JPS59224866A - Corona discharger - Google Patents

Corona discharger

Info

Publication number
JPS59224866A
JPS59224866A JP8002383A JP8002383A JPS59224866A JP S59224866 A JPS59224866 A JP S59224866A JP 8002383 A JP8002383 A JP 8002383A JP 8002383 A JP8002383 A JP 8002383A JP S59224866 A JPS59224866 A JP S59224866A
Authority
JP
Japan
Prior art keywords
discharge
lengthwise
distribution
discharge current
corona discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8002383A
Other languages
Japanese (ja)
Inventor
Noriaki Yamazaki
憲明 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP8002383A priority Critical patent/JPS59224866A/en
Publication of JPS59224866A publication Critical patent/JPS59224866A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0291Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices corona discharge devices, e.g. wires, pointed electrodes, means for cleaning the corona discharge device

Abstract

PURPOSE:To prevent the distribution of a discharge current which flows in the lengthwise direction of an electrode from becoming uneven with small power consumption by providing a device which applies mechanical strain to the electrode continuously. CONSTITUTION:The operation of an oscillator 16 is controlled by a control mechanism 17, and when a signal R1 is inputted with a copy button 18 turned on, the oscillator 16 is driven for a specific time to vibrate a vibrator 14 of electrostrictive type bimorph material, etc., using piezoelectric effect continuously for the specific time. Consequently, a metallic thin wire 15 for discharge is extended and contracted lengthwise at specific intervals of time, so lengthwise strain is generated among metallic crystal lattices repeatedly at a short period. Therefore, electrons are emitted from the surface of the metallic thin wire 15 through an exo-electron emission phenomenon and secondary electron operation necessary for corona discharge is supplemented to increase corona discharge current density. Thus, the density distribution of ions generated near the metallic thin wire 15 is uniformed lengthwise, so the distribution of the discharge current is extremely uniform in the lengthwise direction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複写機の感光体を帯電する装置等として用い
られるコロナ放電装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a corona discharge device used as a device for charging a photoreceptor of a copying machine.

従来、コロナ放電装置としては第1図に示すように、シ
ールド1の長手方向両端に絶縁ブロック2.3をそれぞ
れ設け、該絶縁ブロック2゜3間にコロナ放電電極とな
る、綜径が50ミクロン〜100ミクロン程度の放電用
金属細線4を張架し、交流又は直流の高電圧(±3KV
〜±1ぴりを印加してコロナ放電させるようにしたもの
が知られている。
Conventionally, as shown in Fig. 1, insulating blocks 2 and 3 are provided at both longitudinal ends of a shield 1 as a corona discharge device, and a corona discharge electrode is formed between the insulating blocks 2 and 3 with a heel diameter of 50 microns. A fine discharge metal wire 4 of approximately 100 microns is stretched, and a high voltage of AC or DC (±3KV) is applied.
A device in which corona discharge is caused by applying a voltage of ~±1 pulsation is known.

このコロナ放電装置は梅成が簡単であるために、複写機
に数多く利用されている。
Since this corona discharge device is easy to produce, it is widely used in copying machines.

しかしその反面、放電用金属細線が汚れたりすると、そ
の放電用金属細繊の長さ方向に沿う放電電流の分布の均
一性が損われる(つまり、放電電流が不均一となる)と
の欠点を有する。
However, on the other hand, if the thin metal wire for discharge becomes dirty, the uniformity of the discharge current distribution along the length of the thin metal wire for discharge will be impaired (in other words, the discharge current will become non-uniform). have

このことは、放電用金属細わ1にマイナス(−)極性の
電圧を印加した時に著しい。
This is remarkable when a negative (-) polarity voltage is applied to the thin discharge metal strip 1.

前述の様に、放電電流の均一性が損われると、例えば感
光体の帯電装置として用いた場合には、感光体の帯電電
位の均一性が損われ、結果として複写画像に著しい濃度
の濃淡が生じ、画像の品質を低下させてしまう。
As mentioned above, if the uniformity of the discharge current is impaired, for example, when used as a charging device for a photoreceptor, the uniformity of the charging potential of the photoreceptor will be impaired, resulting in significant density shading in the copied image. This results in a decrease in image quality.

なお、放電電流の均一性が損われる原因としては、放電
用金属細繊の表面が複ず機内のトナー粒子付着等によっ
て汚れると、その部分のコロナ放電が阻害されるため、
放1′!用金属細線の金属表面の酸化状態にバラツキが
あって仕事門数にバラツキがある為に、表面から放出す
る2次電子が不均一であるため等と考えられている。
The reason why the uniformity of the discharge current is impaired is that when the surface of the discharge metal fine fibers becomes dirty due to toner particles adhering to the inside of the machine, corona discharge in that area is inhibited.
Release 1'! This is thought to be due to variations in the oxidation state of the metal surface of the thin metal wire for use, resulting in variations in the number of work gates, and thus the secondary electrons emitted from the surface are non-uniform.

そこで、従来より前述の問題を解決する為に、放電用金
属#I線を通電加熱して2次電子数を増加させたり、グ
リッド電極を設けたスコロトロン構造としたりしている
Therefore, in order to solve the above-mentioned problem, conventionally, the number of secondary electrons is increased by heating the discharge metal #I wire with electricity, or a scorotron structure is provided with a grid electrode.

しかし、いずれの手段であっても多くの電力を消費し高
価な電源を必要とするから、コストが高くなってしまう
等の不具合を有する。
However, either method consumes a lot of power and requires an expensive power source, resulting in problems such as increased costs.

発明の目的 コロナ放電電極の長さ方向に沿う放電電流の分布が不均
一となることを、低い電力消費で防止できるようにする
ことを目的とする。
OBJECTS OF THE INVENTION It is an object of the invention to prevent non-uniform distribution of discharge current along the length of a corona discharge electrode with low power consumption.

発明の構成 コロナ放電電極に機械的歪を与える装置を設けたもの。Composition of the invention A device equipped with a device that applies mechanical strain to the corona discharge electrode.

実施例 以下第2図以降を参照して本発明の詳細な説明する。Example The present invention will be described in detail below with reference to FIG. 2 and subsequent figures.

シールド10の長手方向両端には絶縁ブロックII、+
2がそれぞれ設けられ、t@Rブロック11には高圧端
子13が設けであると共に、絶縁ブロック12には振動
子14が設けられ、絶縁ブロック11と振プ1子14と
の間にコロナ放電電極となる放電用金属細線I5が張架
してあり、高圧端子13が高圧電源に接続され、振動子
14には発振器16によって振動が与えられる。
Insulating blocks II, +
The t@R block 11 is provided with a high voltage terminal 13, the insulating block 12 is provided with a vibrator 14, and a corona discharge electrode is provided between the insulating block 11 and the vibrator 14. A fine discharge metal wire I5 is stretched, the high voltage terminal 13 is connected to a high voltage power source, and the vibrator 14 is given vibration by an oscillator 16.

前記振動子14はピエゾ効果を用いた電歪形バイモルフ
等であり、周波数は100H’Z〜1ooKFIz程度
の範囲の任意の値で良い。
The vibrator 14 is an electrostrictive bimorph using a piezo effect, and the frequency may be any value in the range of about 100 H'Z to 10 KFIz.

前記発振器16け制御機構17により動作制御され、該
制御機構17けコピー釦18をONした時の信号R1(
つまり、複写開始信号)が入力されると発振器16を所
定時間駆動し、振動子14を所定時間だけ振動させる。
The operation is controlled by the oscillator 16 control mechanism 17, and the signal R1 (
That is, when the copy start signal) is input, the oscillator 16 is driven for a predetermined period of time, and the vibrator 14 is vibrated for a predetermined period of time.

とれにより、放電用金属細線I5け所定の時間間隔で長
さ方向に伸縮される。
Due to the breakage, the fine discharge metal wire I5 is expanded and contracted in the length direction at predetermined time intervals.

この様に、放電用金属細線15を伸縮運動させると、放
電用金属細線15の金属結晶格子間に長さ方向の歪が早
い周期で繰り返し発生する。
When the thin metal wire 15 for discharge is expanded and contracted in this way, strain in the length direction is repeatedly generated between the metal crystal lattices of the thin metal wire 15 for discharge at a fast cycle.

つまり、伸縮歪が発生する。In other words, expansion and contraction distortion occurs.

このために、エキソ電子放出現象によって放電用金属細
線150表面から電子が放出されるので、この放出電子
によってコロナ放電に必要な2次電子作用が補充され□
、コロナ放電電流密度が増加する。
For this reason, electrons are emitted from the surface of the discharge metal thin wire 150 due to the exoelectron emission phenomenon, and the secondary electron action necessary for corona discharge is supplemented by the emitted electrons.
, the corona discharge current density increases.

とれにより、放電用金属用金属細線15の近傍から発生
するイオンの密度分布が長さ方向に均一化されるので、
放’FA’f4流の分布は長さ方向に沿って極めて均一
となる。
Due to the breakage, the density distribution of ions generated from the vicinity of the thin metal wire 15 for discharge metal is made uniform in the length direction.
The distribution of the free 'FA' f4 flow is quite uniform along the length.

第3図は金属細線に一定速度の伸びを与えた時に、その
表面から放出される電子数の検出カウント数を示す表口
であり、伸びを与えると瞬間的に放出電子数が急激に順
次増加し、伸びを停止すると放出電子数が比較的短時間
に順次減少すると共に、再び伸びを与えると前述と同様
に再び放出電子数が増加することが判る。
Figure 3 shows the detected count of the number of electrons emitted from the surface of a thin metal wire when it is stretched at a constant speed.When stretching is applied, the number of emitted electrons increases rapidly and sequentially. However, it can be seen that when the elongation is stopped, the number of emitted electrons gradually decreases in a relatively short period of time, and when elongation is applied again, the number of emitted electrons increases again as described above.

このことから、エキソ電子放出現象により安定して電子
放出をさせるためには、定常的に早い周期で伸びを与え
ることが必要であり、本発明では発振器16によって放
電用金属細線15に一定周期の伸縮運動を与えるように
した。
Therefore, in order to stably emit electrons by the exoelectron emission phenomenon, it is necessary to give elongation at a constant and fast cycle, and in the present invention, the oscillator 16 is used to give the fine discharge metal wire 15 a constant cycle. I tried to give it a stretching motion.

次に、放電用金属細線15にマイナス(−)5gの電圧
を印加すると共に、前述と同様に伸縮運動を与えた時の
放電電流密度分布を測定したところ、第4図(イ)に示
す様な極めて均一な分布状態となった。
Next, when a voltage of minus (-) 5 g was applied to the thin metal wire 15 for discharge, and the same stretching motion as described above was applied, the discharge current density distribution was measured, as shown in Fig. 4 (a). The distribution was extremely uniform.

また、伸縮N@を与えない状態の時の放電電流密度分布
を測定したところ、第4図(りに示す様な不均一な分布
′状態となった。
Furthermore, when the discharge current density distribution was measured in a state where no expansion/contraction N@ was applied, it was found that the distribution was non-uniform as shown in FIG.

このことから、放電用金属細線15に伸縮j1■動(つ
まり、長さ方向の周期的な振動)を付与することにより
、放電電流の長さ方向の分布が不均一となることを防止
できることが判明する。
From this, it is possible to prevent the distribution of the discharge current from becoming uneven in the length direction by imparting expansion/contraction motion (that is, periodic vibration in the length direction) to the thin metal wire 15 for discharge. Prove.

なお、第5図に示すように、コロナ放電電極として鋸歯
状の電極+ 5’を用いた場合にも、その鋸歯状電極の
長さ方向に一定周期の振動を付与して伸縮歪を発生させ
ることで、鋸歯先端から発生するコロナ放電電流を増加
して長さ方向の放電電流分布を均一化することができる
As shown in Fig. 5, even when a sawtooth electrode +5' is used as a corona discharge electrode, expansion and contraction strain is generated by applying vibration at a constant period in the length direction of the sawtooth electrode. By doing so, it is possible to increase the corona discharge current generated from the sawtooth tip and make the discharge current distribution in the length direction uniform.

第6図は第2実施例の斜視図であり、他側絶縁ブロック
12をシールド10に回動自在に支承し、両側絶縁ブロ
ン211,12間に放電用金属f@線15を張架すると
共に、他側絶縁ブロック12に正逆回転するモータ2o
の回転軸21′を連結する。つ才り、他側絶縁ブロック
12は段付円柱となり、補助絶縁ブロック121の段付
孔121α内に回転自在に嵌挿しである。
FIG. 6 is a perspective view of the second embodiment, in which the other side insulating block 12 is rotatably supported on the shield 10, and the discharging metal wire 15 is stretched between the insulating bronzes 211 and 12 on both sides. , a motor 2o that rotates in forward and reverse directions on the other side insulating block 12
The rotating shaft 21' of the two is connected. The other insulating block 12 is a stepped cylinder, and is rotatably inserted into the stepped hole 121α of the auxiliary insulating block 121.

そして、モータ20を制御機構21で動作制御すると共
に、制御機構21け高圧端子13に電圧を印加する手段
22よりの信号等で、電圧印加と同時(つまり放電と同
時)にモータ20を繰り返して正転、逆転動作させる。
The operation of the motor 20 is controlled by the control mechanism 21, and the motor 20 is repeatedly operated at the same time as voltage application (that is, at the same time as discharge) using a signal from the means 22 for applying voltage to the high voltage terminal 13 of the control mechanism 21. Operates forward and reverse rotation.

これにより、放電用金属細線15は繰り返して正転、逆
転されてねじり運動が付与され、その金属結晶格子間に
径方向の歪が年い周期で繰り返し発生する。つ寸り、ね
じり歪が発生する。
As a result, the fine discharge metal wire 15 is repeatedly rotated forward and backward, giving it a twisting motion, and radial strain is repeatedly generated between the metal crystal lattices at an annual cycle. Twisting and torsional distortion occur.

これにより、伸縮歪が発生した場合と同様にエキソ電子
放出現象により電子が放出されろから、前述と同様に放
電用金属細i(I l 5の長き方向に沿う放電電流分
布が均一となる。
As a result, electrons are emitted due to the exoelectron emission phenomenon in the same way as in the case where expansion/contraction strain occurs, so that the discharge current distribution along the long direction of the discharge metal thin i (I l 5) becomes uniform as described above.

なお、前述のねじり運動は、例えば5回転右廻りさせ、
次に10回転左廻りさせるという様に回転方向を繰り返
して逆転させて放電用金属細線15に付与する必要があ
ると共に、回転速度と回転数は放電用金属細線15の太
さ、長さによって決定されるが、複写機に用いられるコ
ロナ放電装置の場合には回転数が10@を超えると放電
用金属細線が切れてしまうことが判明した。
Note that the above-mentioned twisting motion is, for example, 5 rotations clockwise,
Next, it is necessary to repeatedly reverse the direction of rotation by rotating it counterclockwise 10 times to apply it to the thin metal wire 15 for discharge, and the rotation speed and number of rotations are determined by the thickness and length of the thin metal wire 15 for discharge. However, in the case of a corona discharge device used in a copying machine, it has been found that when the rotation speed exceeds 10@, the thin metal wire for discharge breaks.

以上要約すれば、コロナ放電用電極に、伸縮歪、ねじり
歪等の機械的歪を全長に亘って均等に、かつ早い周期で
定常的に所定時間間隔で与えることによって、エキソ電
子放出現象により電子を放出させることで、放電に必要
な2次電子作用の補充を行ガうようにすれば良い。
In summary, by applying mechanical strain such as expansion/contraction strain or torsional strain to the corona discharge electrode uniformly over its entire length and at regular, rapid cycles at predetermined time intervals, electrons can be generated by the exoelectron emission phenomenon. By emitting , the secondary electron action necessary for discharge may be supplemented.

これにより、コロナ放電電極近傍から発生するイオンの
密度分布が均−化畜れるから、放電電流の長さ方向の分
布は極めて均一となる。
This equalizes the density distribution of ions generated from the vicinity of the corona discharge electrode, so that the distribution of discharge current in the length direction becomes extremely uniform.

発明の効果 コロナ放電用電極15よりエキソ電子放出現象によって
電子が放出され、それにより放電に必要な2次電子作用
が補充されるので、放電電流の分布が長さ方向に不均一
となることを防止できると共に、発振器等を駆動するf
2弱な電力のみを必要とするから電力消費が低く、コス
ト的に有利である。
Effects of the Invention Electrons are emitted from the corona discharge electrode 15 by an exoelectron emission phenomenon, thereby supplementing the secondary electron action necessary for discharge, so that the distribution of discharge current becomes non-uniform in the length direction. f that can be prevented and also drive an oscillator, etc.
Since it requires only a little less than 2 liters of power, the power consumption is low and it is advantageous in terms of cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の斜視図、第2図は本発明の実施例を示
す縦断面図、第3図は放電用金属細線に伸びを与えた時
の伸び量と放出電子数の関係を示す表口、第4図は伸び
を与えた時七与えない時の放電電流密度分布を示す表口
、第5図は鋸歯状放電電極を用いた時の縦断面図、第6
図は第2実施例の斜視図でおる。 10はシールド、15はコロナ放電用電極。 出願人 富士ゼロックス株式会社 代理人 弁理士 米 原 正 章 弁理士添木 忠 第1図 第 2 図 5 第5図 iデラi、商。
Fig. 1 is a perspective view of a conventional example, Fig. 2 is a longitudinal sectional view showing an embodiment of the present invention, and Fig. 3 shows the relationship between the amount of elongation and the number of emitted electrons when elongation is given to a thin metal wire for discharge. Figure 4 is the front page showing the discharge current density distribution with and without elongation, Figure 5 is a longitudinal cross-sectional view when a sawtooth discharge electrode is used, and Figure 6 is a longitudinal cross-sectional view when a sawtooth discharge electrode is used.
The figure is a perspective view of the second embodiment. 10 is a shield, and 15 is a corona discharge electrode. Applicant Fuji Xerox Co., Ltd. Agent Patent Attorney Masaaki Yonehara Patent Attorney Tadashi Soeki Figure 1 Figure 2 Figure 5 Figure 5 I Dera I, Commercial.

Claims (1)

【特許請求の範囲】[Claims] シールド10内に張架したコpす放電用電極I5に電圧
を印加してコロナ放電させるようにしたコロナ放電装置
において、前記コロナ放電用電板15に機械的歪を与え
る装置を設けたことを特徴とするコロナ放電装置。
In a corona discharge device in which a voltage is applied to a copper discharge electrode I5 stretched within a shield 10 to cause a corona discharge, a device for applying mechanical strain to the corona discharge electric plate 15 is provided. Characteristic corona discharge device.
JP8002383A 1983-05-10 1983-05-10 Corona discharger Pending JPS59224866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8002383A JPS59224866A (en) 1983-05-10 1983-05-10 Corona discharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8002383A JPS59224866A (en) 1983-05-10 1983-05-10 Corona discharger

Publications (1)

Publication Number Publication Date
JPS59224866A true JPS59224866A (en) 1984-12-17

Family

ID=13706684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8002383A Pending JPS59224866A (en) 1983-05-10 1983-05-10 Corona discharger

Country Status (1)

Country Link
JP (1) JPS59224866A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169310A (en) * 2008-01-18 2009-07-30 Sharp Corp Charging device and image forming apparatus
JP2016537148A (en) * 2013-09-16 2016-12-01 深▲せん▼市同盛緑色科技有限公司Shenzhen Tongsheng Green Technology Co.,Ltd Negative ion generation type air purifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009169310A (en) * 2008-01-18 2009-07-30 Sharp Corp Charging device and image forming apparatus
US8095031B2 (en) 2008-01-18 2012-01-10 Sharp Kabushiki Kaisha Charging device with vibrating discharge electrode and image forming apparatus
JP2016537148A (en) * 2013-09-16 2016-12-01 深▲せん▼市同盛緑色科技有限公司Shenzhen Tongsheng Green Technology Co.,Ltd Negative ion generation type air purifier

Similar Documents

Publication Publication Date Title
US7430388B2 (en) Pin array scorotron charging system for small diameter printer photoreceptors
JPH06328763A (en) Image recorder
US7515851B2 (en) Electron emitter, charger, and charging method
US2856533A (en) Moving wire corona
US4456365A (en) Charging device
JPS59224866A (en) Corona discharger
EP0954006A3 (en) Methods for producing electron-emitting device, electron source, and image-forming apparatus
JPS59224865A (en) Corona discharger
JPS59224862A (en) Corona discharger
JPS6275563A (en) Forming device for toner layer thickness
JP4975425B2 (en) Charging method, charging device and image forming apparatus
JPH1090977A (en) Saw-tooth ac charger
JPH06274012A (en) Image forming device
JPH038544B2 (en)
JPH10309760A (en) Manufacture of fur brush roller
JPS6025770A (en) Gradation recording method
JPH1010842A (en) Electrifying device for film on drum inside face
JPH08254877A (en) Electrifying and cleaning device for electrophotographic printer
JPH08110676A (en) Electrifier
JPS59224864A (en) Corona discharger
JPH0363675A (en) Method and device for corona charging
JPS5919954A (en) Developing method
JPH01304473A (en) Electrostatic charging device
JPH07146598A (en) Corona discharger
JPS59125758A (en) Corotron for copying machine