基準となる標
準粗さ試験片を載置して前記被測定物体の表面粗さ断面
曲線を較正する手段を設けたことを特徴とする走査型電
子顕微鏡による表面粗さ測定装置。 2、特許請求の範囲第1項記載の測定装置において、前
記標準粗さ試験片と前記被測定物体とをそれぞれ観察す
るときの倍率の比を乗じて前記被測定物体の前記画像信
号を積分するディジタル演算部を備えて成り、前記被測
定物体について尺度を(=lした表面粗さ断面曲線が得
られるように構成配置したことを特徴とする走査型電子
顕微鏡による表面粗さ測定装置。
[Scope of Claims] 1. In a scanning electron microscope that measures the cross-sectional shape of the surface of the object to be measured by integrating an image signal from reflected electrons obtained by scanning the surface of the object to be measured with an electron beam, A scanning electronic device characterized by comprising means for calibrating the surface roughness cross-sectional curve of the object to be measured by placing a standard roughness test piece as a reference for the surface roughness cross-sectional curve in the vicinity of the object to be measured. Surface roughness measuring device using a microscope. 2. In the measuring device according to claim 1, the image signal of the object to be measured is integrated by multiplying the ratio of magnifications when observing the standard roughness test piece and the object to be measured, respectively. 1. A surface roughness measuring device using a scanning electron microscope, comprising a digital calculation unit, and configured and arranged so as to obtain a surface roughness cross-sectional curve with a scale of (=l) for the object to be measured.
JP10031983A 1983-06-07 1983-06-07 Surface roughness measuring apparatus by scanning type electronic microscope Granted JPS59225310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10031983A JPS59225310A (en) 1983-06-07 1983-06-07 Surface roughness measuring apparatus by scanning type electronic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10031983A JPS59225310A (en) 1983-06-07 1983-06-07 Surface roughness measuring apparatus by scanning type electronic microscope

Publications (2)

Publication Number Publication Date
JPS59225310A true JPS59225310A (en) 1984-12-18
JPH0246083B2 JPH0246083B2 (en) 1990-10-12

Family

ID=14270861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10031983A Granted JPS59225310A (en) 1983-06-07 1983-06-07 Surface roughness measuring apparatus by scanning type electronic microscope

Country Status (1)

Country Link
JP (1) JPS59225310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285353A (en) * 1986-06-03 1987-12-11 Shimadzu Corp Corpuscular ray mapping device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107254A (en) * 1978-02-10 1979-08-22 Hitachi Ltd Scanning-type electron microscope
JPS5951447A (en) * 1982-09-17 1984-03-24 Hitachi Ltd Sample stage of scanning type electron microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107254A (en) * 1978-02-10 1979-08-22 Hitachi Ltd Scanning-type electron microscope
JPS5951447A (en) * 1982-09-17 1984-03-24 Hitachi Ltd Sample stage of scanning type electron microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62285353A (en) * 1986-06-03 1987-12-11 Shimadzu Corp Corpuscular ray mapping device

Also Published As

Publication number Publication date
JPH0246083B2 (en) 1990-10-12

Similar Documents

Publication Publication Date Title
US4766311A (en) Method and apparatus for precision SEM measurements
JP2006286578A (en) Charged particle beam device
EP0014472B1 (en) Airtightness testing apparatus for watches
US5182454A (en) Scanning electron microscope
JPS59225310A (en) Surface roughness measuring apparatus by scanning type electronic microscope
JPS5478166A (en) Method and apparatus for measuring length of electron microscopes
JPS59761B2 (en) Distance measuring device in scanning electron microscope
CN218938362U (en) Oscilloscope capable of automatically capturing optimal waveform
US4468560A (en) Electron microscope equipped with measuring facility
KR830002855B1 (en) Distance Measuring Device of Scanning Electron Microscope
JP2880003B2 (en) electronic microscope
SU884005A1 (en) Method of measuring diameter of electronic probe in raster electron microscope
JPH0445046B2 (en)
JPS5848347A (en) Strobe scan type electron microscope
JPH0419484B2 (en)
JPS623609A (en) Range finder
JPS6291805A (en) Dimension measuring instrument
KR940009313B1 (en) Landing error measuring device of color braun tube
JP2793579B2 (en) Nystagmus measurement device
KR830002147B1 (en) Sample phase display device
JPS59170712A (en) Length measuring device by scanning type electron microscope
JPH0132674Y2 (en)
JPS60242306A (en) Measuring instrument for fine size
JPH11101629A (en) Apparatus for measuring length by electron beam
JPH01114783A (en) Measuring instrument for primary ion beam diameter of ion microanalyzer