JPS59224865A - Corona discharger - Google Patents

Corona discharger

Info

Publication number
JPS59224865A
JPS59224865A JP8002283A JP8002283A JPS59224865A JP S59224865 A JPS59224865 A JP S59224865A JP 8002283 A JP8002283 A JP 8002283A JP 8002283 A JP8002283 A JP 8002283A JP S59224865 A JPS59224865 A JP S59224865A
Authority
JP
Japan
Prior art keywords
discharge
distribution
lengthwise
discharge current
corona discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8002283A
Other languages
Japanese (ja)
Inventor
Noriaki Yamazaki
憲明 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP8002283A priority Critical patent/JPS59224865A/en
Publication of JPS59224865A publication Critical patent/JPS59224865A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0291Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices corona discharge devices, e.g. wires, pointed electrodes, means for cleaning the corona discharge device

Abstract

PURPOSE:To prevent the distribution of a discharge current which flows in the lengthwise direction of an electrode from becoming uneven with small power consumption by providing a device which applies repetitive mechanical strain to the electrode continuously. CONSTITUTION:The operation of an oscillator 16 is controlled by a control mechanism 17, and when a signal R1 is inputted with a copy button 18 turned on, the oscillator 16 is driven until the completion of copying operation to vibrate a vibrator 14 continuously during the copying operation. Consequently, a metallic thin wire 15 for discharge is extended and contracted lengthwise continuously during the copying operation, so lengthwise strain is generated among metallic crystal lattices repeatedly at a short period. Therefore, electrons are emitted from the surface of the metallic thin wire 15 through an exo-electron emission phenomenon and secondary electron operation necessary for corona discharge is supplemented to increase corona discharge current density. Thus, the density distribution of ions generated near the metallic thin wire 15 is uniformed lengthwise, so the distribution of the discharge current is extremely uniform in the lengthwise direction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、複写機の感光体を帯電する装置等として用い
られるコロナ放電装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a corona discharge device used as a device for charging a photoreceptor of a copying machine.

従来、コ四す放電装置としては第1図に示すように、シ
ールド1の長手方向両端に絶縁ブロック2.3をそれぞ
れ設け、該絶縁ブロック2゜3間にコロナ放電電極とな
る、線径が50ミクロン〜100ミクロン程度の放電用
金属細線4を張架し、交流又は直流の高電圧(±3KV
〜±l OAT’)を印加してコロナ放電させるように
したものが知られている。
Conventionally, as shown in FIG. 1, insulating blocks 2 and 3 are provided at both ends of a shield 1 in the longitudinal direction of a four-wheel discharge device, and a wire with a diameter of A fine discharge metal wire 4 of approximately 50 microns to 100 microns is stretched, and a high voltage of AC or DC (±3KV) is applied.
~±l OAT') is known to cause corona discharge.

このコロナ放電装置は構成が簡単であるために、複写機
に数多く利用されている。
This corona discharge device has a simple configuration and is therefore widely used in copying machines.

しかしその反面、放電用金属細線が汚れたりすると、そ
の放電用金属細線の長さ方向に沿う放′rt、電流の分
布の均一性が損われる(つまり、放電電流が不均一とな
る)との欠点を有する。
However, on the other hand, if the thin metal wire for discharge becomes dirty, the uniformity of the distribution of radiation and current along the length of the thin metal wire for discharge will be impaired (in other words, the discharge current will become non-uniform). It has its drawbacks.

このことは、放電用金属細線にマイナス(−)斯性の電
圧を印加した時に著しい。
This is remarkable when a negative (-) voltage is applied to the thin metal wire for discharge.

前述の様に、放電電流の均一性が損われると、例えば感
光体の帯電装置として用いた場合には、感光体の帯電電
位の均一性が損われ、結果として複写画像に著しい濃度
の濃淡が生じ、画像の品質を低下させてしまう。
As mentioned above, if the uniformity of the discharge current is impaired, for example, when used as a charging device for a photoreceptor, the uniformity of the charging potential of the photoreceptor will be impaired, resulting in significant density shading in the copied image. This results in a decrease in image quality.

々お、放電電流の均一性が損われる原因としては、放電
用金属細線の表面が複写機内のトナー粒子付着等によっ
て汚れると、その部分のコロナ放電が阻害されるため、
放電用金属細線の金属表面の酸化状態にバラツキがあっ
て仕事関数にバラツキがある為に、表面から放出する2
次電子が不均一であるため等と考えられている。
The reason why the uniformity of the discharge current is impaired is that when the surface of the fine metal wire for discharge becomes dirty due to toner particles adhering to it inside the copying machine, corona discharge in that area is inhibited.
Because there are variations in the oxidation state of the metal surface of the thin metal wire for discharge and variations in the work function, 2 is released from the surface.
This is thought to be due to the non-uniformity of secondary electrons.

そこで、従来より前述の問題を解決する為に、放電金属
細線を通電加熱して2次電子数を増加させたり、グリッ
ド電極を設けたスコロトロン樽造としたりしている。
Therefore, in order to solve the above-mentioned problems, conventional methods have been to increase the number of secondary electrons by heating thin discharge metal wires or to make scorotron barrels with grid electrodes.

しかし、いずれの手段であっても多くの電力を消費し高
価な電源を必要とするから、コストが高くなってしまう
等の不具合を有する。
However, either method consumes a lot of power and requires an expensive power source, resulting in problems such as increased costs.

発明の目的 コロナ放電電極の長さ方向に沿う放電電流の分布が不均
一となることを、低い一力消費で防止できるようにする
ことを目的とする。
OBJECT OF THE INVENTION It is an object of the invention to prevent uneven distribution of discharge current along the length direction of a corona discharge electrode with low single force consumption.

発明の構成 コロナ放電電極に繰り返しのある機緘的歪を連続して付
与する装置を設けたもの。
Structure of the Invention A device is provided that continuously applies repetitive mechanical strain to a corona discharge electrode.

実施例 以下第2図以降を参照して本発明の詳細な説明する。Example The present invention will be described in detail below with reference to FIG. 2 and subsequent figures.

シールド10の長手方向両端には絶縁ブロックI+、+
2がそれぞれ設けられ、絶縁ブロック11には高圧端子
13が設けであると共に、絶縁ブロック12には振動子
14が設けられ、tt’l Rフロック11と振動子1
4との間にコロナ放電電極となる放電用金属細線15が
張架してあり、高圧端子13が高圧電源に接続され、振
動子14には発振器16によって振動が与えられる。
Insulating blocks I+, + are provided at both longitudinal ends of the shield 10.
The insulating block 11 is provided with a high voltage terminal 13, and the insulating block 12 is provided with a vibrator 14.
A thin discharge metal wire 15 serving as a corona discharge electrode is stretched between the vibrator 14 and the vibrator 14, and the high-voltage terminal 13 is connected to a high-voltage power source.

前記振動子14はピエゾ効果を用いた電歪形バイモルフ
等であり、周波数は100H2〜100A”#z程度の
範囲の任意の値で良い。
The vibrator 14 is an electrostrictive bimorph using a piezo effect, and the frequency may be any value in the range of about 100H2 to 100A''#z.

前記発振器16は制御機構17により動作制御てれ、該
制御機榴17はコピー釦18をONした時の信号R1(
つまり、複写開始信号)が入力されると発振器16を複
写作業終了するまで駆動し、振動子14を複写動作量に
連続して振動させる。
The operation of the oscillator 16 is controlled by a control mechanism 17, and the control mechanism 17 receives a signal R1 (
That is, when the copying start signal) is input, the oscillator 16 is driven until the copying operation is completed, and the vibrator 14 is caused to vibrate continuously according to the amount of copying operation.

これにより、放電用金属細線15は複写動作量に連続し
て長さ方向に伸縮される。
As a result, the thin metal wire 15 for discharge is expanded and contracted in the length direction continuously with the amount of copying operation.

この様に、放電用金属細線15を伸縮j!■動させると
、放電金属細線 に長さ方向の歪が早い周期で繰り返し発生する。
In this way, the thin metal wire 15 for discharge is expanded and contracted. (2) When the discharge metal wire is moved, distortion in the length direction occurs repeatedly at a fast cycle.

つまり、伸縮歪が発生する。In other words, expansion and contraction distortion occurs.

このために、エキソ電子放出現象によって放電用金属細
線15の表面から電子が放出でれるので、この放出電子
によってコロナ放電に必要な2次電子作用が補充され、
コロナ放i!電流密度が増加する。
For this reason, electrons are emitted from the surface of the fine discharge metal wire 15 due to the exoelectron emission phenomenon, and the emitted electrons supplement the secondary electron action necessary for corona discharge.
Corona release! Current density increases.

これにより、放電用金属細線15の近傍から発生するイ
オンの密度分布が長さ方向に均一化されるので、放電電
流の分布は長さ方向に沿って極めて均一となる。
As a result, the density distribution of ions generated from the vicinity of the fine discharge metal wire 15 is made uniform in the length direction, so that the distribution of the discharge current becomes extremely uniform along the length direction.

第3図は金属細線に一定速度の伸びを与えた時に、その
表面から放出される電子数の検出カウント数を示す表口
であり、伸びを与えると瞬間的に放出電子数が急激に順
次増加し、伸びを停止すると放出電子数が比較的短時間
に順次減少すると共に、再び伸びを与えると前述と同様
に再び放出電子数が増加することが判る。
Figure 3 shows the detected count of the number of electrons emitted from the surface of a thin metal wire when it is stretched at a constant speed.When stretching is applied, the number of emitted electrons increases rapidly and sequentially. However, it can be seen that when the elongation is stopped, the number of emitted electrons gradually decreases in a relatively short period of time, and when elongation is applied again, the number of emitted electrons increases again as described above.

このことから、エキソ電子放出現象により安定して電子
放出をきせるためには、定常的に早い周期で伸びを与え
ることが必要であり、本発明では発振器16によって放
電用金属a線15に複写動作量(つまり、放電時)に連
続して伸縮運動を与えるようにした。
From this, in order to stably emit electrons due to the exoelectron emission phenomenon, it is necessary to constantly apply elongation at a fast cycle, and in the present invention, the oscillator 16 performs a copying operation on the discharge metal a-line 15. The amount (that is, during discharge) is given continuous expansion and contraction motion.

次に、放電用金属細線15にマイナス(−)5gの電圧
を印加すると共に、前述と同様に伸縮運動を与えた時の
放電電流密度分布を測定したところ、第4図(イ)に示
す様な極めて均一な分布状態となった。
Next, when a voltage of minus (-) 5 g was applied to the thin metal wire 15 for discharge, and the same stretching motion as described above was applied, the discharge current density distribution was measured, as shown in Fig. 4 (a). The distribution was extremely uniform.

また、伸縮運動を与えない状態の時の放電電流密度分布
を測定したところ、第4図(嗜に示す様な不均一な分布
状態となった。
In addition, when the discharge current density distribution was measured in a state where no stretching motion was applied, the distribution was non-uniform as shown in FIG.

このことから、放電用金属細線15に伸縮運動(つまり
、長さ方向の周期的な振動)を付与することにより、放
電電流の長さ方向の分布が不均一となることを防止でき
ることが判明する。
From this, it is clear that by applying stretching motion (that is, periodic vibration in the length direction) to the thin metal wire 15 for discharge, it is possible to prevent the distribution of the discharge current from becoming uneven in the length direction. .

々お、第5図に示すように、コロナ放電電極として鋸歯
状の電[15’を用いた場合にも、その鋸歯状′#、桟
の長さ方向に一定周期の振動を付与して伸縮歪を発生き
せることで、鋸歯先端から発生するコロナ放電電流を増
加して長さ方向の放電電流分布を均一化することができ
る。
As shown in Fig. 5, even when a sawtooth electrode [15'] is used as a corona discharge electrode, it can be expanded and contracted by applying a constant period of vibration in the longitudinal direction of the sawtooth shape and crosspiece. By generating strain, it is possible to increase the corona discharge current generated from the tip of the sawtooth and make the discharge current distribution in the length direction uniform.

第6図は第2実施例の斜視図であり、他側絶縁ブロック
12をシールド10に回動自在に支承し、両側絶縁ブロ
ック+ 1.12間に放電用金属細線15を張架すると
共に、他側絶縁ブロック12に正逆回転するモータ20
の回転軸21′を連結する。つまり、他側絶縁ブロック
12は段付円柱となり、補助絶縁ブロック12′の段付
孔12+α内に回転自在に嵌挿しである。
FIG. 6 is a perspective view of the second embodiment, in which the other side insulating block 12 is rotatably supported on the shield 10, and a thin metal wire 15 for discharging is stretched between the two insulating blocks +1.12. Motor 20 that rotates in forward and reverse directions on the other side insulating block 12
The rotating shaft 21' of the two is connected. In other words, the other insulating block 12 is a stepped cylinder, and is rotatably inserted into the stepped hole 12+α of the auxiliary insulating block 12'.

そして、モータ20を制御機構21で動作制御すると共
に、制御機構21は高圧端子13に電圧を印加する手段
22よりの信号等で、電圧印加と同時(つまり放電と同
時)にそ−夕20を締り返して正転、逆転動作させる。
The operation of the motor 20 is controlled by the control mechanism 21, and the control mechanism 21 controls the motor 20 simultaneously with the voltage application (that is, at the same time as the discharge) using a signal from the means 22 for applying voltage to the high voltage terminal 13. Tighten and rotate forward and reverse.

これにより、放電用金属細線15け繰り返して正転、逆
転されてねじり運動が付与され、その金属結晶格子間に
径方向の歪が早い周期で繰り返し発生する。つまり、ね
じり歪が発生する。
As a result, 15 fine discharge metal wires are repeatedly rotated forward and reverse to impart twisting motion, and radial strain is repeatedly generated between the metal crystal lattices at a fast cycle. In other words, torsional strain occurs.

これにより、伸縮歪が発生した場合と同様にエキソ電子
放出現象により電子が放出されるから、前述と同様に放
電用金属細線15の長さ方向に沿う放電電流分布が均一
となる。
As a result, electrons are emitted by the exoelectron emission phenomenon in the same way as when expansion/contraction strain occurs, so that the discharge current distribution along the length of the fine discharge metal wire 15 becomes uniform as described above.

なお、前述のねじり運動は、例えば5回転右廻りさせ、
次に10回転左廻りさせるという様に回転方向を繰り返
して逆転させて放電用金属細線15に付与する必要があ
ると共に、回転速度と回転数は放電用金属細線15の太
さ、長さによって決定されるが、複写機に用いられるコ
ロナ放電装置の場合には回転数が1o回yi:超えると
放電用金属細線が切れてしまうことが判明した。
Note that the above-mentioned twisting motion is, for example, 5 rotations clockwise,
Next, it is necessary to repeatedly reverse the direction of rotation by rotating it counterclockwise 10 times to apply it to the thin metal wire 15 for discharge, and the rotation speed and number of rotations are determined by the thickness and length of the thin metal wire 15 for discharge. However, in the case of a corona discharge device used in a copying machine, it has been found that when the number of revolutions exceeds 10 times, the thin metal wire for discharge breaks.

以上要約すれば、コロナ放↑江用電極に、伸縮歪、ねじ
り歪等の機械的歪を全長に亘って均等に、かつ早い周期
で定常的に繰り返し連続して与えることによって、エキ
ソ電子放出現象により電子を放出させることで、放電に
必要な2次電子作用の補充を行なうようにすれば良い。
To summarize the above, the exoelectron emission phenomenon can be achieved by applying mechanical strain such as expansion/contraction strain or torsional strain uniformly over the entire length of the electrode for corona emission ↑e in a steady and repeated manner at a rapid cycle. By emitting electrons, the secondary electron action necessary for discharge may be supplemented.

これにより、コロナ放電電極近傍から発生するイオンの
密度分布が均一化されるから、放Ti ’Fl流の長さ
方向の分布は杼めて均一となる。
As a result, the density distribution of ions generated from the vicinity of the corona discharge electrode is made uniform, so that the distribution of the emitted Ti'Fl flow in the length direction becomes uniform.

なお、複写機の感光体帯電装置として用いる場合等には
、機械的歪の繰返し周波数は複写工程全体のスピードと
関係があり、複写スピードに対し繰返し周波数が少なす
ぎると放出電子の粗密が感光体帯電の粗密と力ってあら
れれ、複写画像の濃度の濃淡となり好ましくないが、複
写スピードがlQcm / 、?#Cであれば概ね50
?(り74ac以上とすれば複7画像の画質に悪影響を
与えることがない。
When used as a photoreceptor charging device in a copying machine, the repetition frequency of mechanical strain is related to the overall speed of the copying process, and if the repetition frequency is too low relative to the copying speed, the density of emitted electrons will be reduced The density and power of charging are undesirable as they cause the density of the copied image to be too dark, but the copying speed is 1Qcm/? #C is about 50
? (If the value is 74ac or more, the image quality of multiple images will not be adversely affected.

発明の効果 コロナ放電用竺械15よりエキソ電子放出現象によって
電子が放出され、それにより放電に必要な2次電子作用
が補充きれるので、放電電流の分布が長さ方向に不均一
となることを防止できると共に、発振器等を駆動する微
弱な電力のみを必要とするから電力消費が低く、コスト
的に有利である。
Effects of the Invention Electrons are emitted from the corona discharge wire 15 by the exoelectron emission phenomenon, thereby replenishing the secondary electron action necessary for discharge, so that the distribution of discharge current becomes non-uniform in the length direction. This can be prevented, and since only a weak amount of power is required to drive an oscillator, power consumption is low, and it is advantageous in terms of cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の斜視図、第2図は本発明の実施例を示
す縦断面図、第3図は放電用金属細線に伸びを与えた時
の伸び量と放出電子数の関係を示す表図、第4図は伸び
を与えた時と与えない時の放電電流密度分布を示す表図
、第5図は鋸歯状放電電極を用いた時の縦断面図、第6
図は第2実施例の斜視図である。 10はシールド、15はコロナ放電用電極。 出願人 富士ゼロックス株式会社 代理人 弁理士 米 原 正 章 弁理士洪水 忠 第1図 第2図 迅 第5図 ふ雪ヨ1.池 第 3 図 時間−
Fig. 1 is a perspective view of a conventional example, Fig. 2 is a longitudinal sectional view showing an embodiment of the present invention, and Fig. 3 shows the relationship between the amount of elongation and the number of emitted electrons when elongation is given to a thin metal wire for discharge. Figure 4 is a table showing the discharge current density distribution with and without elongation, Figure 5 is a longitudinal cross-sectional view when a sawtooth discharge electrode is used, and Figure 6
The figure is a perspective view of the second embodiment. 10 is a shield, and 15 is a corona discharge electrode. Applicant Fuji Xerox Co., Ltd. Agent Patent Attorney Masaaki Yonehara Patent Attorney Tadashi Flood Figure 1 Figure 2 Figure 5 Fuyukiyo 1. Ike Figure 3 Time-

Claims (1)

【特許請求の範囲】[Claims] シールド10内に張架したコロナ放電用mW15に電圧
を印加してコロナ放電させるようにしたコロナ放電装置
において、前記コロナ放電用電極15に、繰り返しのあ
る機械的歪を連続して付与する装置を設けたことを特徴
とするコロナ放電装置。
In a corona discharge device in which a voltage is applied to a corona discharge mW 15 stretched in a shield 10 to cause corona discharge, a device is provided that continuously applies repetitive mechanical strain to the corona discharge electrode 15. A corona discharge device characterized in that:
JP8002283A 1983-05-10 1983-05-10 Corona discharger Pending JPS59224865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8002283A JPS59224865A (en) 1983-05-10 1983-05-10 Corona discharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8002283A JPS59224865A (en) 1983-05-10 1983-05-10 Corona discharger

Publications (1)

Publication Number Publication Date
JPS59224865A true JPS59224865A (en) 1984-12-17

Family

ID=13706658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8002283A Pending JPS59224865A (en) 1983-05-10 1983-05-10 Corona discharger

Country Status (1)

Country Link
JP (1) JPS59224865A (en)

Similar Documents

Publication Publication Date Title
US7430388B2 (en) Pin array scorotron charging system for small diameter printer photoreceptors
EP0954006A3 (en) Methods for producing electron-emitting device, electron source, and image-forming apparatus
US4355884A (en) Electrophotographic apparatus
JPS59224865A (en) Corona discharger
JP2007199374A (en) Charging controller for image forming apparatus
JPS59224866A (en) Corona discharger
JPS59224862A (en) Corona discharger
JP4975425B2 (en) Charging method, charging device and image forming apparatus
US5686732A (en) X-ray apparatus comprising a photoconductor and a charging device
JPH08248787A (en) Imag forming device
JP2547218B2 (en) Reverse image forming device
JP3250701B2 (en) Contact charging device
JPH10309760A (en) Manufacture of fur brush roller
JPS6025770A (en) Gradation recording method
JPS59224864A (en) Corona discharger
JPH05134519A (en) Corona discharge device
JPH02300775A (en) Image forming device
JPH01304473A (en) Electrostatic charging device
JPS6198368A (en) Corona discharge device
JPS60208772A (en) Copying machine
JPH07168424A (en) Ion printer
JPH07186437A (en) Ion printer
JPS61111000A (en) Control of plasma x-ray generation device
JPS61198598A (en) X-ray generating equipment
JPH06274013A (en) Method and device for controlling potential of photosensitive body