JPS59224694A - Saccharification of cellulosic substance and its device - Google Patents

Saccharification of cellulosic substance and its device

Info

Publication number
JPS59224694A
JPS59224694A JP9747983A JP9747983A JPS59224694A JP S59224694 A JPS59224694 A JP S59224694A JP 9747983 A JP9747983 A JP 9747983A JP 9747983 A JP9747983 A JP 9747983A JP S59224694 A JPS59224694 A JP S59224694A
Authority
JP
Japan
Prior art keywords
saccharification
tank
liquid
cellulosic
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9747983A
Other languages
Japanese (ja)
Other versions
JPH0342077B2 (en
Inventor
Hitoshi Ishibashi
整 石橋
Setsuo Saito
斉藤 節雄
Yoji Otahara
緒田原 蓉二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Petroleum Alternatives Development
Original Assignee
Research Association for Petroleum Alternatives Development
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Petroleum Alternatives Development filed Critical Research Association for Petroleum Alternatives Development
Priority to JP9747983A priority Critical patent/JPS59224694A/en
Publication of JPS59224694A publication Critical patent/JPS59224694A/en
Publication of JPH0342077B2 publication Critical patent/JPH0342077B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To enable saccharification of cellulosic substance in a highly concentrated state, by blending a cellulosic substance with cellulase in the presence of water, feeding the blend to a saccharification tank of column type, retaining it for a given time, separating the reaction product into a solid and liquid materials. CONSTITUTION:A cellulosic substance such as straw, bagasse, small pieces of wood, etc. is fed from the hopper 3a to the blender 3, the aqueous solution 2 of an enzyme such as cellulase, hemicellulase, etc. is simultaneously added from the pump 3f to it, and, if necessary, an acid or alkali is added from the tank 3d, they are adjusted to a proper pH, and blended by the ribbon blade 3c in the blender 3. The blend is then fed to the packing tank 5 of column type by the screw feeder 4, retained for a given time and saccharified. Liquid(saccharide solution) in the reaction product of the blend is taken out from the filter 7, and the solid material is discharged by the extruder 6, and further separated into a liquid and solid materials by the centrifugal separator 8.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ワラ類、バガス、コーンスト−バー及び木く
ず等のセルロース系物質を繊維素分解酵素で糖化するに
当り、セルロース系物質を高濃度で仕込み、連続又は半
連続的に糖化を行う、改良された糖化方法及びその装置
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a method for saccharifying cellulosic substances such as straw, bagasse, corn stover, and wood chips using fibrinolytic enzymes. This invention relates to an improved saccharification method and apparatus for performing saccharification continuously or semi-continuously.

〔発明の背景〕[Background of the invention]

従来、セルロース系物質は繊維素分解酵素を作用させる
ためには、前処理として、脱リグニン及びセルロース結
晶構造の破壊が必要である。しかしてこの前処理方法を
実用化するためには、(1)前処、哩に要する消費エネ
ルギーが少ないこと、(2)前処理原料から糖への転換
率が高いこと、及び(3)糖化反応において少ない消費
エネルギーで効率良く高濃度の糖液が得られることが要
求される。
Conventionally, cellulosic materials require delignification and destruction of the cellulose crystal structure as pretreatment in order to be treated with fibrinolytic enzymes. However, in order to put this pretreatment method into practical use, it is necessary to (1) consume less energy for pretreatment and extraction, (2) have a high conversion rate from pretreated raw materials to sugar, and (3) saccharification. In the reaction, it is required to efficiently obtain a highly concentrated sugar solution with less energy consumption.

このうち、(1)及び(2)については、アルカリ処理
と微粉砕又はオゾン処理との組合せのような各前処理方
法の組合せが検討されている。
Among these, for (1) and (2), combinations of pretreatment methods, such as a combination of alkali treatment and pulverization or ozone treatment, are being considered.

他方、(3)の高濃度の糖液を得るためには、前処理原
料を高濃度に仕込む必要がある。その場合、原料の繊維
長さが糖化反応に影響を与える。原料のト裁維長さを、
10〜30μ程度まで微粉砕すれば、かくはん混合及び
連続糖化に問題はないが、この微粉砕に要する消費エネ
ルギーは著しく大きいため、実用的ではない。そこで、
従来、微粉砕しない前処理原料でも高濃度に仕込める方
法が検討されている。しかしながら、いまだ満足な方法
は開発されていないのが現状である。例えば、原料を逐
次添加し、・スラリー化状態で糖化を行う方法では、添
加量が増大するに従って残渣が蓄積してスラッジ化する
ため、添加量に限界があるという問題点がある。また別
法として、スラッジの混練操作ができる糖化槽を用いる
糖化方法では、糖化槽を大容積とし、大容量のかくはん
モーターの設置が必要であり、しかも槽内での混合が不
完全であるため、原料のショートパスが生じ、連続糖化
は困難であるという問題点がある。
On the other hand, in order to obtain the highly concentrated sugar solution (3), it is necessary to charge the pretreated raw materials at a high concentration. In that case, the fiber length of the raw material affects the saccharification reaction. The cutting length of the raw material,
If it is finely pulverized to about 10 to 30 microns, there will be no problem in stirring and mixing and continuous saccharification, but the energy consumption required for this pulverization is extremely large, so it is not practical. Therefore,
Conventionally, methods have been studied that allow pretreated raw materials that are not pulverized to be charged at high concentrations. However, the current situation is that no satisfactory method has been developed yet. For example, in a method in which raw materials are added sequentially and saccharification is performed in a slurry state, there is a problem that there is a limit to the amount of addition because as the amount of addition increases, residue accumulates and becomes sludge. As an alternative method, a saccharification method using a saccharification tank that can perform sludge kneading operations requires a large capacity saccharification tank and the installation of a large-capacity stirring motor, and the mixing within the tank is incomplete. However, there are problems in that a short pass of the raw material occurs and continuous saccharification is difficult.

したがって、微粉砕しない前処理原料でも、高濃度でか
つ高仕込み率で連続糖化のできる糖化方法の開発が要望
されている。
Therefore, there is a need for the development of a saccharification method that can continuously saccharify pretreated raw materials that are not pulverized at a high concentration and at a high charging rate.

〔発明の目的〕[Purpose of the invention]

本発明は、前記した従来技術の問題点を解決するために
なされたものであシ、その目的は、微粉砕しない前処理
原料を、高濃度で仕込み、無かくはん下に糖化を行なう
糖化方法及びその装置を提供することにある。
The present invention has been made to solve the problems of the prior art described above, and its purpose is to provide a saccharification method in which pretreated raw materials that are not pulverized are charged at a high concentration and saccharified without stirring. Our goal is to provide that device.

〔発明の概要〕[Summary of the invention]

本発明を概説すれば、本発明の第1の発明はモルロース
系物質の糖化方法に関する発明であシ、セルロース系物
質を繊維素分解酵素で分解して糖液を得る糖化方法にお
いて、(1)セルロース系物質と繊維素分解酵素とを水
を介して混合する工程、(2)該混合物を基型糖化槽に
供給し、所定時間滞留後、槽底部よシ生成混合物を抜取
る工程、及び(3)該生成混合物を固液分離し、糖液を
回収する工程の各工程を包含することを特徴とする。
To summarize the present invention, the first invention of the present invention relates to a method for saccharifying a morulose-based substance, and in the saccharification method for obtaining a sugar solution by decomposing a cellulose-based substance with a fibrinolytic enzyme, (1) a step of mixing a cellulosic substance and a fibrinolytic enzyme via water; (2) a step of supplying the mixture to a basic saccharification tank and, after residence for a predetermined period of time, drawing out the resulting mixture from the bottom of the tank; 3) It is characterized by including the steps of separating the product mixture into solid and liquid and recovering a sugar solution.

また、本発明の第2の発明はセルロース系物質の糖化装
置に関する発明であって、セルロース系物質を繊維素分
解酵素で分解して糖液を得る糖化装置において、セルロ
ース系物質原料と処理剤含有水溶液との混合手段、その
混合物の糖化槽への装入手段、ジャケット付塔型糖化槽
、糖化槽下部における生成混合物の抜取り手段、及び固
液分離手段を包含することを特徴とする。
Further, the second invention of the present invention is an invention related to a saccharification device for cellulose-based materials, and in the saccharification device for obtaining a sugar solution by decomposing cellulose-based materials with a fibrinolytic enzyme, the saccharification device contains a cellulose-based material raw material and a processing agent. It is characterized by including a means for mixing with an aqueous solution, a means for charging the mixture into the saccharification tank, a jacketed tower type saccharification tank, a means for extracting the product mixture from the lower part of the saccharification tank, and a solid-liquid separation means.

本発明は、下記のような原料高濃度仕込みの糖化反応を
解析することにより完成し得たものである。
The present invention was completed by analyzing the saccharification reaction of high-concentration raw materials as described below.

微粉砕しないアルカリ処理又はオゾン処理したバガス(
平均粒径0.7 、 )を10〜15重量%の濃度で、
内径20cm、長さ40cmの横型槽(リボン型Jll
もつもの)において回分の糖化を行った。
Alkali-treated or ozone-treated bagasse without pulverization (
average particle size 0.7, ) at a concentration of 10 to 15% by weight,
Horizontal tank with inner diameter of 20cm and length of 40cm (ribbon type)
Batch saccharification was carried out in Motsumono).

なお、セルラーゼとしては、市販のセルラーゼオノズカ
R−10(近畿ヤクルト社製、最適温度500%p H
4,8)を用いた。その結果、アルカリ処理及びオゾン
処理バガスの両方共、糖化前にスラッジ状態であったも
のが、糖化反応に伴い、スラッジの容積が減少して遊離
水性液が増加しスラリー化した。そして、このときのス
ラリー化状態を解析した。
In addition, as the cellulase, commercially available Cellulase Onozuka R-10 (manufactured by Kinki Yakult Co., Ltd., optimal temperature 500% pH
4,8) was used. As a result, both the alkali-treated and ozone-treated bagasse were in a sludge state before saccharification, but with the saccharification reaction, the sludge volume decreased and free aqueous liquid increased, resulting in slurry. Then, the slurry state at this time was analyzed.

内径4cm、高さ6cmで、底部に網を設置した反応管
を試作し、遊離水性液を経時的に抜取り変化量を測定し
た。第1図に測定結果を示す。すなわち第1図は、時間
(時)(横軸)と、充てん層の容4Jt (ml ) 
及ヒ!ルコ〜ス、セロビオース濃度<9/l)、また遊
離水性液の流出速度(rnlV/時)及ヒグルコース、
セロビオース濃度<y/l>(縦軸)との関係を示すグ
ラフである。
A reaction tube with an inner diameter of 4 cm and a height of 6 cm with a net installed at the bottom was prototyped, and free aqueous liquid was sampled over time to measure the amount of change. Figure 1 shows the measurement results. In other words, Figure 1 shows the relationship between time (hours) (horizontal axis) and the volume of the packed layer 4Jt (ml).
Hey! lucose, cellobiose concentration <9/l), as well as the flux rate of free aqueous fluid (rnlV/h) and hyglucose,
It is a graph showing the relationship with cellobiose concentration <y/l> (vertical axis).

第1図から明らかなように、糖化初期に遊離水・性液が
多く生成する。その総量は、全水分量の約30%であっ
た。このとき原料スラッジは、スラッジ状態の1ま糖化
反応に従ってその容積が減少した。この容、債の減少割
合は、約30〜40%であった。このことから、上記反
応管のような構造をもつ糖化槽を用い、逐次添加法の糖
化反応を行えば、原料スラッジの減少容積分の原料を多
く仕込めると考えtoそこで、槽底部に網を内股した内
径5Cm1高さ20Cmの基型糖化槽を用い、24時間
ごとに該オゾン処4バガスとセルラーゼ水溶液の混合物
(水分量約85重量%)を100g(充てん高さ7 c
m )逐次添加して糖化反応を実施した。第2図にその
結果を示す。すなわち第2図は、糖化時間(時)(横軸
)と、糖化槽底部から抜取った遊離水性液の生成量(累
積流出量)(コ)及びグルコース濃度(+++y/d)
(縦軸)との関係を示すグラフである。
As is clear from FIG. 1, a large amount of free water and sexual fluid is produced at the early stage of saccharification. The total amount was about 30% of the total water content. At this time, the volume of the raw material sludge decreased due to the saccharification reaction of the sludge state. The rate of decrease in this volume and bonds was approximately 30-40%. From this, we believe that if we use a saccharification tank with a structure similar to the reaction tube described above and perform the saccharification reaction using the sequential addition method, we can charge more raw material to compensate for the reduced volume of raw material sludge. Using a base-type saccharification tank with an internal diameter of 5 cm and a height of 20 cm, 100 g of the ozonated bagasse and cellulase aqueous solution (water content approximately 85% by weight) was added every 24 hours (filling height 7 cm).
m) The saccharification reaction was carried out by sequential addition. Figure 2 shows the results. In other words, Figure 2 shows the saccharification time (hours) (horizontal axis), the amount of produced free aqueous liquid extracted from the bottom of the saccharification tank (cumulative outflow amount) (k), and the glucose concentration (+++y/d).
(vertical axis).

第2図から明らかなように、遊離水性液の糖濃度は、逐
次添加量が増大するに従って増加し、3〜4回目以上で
は、はぼ一定となった。また添加ごとに50〜60ゴの
遊離水性液が生成した。このときの総原料の仕込み容積
は、遊離水性液を除かない回分反応系に比べて約1/3
となった。しかし、糖化槽内の全残留スラッジから分離
した液の糖濃度は、遊離水性液を除かない回分反応系に
比べて小さくなった。これは、充てん高さ方向で糖化反
応の分布が生じているためである。このことから、上記
様式の糖化方法では、逐次添加と合せ、糖化槽下部よシ
スラッジを抜取る、すなわち連続又は半連続的な操作の
方がよいことを見出した。
As is clear from FIG. 2, the sugar concentration of the free aqueous liquid increased as the amount of addition increased successively, and became almost constant after the third or fourth addition. Each addition produced 50-60 grams of free aqueous liquid. The total raw material charging volume at this time is approximately 1/3 compared to a batch reaction system in which free aqueous liquid is not removed.
It became. However, the sugar concentration of the liquid separated from the total residual sludge in the saccharification tank was lower than that in the batch reaction system in which free aqueous liquid was not removed. This is because the saccharification reaction is distributed in the filling height direction. From this, it has been found that in the saccharification method of the above type, it is better to perform continuous or semi-continuous operation in which cis sludge is removed from the lower part of the saccharification tank in addition to sequential addition.

しかして、糖化反応速度は、糖化反応の初期はど大きく
、その増加割合は、次第に減少して一定となる。本実験
では、30〜48時間で一定となった。したがって、糖
化槽底部の原料の滞留時間が、糖化速度が一定となる時
間程度となったときに、槽からスラッジを抜出せば効率
的である。そして、抜出した原料スラッジよシ液分を分
離すれば、高い濃度の糖液が得られる。しかし、遊離水
による希釈が心配された。そこで、スラッジ充て゛ん層
内の水の流れを調べた。その結果、充てん層の保持水量
が80重量%以上となって初めて充てん層よシ水が遊離
し、押出し流れで下降することが判明した。また、前記
実験データにおいて、6回目の添加後の遊離水の単位時
間当りの最大生成量は、全保持水量の約2.6%と少な
い。そして、上段の遊離水が下段にまで達するのに約5
0時間以上要する。したがって、糖化槽底部よシ得られ
る遊離水性液は、槽底部付近にあるスラッジよシ押出さ
れたものであると推定した。そして事実、前記実験では
、6回目の遊離水性液の糖濃度は、槽底部付近にあるス
ラッジに含まれる糖液の濃度にほぼ一致していた。この
ことから、遊離水による希釈はないものと判断した。
Therefore, the saccharification reaction rate is high at the beginning of the saccharification reaction, and the rate of increase gradually decreases and becomes constant. In this experiment, it became constant after 30 to 48 hours. Therefore, it is efficient to extract the sludge from the tank when the residence time of the raw material at the bottom of the saccharification tank reaches a time at which the saccharification rate becomes constant. Then, by separating the extracted raw material sludge and the liquid, a highly concentrated sugar solution can be obtained. However, there were concerns about dilution due to free water. Therefore, we investigated the flow of water within the sludge-filled layer. As a result, it was found that water is released from the filled layer only when the amount of water retained in the filled layer reaches 80% by weight or more, and the water flows downward due to the extrusion flow. Furthermore, in the experimental data, the maximum amount of free water produced per unit time after the sixth addition is as small as about 2.6% of the total amount of retained water. It takes about 50 minutes for the free water in the upper layer to reach the lower layer.
It takes more than 0 hours. Therefore, it was assumed that the free aqueous liquid obtained from the bottom of the saccharification tank was extruded from the sludge near the bottom of the tank. In fact, in the above experiment, the sugar concentration of the free aqueous liquid in the sixth experiment almost matched the concentration of the sugar solution contained in the sludge near the bottom of the tank. From this, it was determined that there was no dilution due to free water.

そこで、上記糖化槽を用い、半連続の糖化を行った。1
2時間ごとに該前処理バガスとセルラーゼ液との混合物
100gを5区分添加後、滞留時間を60時間として糖
化を行った。なお、各区分の原料スラッジが判定できる
ように、各スラッジ間に網を設置した。その結果、抜取
りスラッジから分離した液及び遊離水性液の糖濃度は、
はぼ一致しくグルコース54g/l)、回分系での糖化
反応での値と一致した。
Therefore, semi-continuous saccharification was performed using the saccharification tank described above. 1
After adding 100 g of the mixture of the pretreated bagasse and cellulase solution in 5 portions every 2 hours, saccharification was performed with a residence time of 60 hours. In addition, a net was installed between each sludge so that the raw material sludge in each category could be determined. As a result, the sugar concentration of the liquid separated from the extracted sludge and the free aqueous liquid was
The result was a glucose of 54 g/l), which was exactly the same as the value obtained in the batch-based saccharification reaction.

次に、本発明を効果的に実施するための条件、すなわち
、スラッジ状原料の容積減少率が大きくなる条件を調べ
た。影響を与える因子として、スラッジ状原料の保持水
分量及びセルロース系物質の繊維長さに注目した。
Next, conditions for effectively implementing the present invention, ie, conditions for increasing the volume reduction rate of the sludge-like raw material, were investigated. We focused on the retained moisture content of the sludge-like raw material and the fiber length of the cellulosic material as influencing factors.

まず、バガスとセルラーゼ水溶液との混合比を種々変更
した糖化原料を調製し、これを内径4Cm1高さ6mで
槽底部に網を設置した糖化管に装入し、該原料の容積減
少率、すなわち (糖化後の容積/糖化前の容積)X100(%)を調べ
た。なお、バガスの繊維長さは、平均0.7問とした。
First, saccharification raw materials with various mixing ratios of bagasse and cellulase aqueous solution were prepared, and this was charged into a saccharification tube with an inner diameter of 4 cm and a height of 6 m with a net installed at the bottom of the tank, and the volume reduction rate of the raw material, i.e. (Volume after saccharification/Volume before saccharification) X100 (%) was investigated. In addition, the average fiber length of bagasse was 0.7.

測定結果f:第3図に示す。すなわち第3図は、固型分
濃度(重量%)(横軸)と容積減少率(%)(縦lll
1lI)との関係を示すグラフである。
Measurement result f: Shown in FIG. In other words, Figure 3 shows the solid content concentration (wt%) (horizontal axis) and volume reduction rate (%) (vertical lll
1lI).

第3図から明らかなように、固型分濃度5重量%では、
上記調装原料はスラリー状であシ、液は網より流出し、
糖化管内にはバガスがスラッジ状′で残留した。このと
きの残留バガスの保持水分率、すなわち 〔(保持水V(保持水量種型物量))X100(%)は
、80〜90重量%であった。しかも、この残留バガス
は、糖化反応が進行し、そのスラッジ容積は減少した。
As is clear from Figure 3, at a solid content concentration of 5% by weight,
The above-mentioned preparation raw material is in the form of a slurry, and the liquid flows out through the mesh.
Bagasse remained in the form of sludge inside the saccharification tube. At this time, the retained moisture content of the residual bagasse, that is, [(retained water V (retained water amount type material)) X100 (%), was 80 to 90% by weight. Moreover, the saccharification reaction progressed in this residual bagasse, and the sludge volume decreased.

これに対して、固型分濃度が10〜20重量%では、原
料はスラ°ツジ状となった。
On the other hand, when the solid content concentration was 10 to 20% by weight, the raw material became sludge-like.

そして、20重量%超では、原料は団塊状となった。こ
れらのスラッジ及び団塊状の原料は、糖化反応により容
積が減少した。その結果、容積減少率は、固型分濃度が
10〜20重量%で大き、くなり、特に15重量%で最
大となるととが判明した。
When the content exceeds 20% by weight, the raw material becomes lumpy. The volume of these sludge and nodular raw materials decreased due to the saccharification reaction. As a result, it was found that the volume reduction rate becomes large when the solid content concentration is 10 to 20% by weight, and becomes maximum when the solid content concentration is 15% by weight.

この値は、原料バガスが吸水できる限界値(限界保持水
に約85重量%)と一致している。
This value coincides with the limit value that the raw material bagasse can absorb water (approximately 85% by weight of the limit retained water).

これらの結果は、稲わらを試料とした場合にも同様であ
った。
These results were similar when rice straw was used as the sample.

次に、上記限界保持水量の条件で容積減少率に与える繊
維長さく平均径)の影響を調べた。その測定結果を第4
図に示す。すなわち第4図は、繊維長さく閣)(横軸)
と容積減少率(%)(縦軸)との関係を示すグラフであ
る。
Next, the influence of the fiber length (average diameter) on the volume reduction rate was investigated under the above-mentioned limit water retention conditions. The measurement results are shown in the fourth
As shown in the figure. In other words, Figure 4 shows the fiber length (horizontal axis)
It is a graph showing the relationship between and the volume reduction rate (%) (vertical axis).

第4図から明らかなように、繊維長さは0.1m以上で
効果的である。なお、繊維長さが2a以上で容積減少率
が向上するが、仕込み時の容積が大きくなることから、
それが必ずしも効果的とはいえない。また、繊維長さが
0.06mm以下では、容積の減少がほとんど無い。こ
れは、遊離水が形成されるものの、目詰シにょシ網を通
して溶出しなかったためである。以上のことよりみて、
繊維長  ゛さとしては、0.1mm〜2.0van程
度が好適である。
As is clear from FIG. 4, fiber lengths of 0.1 m or more are effective. Note that when the fiber length is 2a or more, the volume reduction rate improves, but since the volume at the time of preparation increases,
That doesn't necessarily mean it's effective. Further, when the fiber length is 0.06 mm or less, there is almost no decrease in volume. This is because, although free water was formed, it was not eluted through the plugged mesh. Considering the above,
The fiber length is preferably about 0.1 mm to 2.0 van.

以−にの説明は、遊離水性液について検討するために、
糖化槽の下部に網を設置した場合について行ったが、実
際面では、後記するように網の有無が、糖化反応自体に
影響を与えることはないことを確認した。
In the following discussion, in order to discuss free aqueous liquids,
We investigated the case where a screen was installed at the bottom of the saccharification tank, but in practice, as will be described later, we confirmed that the presence or absence of the screen does not affect the saccharification reaction itself.

以上のように、本発明の糖化方法によれば、微粉砕しな
いセルロース系物質でも、高濃度で、かつ高い仕込み率
で連続的な糖化を行うことができた。
As described above, according to the saccharification method of the present invention, continuous saccharification could be performed at a high concentration and at a high charging rate even with a cellulosic material that is not pulverized.

以下、本発明の装置の実施の態様を、添付図直に基づい
て具体的に説明する。
Embodiments of the apparatus of the present invention will be specifically described below with reference to the accompanying drawings.

第5図は、本発明装置の一例を示す一部断面概略図であ
る。第5図において、符号1はセルロース系物質、2は
酵素水溶液、3は混合槽、3aはホッパー、3bはかく
はんモーター、3cはリボンg、3ctはアルカリ又は
酸水溶液、3eはポンプ、3fはポンプ、4はスクリュ
ーフィーダー、4aはスクリュー翼、5は糖化槽、5a
は温水ジャケット、6はエフスフルーダ−,6aはスク
リュー翼、6bは排出口、7は網、7aは遊離水性液、
8は遠心分離機、8aは残留セルロース系物質、8bは
分離液を意味する。
FIG. 5 is a partially cross-sectional schematic diagram showing an example of the device of the present invention. In Fig. 5, numeral 1 is a cellulose-based material, 2 is an enzyme aqueous solution, 3 is a mixing tank, 3a is a hopper, 3b is a stirring motor, 3c is a ribbon g, 3ct is an alkali or acid aqueous solution, 3e is a pump, 3f is a pump , 4 is a screw feeder, 4a is a screw blade, 5 is a saccharification tank, 5a
is a hot water jacket, 6 is an Ffluder, 6a is a screw blade, 6b is a discharge port, 7 is a net, 7a is a free aqueous liquid,
8 is a centrifugal separator, 8a is a residual cellulosic material, and 8b is a separated liquid.

第5図の装置は、混合、輸送、糖化、及び固液分離の4
工程から構成されている。
The device shown in Figure 5 has four functions: mixing, transportation, saccharification, and solid-liquid separation.
It consists of processes.

(1)混合工程 混合槽3にはホッパー33よシ原料でおるセルロース系
物質1が供給される。そして、ポンプ3fによシセルラ
ーゼやヘミセルラーゼなどの酵素水溶液2が供給される
。そしてかくはんモーター3bの回転軸上に設置された
リボン翼3cの回転により混合される。このときの水分
量は、前述の限界保持水分量とし、この値をあらかじめ
求めておき、計算量添加すればよい。
(1) Mixing process Cellulose-based material 1, which is a raw material, is supplied to the mixing tank 3 through the hopper 33. Then, an aqueous enzyme solution 2 such as cycellulase or hemicellulase is supplied by the pump 3f. The mixture is then mixed by the rotation of the ribbon blade 3c installed on the rotating shaft of the stirring motor 3b. The amount of water at this time is set to the above-mentioned limit retention amount of water, and this value may be determined in advance and the calculated amount may be added.

該混合物のpHは、アルカリ又は酸の水溶液3dをポン
プ3eにより供給して調整する。このときの添加量は、
あらかじめ測定しておく。なお、上記混合槽の構造は、
特に限定されない。
The pH of the mixture is adjusted by supplying an aqueous alkali or acid solution 3d via a pump 3e. The amount added at this time is
Measure in advance. The structure of the above mixing tank is as follows:
Not particularly limited.

(2)輸送工程 該混合物の糖化槽5への輸送は、スクリューフィーダー
4を用いた。混合物の供給量の制御は、スクリュー翼4
aの回転数と運転時間とにより行った。
(2) Transportation process The screw feeder 4 was used to transport the mixture to the saccharification tank 5. The supply amount of the mixture is controlled by the screw blade 4.
The test was conducted based on the rotation speed and operating time of a.

(3)糖化工程 糖化槽5は、塔型充てん槽で、槽壁に温水ジャケット5
aが設置されている。槽底部は、横送シのエフスフルー
ダ−6と接続されている。そして、糖化槽5の下方延長
上のエフスフルーダ−6の下方位置に網7が設置されて
いる。網70ロ径は、セルロース系物質lを保持できる
ものであればよい。スクリューフィーダー4から供給さ
れた該混合物は、糖化槽5内で充てん層を形成する。そ
して、温水ジャケラ)5aによシ繊維素分解酵素の最適
温度に加温される。糖化槽が大型化した場合、充てん層
内に混合物の下降の妨害とならないように、伝熱管を設
置すればよい。糖化反応によって生じた遊離水性液を、
網7によシ混合物から抜取り、また、槽底部付近のセル
ロース系物質1を、エフスフルーダ−6によp抜出した
。このときの抜取シ量の制御は、エフスフルーダ−6の
スクリュー翼6aの回転数と運転時間とにより行った。
(3) Saccharification process The saccharification tank 5 is a tower-shaped packed tank with a hot water jacket 5 on the tank wall.
A is installed. The bottom of the tank is connected to the cross-feeding Ffluder 6. A net 7 is installed below the FFS Fluder 6 on the downward extension of the saccharification tank 5. The diameter of the mesh 70 may be any diameter as long as it can hold the cellulosic material 1. The mixture supplied from the screw feeder 4 forms a packed layer in the saccharification tank 5. Then, the warm water (5a) is heated to the optimum temperature for the fibrinolytic enzyme. When the saccharification tank is enlarged, heat transfer tubes may be installed in the packed layer so as not to interfere with the descent of the mixture. The free aqueous liquid produced by the saccharification reaction is
The mixture was taken out through a net 7, and the cellulose material 1 near the bottom of the tank was taken out through an Ffluder 6. The amount to be extracted at this time was controlled by the rotational speed and operating time of the screw blade 6a of the Ffluder 6.

スクリューフィーダー4とエフスフルーダ−6の運転は
関連を持っており、エフスフルーダ−6が運転終了後、
スクリューフィーダー4が運転を開始する。それぞれの
運転時間は、糖化槽内の設定滞留時間での上記混合物の
容積減少量をあらかじめ調べておき、それぞれの輸送能
力から決めればよい。すなわち、スクリューフィーダー
4及びエフスフルーダ−6の運転時間は、各々下記の式
で計算される: Δt 6 =Vy / Qr        −−(1
)Δt ? =VIX/ QEX       −−”
・(2)V m x / V v =α       
   ・・・・・・・・・(3)α=f(T)    
        ・・・・・・・・・(4)〔上記各式
において、Δt6 ニスクリユーフィーダーの運転時間
(分)、Δt7 :エフスフルーダ−の運転時間(分)
、Qy ニスクリユーフィーダーの輸送速)屍(m3/
分)、Q3x:エクスクル〜ダーのI論送速度(m3/
分)、VF :供給混合物の容積(m3 )、v、x:
抜出し物の容積(m3)、α:糖化による混合物容積の
減少割合、T:混合物の滞留時間(時)〕 (4)固液分離工程 エフスフルーダ−6で抜出した混合物(残留セルロース
系物質8aと糖及び酵素を含む水溶液よシなる)を、遠
心分離機8で固液分離する。分離液8bと遊離水性液7
aとを合せて糖液とする。
The operations of screw feeder 4 and FFS Fluder 6 are related, and after FFS Fluder 6 finishes its operation,
The screw feeder 4 starts operating. The operating time for each can be determined based on the transport capacity of each by checking in advance the volume reduction of the mixture during the set residence time in the saccharification tank. That is, the operating times of the screw feeder 4 and the Ffluder 6 are calculated using the following formulas: Δt 6 = Vy / Qr −-(1
)Δt? =VIX/QEX--”
・(2) V m x / V v = α
・・・・・・・・・(3)α=f(T)
・・・・・・・・・(4) [In each of the above formulas, Δt6: Operating time of the Niscrew feeder (minutes), Δt7: Operating time of the Ffluder (minutes)
, Qy Transport speed of Niskrieu feeder) Corpse (m3/
minutes), Q3x: Excluder I transfer speed (m3/
min), VF: Volume of feed mixture (m3), v, x:
Volume of extracted material (m3), α: Reduction rate of mixture volume due to saccharification, T: Residence time of mixture (hours)] (4) Solid-liquid separation process Mixture extracted in Ffluder-6 (residual cellulose substance 8a and sugar) and an aqueous solution containing the enzyme) are subjected to solid-liquid separation using a centrifuge 8. Separated liquid 8b and free aqueous liquid 7
Combine with a to make a sugar solution.

なお、固液分離方法は、特に上記の遠心分離方法に限定
されない。
Note that the solid-liquid separation method is not particularly limited to the above centrifugation method.

次に、第6図は、同じく本発明装置の他の一例を示す一
部断面概略図である。第6図の各符号は第5図と同義で
あり、第5図との差異は、糖化槽5の底部に網7が内設
されていない点におる。
Next, FIG. 6 is a partially cross-sectional schematic diagram showing another example of the apparatus of the present invention. Each symbol in FIG. 6 has the same meaning as in FIG. 5, and the difference from FIG. 5 is that the net 7 is not installed at the bottom of the saccharification tank 5.

第6図に示した装置における工程は、第5図と同じく4
工程からなり、混合工程及び輸送工程は第5図の場合と
同じである。糖化工程以降は、以下のように行う。
The process in the apparatus shown in Figure 6 is the same as in Figure 5.
The mixing process and the transportation process are the same as in the case of FIG. The steps after the saccharification step are performed as follows.

スクリューフィーダー4から供給されたセルロース系物
質1と繊維素分解酵素水溶液との混合物が、糖化槽5内
で充てん層を形成できるように、スクリューフィーダー
4とエフスフルーダ−6の運転を調整する。この充てん
層から糖化反応により糖を含む水溶液が形成される。こ
の水溶液は、寒てん槽内を下降して槽底部に達する。そ
して、エフスフルーダ−6を通り、その出口6bより槽
系外に抜取る。この水溶液とエフスフルーダ−6により
抜出したセルロース系物質1とを遠心分離(幾8にかけ
、残留セルロース系物質8aと、糖を含む分離液8bと
を分離する。
The operation of the screw feeder 4 and the Ffluder 6 is adjusted so that the mixture of the cellulosic material 1 and the fibrinolytic enzyme aqueous solution supplied from the screw feeder 4 forms a packed layer in the saccharification tank 5. An aqueous solution containing sugar is formed from this packed layer through a saccharification reaction. This aqueous solution descends within the agar tank and reaches the bottom of the tank. Then, it passes through the Ffluder 6 and is extracted out of the tank system from its outlet 6b. This aqueous solution and the cellulose material 1 extracted by the Ffus Fluder 6 are centrifuged (8 times) to separate the residual cellulose material 8a and the separated liquid 8b containing sugar.

このとき、セルロース系1勿質1の繊維長さによっては
、糖化反応により生ずる水溶液が充てん層内を下降せず
、上部に滞留することがある。この状態で新たな原料を
供給して糖化を行うと、水溶液量が増加するので、糖化
槽5の上部に抜出口を設け、水溶液を抜出して液面を一
定にすればよい。
At this time, depending on the fiber length of the cellulose-based material 1, the aqueous solution produced by the saccharification reaction may not descend within the filled layer and may remain in the upper part. If a new raw material is supplied and saccharification is performed in this state, the amount of aqueous solution will increase, so it is sufficient to provide an outlet in the upper part of the saccharification tank 5 and draw out the aqueous solution to keep the liquid level constant.

なお、抜出した液は糖を含んでいるので、前記の分離液
8bと共に回収する。
Note that since the extracted liquid contains sugar, it is collected together with the above-mentioned separated liquid 8b.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を、実施例及び比較例によシ更に具体的に
説明するが、本発明はこれら実施例に限定されるもので
はない。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

実施例1 オゾン処理バガスを原料とし、第5図に示す装置を用い
て連続糖化を行った。なお、オゾン処理方法は、特開昭
57−29293号公報記載の方法によった。
Example 1 Using ozone-treated bagasse as a raw material, continuous saccharification was performed using the apparatus shown in FIG. Note that the ozone treatment method was the method described in Japanese Patent Application Laid-Open No. 57-29293.

糖化槽は、内径20cm1高さ65cmである。The saccharification tank has an inner diameter of 20 cm and a height of 65 cm.

オゾン処理バガス(平均繊維長さ0.7 tra、セル
ロース含lf140%)とセルラーゼオノズヵR,−1
0含有水溶液との混合物の保持水率を85重量%とした
。この混合物ヲ、IKグ/時で供給し、この混゛合物区
分の槽内滞留時間を約24時間とし、槽内温度は50C
に制御した。
Ozonated bagasse (average fiber length 0.7 tra, cellulose content 140%) and Cellulase Onozuka R,-1
The retained water content of the mixture with the 0-containing aqueous solution was 85% by weight. This mixture was fed at a rate of IKg/hour, the residence time of this mixture section in the tank was about 24 hours, and the temperature in the tank was 50C.
was controlled.

その結果、反応を開始してから48時間以降には、遊離
水性液及び抜出しバガスに含まれる水溶液中のグルコー
ス濃度は、44Fl/lとなり、合せた糖液量は、単位
時間当シ0.65 tであった。
As a result, after 48 hours from the start of the reaction, the glucose concentration in the free aqueous liquid and the aqueous solution contained in the extracted bagasse was 44 Fl/l, and the combined amount of sugar solution was 0.65 Fl/l per unit time. It was t.

比較例1 実施例1と同一のバガスを用い、内容積50tの機械か
くはん槽(リボン型翼付)で連続糖化反応を行った。あ
らかじめpHを4.8に調整したオゾン処理バガスとセ
ルラーゼ水溶液との混合物をIK7/時で、上記機械か
くはん槽に供給し、滞留時間を48時間とした。槽内温
度は50711’とした。
Comparative Example 1 Using the same bagasse as in Example 1, a continuous saccharification reaction was carried out in a mechanical stirring tank (with ribbon type blades) having an internal volume of 50 tons. A mixture of ozonated bagasse and cellulase aqueous solution whose pH had been adjusted to 4.8 in advance was supplied to the mechanical stirring tank at IK7/hour, and the residence time was set to 48 hours. The temperature inside the tank was 50711'.

その結果、排出液中のグルコース濃度は、約42 g/
lであった。更に、滞留時間を24時間とした場合の排
出液の糖濃度は、約24 y/lとなった。し1ヒがっ
て、該混合物の供給量IKg1時で約42g/を程度の
グルコース濃度の糖液を得るためには、滞留時間48時
間で、糖容積が5゜を程度は必要となった。
As a result, the glucose concentration in the effluent was approximately 42 g/
It was l. Furthermore, when the residence time was 24 hours, the sugar concentration of the effluent was approximately 24 y/l. Therefore, in order to obtain a sugar solution with a glucose concentration of about 42 g/hr at a feed rate of IKg/hour of the mixture, a residence time of 48 hours and a sugar volume of about 5° were required. .

以上の比較例1°から明らかなように、本発明によれば
、従来法に比べて槽容積は2158度で良いことが判明
した。
As is clear from the above Comparative Example 1°, it was found that according to the present invention, a tank volume of 2158° was sufficient compared to the conventional method.

実施例2 アルカリ処理バガスを用い、実施例1と同様な実験を行
った。アルカリ処理バガスは、以下のように調製した。
Example 2 An experiment similar to Example 1 was conducted using alkali-treated bagasse. Alkali-treated bagasse was prepared as follows.

0.5重量%苛性ソーダ水溶液とバガス(平均繊維長さ
0.7 than )とを、混合比が20:1となるよ
うに混合し、1oocで30分間加熱した。そして、バ
ガスを回収後、洗浄し、乾燥した。このアルカリ処理バ
ガスとセルラーゼ水溶液とを混合した。混合比は、3:
17とした。その他の糖化条件は、実施例1と同一とし
た。
A 0.5% by weight aqueous solution of caustic soda and bagasse (average fiber length 0.7 than) were mixed at a mixing ratio of 20:1 and heated at 1ooc for 30 minutes. After collecting the bagasse, it was washed and dried. This alkali-treated bagasse and an aqueous cellulase solution were mixed. The mixing ratio is 3:
It was set at 17. Other saccharification conditions were the same as in Example 1.

反応安定後に、遊離水性液及び抜出し混合物に含まれる
水溶液のグルコース濃度は、約68g/lであった。な
お、ここで実施例1に比べて糖濃度が高いのは、アルカ
リ処理バガスの方が、セルロース含有量が高いためであ
る。
After stabilization of the reaction, the glucose concentration of the free aqueous liquid and the aqueous solution contained in the withdrawal mixture was approximately 68 g/l. Note that the sugar concentration is higher here than in Example 1 because the alkali-treated bagasse has a higher cellulose content.

それに対して、比較例1と同じく、機械がくはん槽(リ
ボン型翼付)内での糖化実験を行った。
On the other hand, as in Comparative Example 1, a saccharification experiment was conducted in a mechanical stirring tank (with ribbon-shaped wings).

その結果、実施例2記載の糖濃度の糖液を得るためには
、その槽容積は、実施例1の場合と同じく50を程度必
要であった。
As a result, in order to obtain a sugar solution having the sugar concentration described in Example 2, the tank volume was required to be about 50, as in Example 1.

これから明らかなように、アルカリ処理バガスを使用す
る場合においても、本発明により槽容積を低減すること
ができることが判明した。
As is clear from this, it has been found that the tank volume can be reduced by the present invention even when alkali-treated bagasse is used.

実施例3 セルロース系物質として、稲わら、トウモロコシの穂軸
(コーンスト−バー)及び木くずを用いて、実施例1と
同様の実験を行った。前処理方法は、アルカリ処理とし
、その処理条件は実施例2と同一とした。なお、それぞ
れの繊維長さは、平均0.8順であった。その結果を下
記表1に示す。
Example 3 An experiment similar to Example 1 was conducted using rice straw, corn cob, and wood chips as cellulose-based materials. The pretreatment method was alkaline treatment, and the treatment conditions were the same as in Example 2. In addition, each fiber length was in the order of 0.8 on average. The results are shown in Table 1 below.

表    1 なお、上記表1において、得られた糖液中のグルコース
濃度が異なるのは、アルカリ処理による脱リグニン率が
、セルロース系物質の種類により異なシ、アルカリ処理
原料のセルロース含有率に差ができるためである。
Table 1 In Table 1 above, the reason why the glucose concentration in the obtained sugar solution differs is because the delignification rate due to alkali treatment differs depending on the type of cellulose material, and the reason why the glucose concentration in the obtained sugar solution differs is because the cellulose content of the alkali-treated raw material differs. This is because it is possible.

実施例4 実施例1と同様にオゾン処理したバガスを原料として、
第6図に示す装置で糖化実験を行った。
Example 4 Using ozone-treated bagasse as in Example 1 as a raw material,
A saccharification experiment was conducted using the apparatus shown in FIG.

糖化槽は、n径2ot−nl、高さ90 cm(7) 
モ(7) ’1J11い、オゾン処理バガス(平均繊維
長さ0.7 mm )とセルラーゼ水溶液ヵR−10の
水溶液との混合物の保持水率を85重量%とじた。この
混合物をIKg/時で供給し、滞留時間を約24時間と
し、槽内温度は50cに制御した。
The saccharification tank has a diameter of 2ot-nl and a height of 90cm (7).
Mo(7) '1J11 The retained water percentage of the mixture of ozonated bagasse (average fiber length 0.7 mm) and aqueous solution of cellulase aqueous solution CA R-10 was reduced to 85% by weight. This mixture was fed at IKg/hour, the residence time was about 24 hours, and the temperature inside the tank was controlled at 50C.

その結果、48時間以降には、グルコース濃度が約42
(1/!、の水溶液を、0.52t/時で回収すること
ができた。
As a result, after 48 hours, the glucose concentration was approximately 42
(1/!) of the aqueous solution could be recovered at 0.52 t/hour.

実施例5 アルカリ処理バガスを原料として糖化実験を行った。ア
ルカリ処理バガスの調製は、実施例2と同様に行い、糖
化条件は、実施例4と同一とした。
Example 5 A saccharification experiment was conducted using alkali-treated bagasse as a raw material. The alkali-treated bagasse was prepared in the same manner as in Example 2, and the saccharification conditions were the same as in Example 4.

その結果、グルコース濃度が、約629/lの糖液を得
ることができた。
As a result, a sugar solution with a glucose concentration of about 629/l could be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、微粉砕す
ることなく糖化を行うことができるので、前処理のだめ
の消費エネルギーを著しく低減することができる。また
、その工程は、連続糖化であシ実用的で必ると共に、糖
化槽は、従来の機械かくはん槽容積の1/3〜215で
よく、シかも無かくはんであるために、かくはん動力は
零であるという顕著な効果が奏せられた。
As described above in detail, according to the present invention, saccharification can be performed without pulverization, and therefore energy consumption during pretreatment can be significantly reduced. In addition, the process requires continuous saccharification, which is practical and necessary, and the saccharification tank can be 1/3 to 215 of the capacity of a conventional mechanical stirring tank, and the stirring power is zero because stirring is performed without stirring. A remarkable effect was achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は、本発明の操作条件を決定するために
行った各種実験の結果を示すグラフ、第5図及び第6図
は、本発明の装置の一例を示す一部断]■概略図である
。 1・・・セルロース系物質、2・・・酵素水溶液、3・
・・混合槽、4・・・スクリューフィーダー、5・・・
糖化槽、6・・・エフスフルーダ−,7・・・網、8・
・・遠心分離機第3図 0   /θ   2030 固型分濃度(市量幻 第4図 θ0/  θ、/    /     iθ緯:惟長ぎ
 (叛幻 第す一図 −51
FIGS. 1 to 4 are graphs showing the results of various experiments conducted to determine the operating conditions of the present invention, and FIGS. 5 and 6 are partial sections showing an example of the apparatus of the present invention.] ■It is a schematic diagram. 1... Cellulose-based material, 2... Enzyme aqueous solution, 3.
...Mixing tank, 4...Screw feeder, 5...
Saccharification tank, 6...Ffluder, 7...Net, 8.
...Centrifugal separator Figure 3 0 / θ 2030 Solid content concentration (market amount phantom Figure 4 θ 0 / θ, / / i θ latitude: Korenagi (Rebellion Figure 1-51

Claims (1)

【特許請求の範囲】 1、セルロース系物質を繊維素分解酵素で分解して糖液
を得る糖化方法において、(1)セルロース系物質と繊
維素分解酵素とを水を介して混合する工程、(2)該混
合物を基型糖化槽に供給し、所定時間滞留後、槽底部よ
シ生成混合物を抜取る工程、及び(3)該生成混合物を
固液分離し、糖液を回収する工程の各工程を包含するこ
とを特徴とするセルロース系物質の糖化方法。 2、該セルロース系物質、繊維素分解酵素及び水を含有
する混合物における水分含量が、セルロース系物質を保
持できる最大水量である特許請求の範囲第1項記載のセ
ルロース系物質の糖化方法。 3゜該セルロース系物質、繊維素分解酵素及び水を含有
する混合物における水分含量が、80〜90重量%であ
る特許請求の範囲第1項記載のセルロース系物質の糖化
方法。 4、セルロース系物質を繊維素分解酵素で分解して糖液
を得る糖化装置において、セルロース系物質原料と処理
剤含有水溶液との混合手段、その混合物の糖化槽への装
入手段、ジャケット付塔型糖化槽、糖化槽下部における
生成混合物の抜取り手段、及び固液分離手段を包含する
ことを特徴とするセルロース系物質の糖化装置。 5、該固液分離手段が、生成混合物からの遊離水性液分
離手段、残存物の固液分離手段及びその分離液と該遊離
水性液とを混合して糖液として回収する手段からなる特
許請求の範囲第4項記載のセルロース系物質の糖化装置
[Scope of Claims] 1. A saccharification method for obtaining a sugar solution by decomposing a cellulosic substance with a fibrinolytic enzyme, which comprises: (1) mixing a cellulosic substance and a fibrinolytic enzyme via water; 2) supplying the mixture to the basic saccharification tank and extracting the product mixture from the bottom of the tank after residence for a predetermined time; and (3) separating the product mixture into solid and liquid and recovering the sugar solution. 1. A method for saccharification of cellulosic substances, comprising the steps of: 2. The method for saccharifying a cellulosic material according to claim 1, wherein the water content in the mixture containing the cellulosic material, fibrinolytic enzyme, and water is the maximum amount of water that can retain the cellulosic material. 3. The method for saccharifying a cellulosic material according to claim 1, wherein the mixture containing the cellulosic material, fibrinolytic enzyme, and water has a water content of 80 to 90% by weight. 4. In a saccharification device that obtains a sugar solution by decomposing a cellulosic material with a fibrinolytic enzyme, a means for mixing the cellulosic material raw material and an aqueous solution containing a processing agent, a means for charging the mixture into a saccharification tank, and a jacketed column are provided. 1. An apparatus for saccharification of cellulosic substances, comprising a type saccharification tank, means for extracting a product mixture at the lower part of the saccharification tank, and solid-liquid separation means. 5. A patent claim in which the solid-liquid separation means comprises means for separating free aqueous liquid from the product mixture, means for separating solid-liquid from the residue, and means for mixing the separated liquid and the free aqueous liquid and recovering it as a sugar solution. The apparatus for saccharification of cellulosic substances according to item 4.
JP9747983A 1983-05-31 1983-05-31 Saccharification of cellulosic substance and its device Granted JPS59224694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9747983A JPS59224694A (en) 1983-05-31 1983-05-31 Saccharification of cellulosic substance and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9747983A JPS59224694A (en) 1983-05-31 1983-05-31 Saccharification of cellulosic substance and its device

Publications (2)

Publication Number Publication Date
JPS59224694A true JPS59224694A (en) 1984-12-17
JPH0342077B2 JPH0342077B2 (en) 1991-06-26

Family

ID=14193420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9747983A Granted JPS59224694A (en) 1983-05-31 1983-05-31 Saccharification of cellulosic substance and its device

Country Status (1)

Country Link
JP (1) JPS59224694A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536375A (en) * 2007-08-22 2010-12-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for concentrated biomass saccharification
JP2012521778A (en) * 2009-03-31 2012-09-20 ケムテックス イタリア エス・ピー・エー An improved method for rapid hydrolysis of high solid biomass
JP2014014337A (en) * 2012-07-10 2014-01-30 Idemitsu Kosan Co Ltd Treating method of cassava pulp
JP2014131496A (en) * 2013-01-07 2014-07-17 Toray Ind Inc Apparatus for producing sugar solution and method for producing sugar solution
WO2015072413A1 (en) * 2013-11-12 2015-05-21 花王株式会社 Method for producing xylan-containing composition and method for producing glucan-containing composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536375A (en) * 2007-08-22 2010-12-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for concentrated biomass saccharification
JP2012521778A (en) * 2009-03-31 2012-09-20 ケムテックス イタリア エス・ピー・エー An improved method for rapid hydrolysis of high solid biomass
JP2015231388A (en) * 2009-03-31 2015-12-24 ベータ リニューアブルス エス・ピー・エーBETA RENEWABLES S.p.A. An improved process for the rapid hydrolysis of high solids biomass
JP2014014337A (en) * 2012-07-10 2014-01-30 Idemitsu Kosan Co Ltd Treating method of cassava pulp
JP2014131496A (en) * 2013-01-07 2014-07-17 Toray Ind Inc Apparatus for producing sugar solution and method for producing sugar solution
US10385302B2 (en) 2013-01-07 2019-08-20 Toray Industries, Inc Device that produces sugar solution and method of producing sugar solution
WO2015072413A1 (en) * 2013-11-12 2015-05-21 花王株式会社 Method for producing xylan-containing composition and method for producing glucan-containing composition

Also Published As

Publication number Publication date
JPH0342077B2 (en) 1991-06-26

Similar Documents

Publication Publication Date Title
US20040187863A1 (en) Biomilling and grain fractionation
CN1976973B (en) Process for the solvent-based extraction of polyhydroxyalkanoates from biomass
CA1321283C (en) Apparatus for disintegrating biomass material
CN102688613A (en) Extract deep purification and edulcoration process in manufacturing technology of papermaking tobacco sheets
BR112013013552B1 (en) method for frontal separation of oil by-products from grains used in alcohol production process
BR112013004261B1 (en) METHOD FOR THE TREATMENT OF ENZYMATIC SACARIFICATION OF A RAW MATERIAL BASED ON LIGNOCELLULOSIS
WO2019079491A1 (en) Method of and system for producing a syrup with the highest concentration using a dry mill process
US10584304B2 (en) Systems and methods for extracting oil from plant material
FR2512832A1 (en) PROCESS AND INSTALLATION FOR OBTAINING ETHANOL LIQUID FUEL BY CONTINUOUS ACIDIC HYDROLYSIS OF CELLULOSIC MATERIALS
US2315422A (en) Treatment of molasses fermentation solutions
US5071970A (en) Process for producing pectin with a high-to-medium methoxyl content from beet pulp
BR102019006925A2 (en) system and method for producing sugar flow
BR102019004828A2 (en) FRONT END OIL SEPARATION SUGAR FLOW PRODUCTION SYSTEM AND METHOD
JPS6387994A (en) Production of sugar syrup and enzyme from saccharified liquid
JPS59224694A (en) Saccharification of cellulosic substance and its device
CN111149893B (en) High-concentration precipitate-free concentrated tea juice production system and production process applying same
EP0104178B1 (en) A process for the production of ethanol
CN104884603B (en) The manufacturing device of liquid glucose and the manufacturing method of liquid glucose
JPS59192093A (en) Pretreatment for treatment of biomass with enzyme
CN1108685A (en) Method of extracting vegetable oil from oil-containing seeds by using a twin-screw extruder
RU2745988C2 (en) Method and apparatus for enzymatic hydrolysis
US7131370B2 (en) Centrifugal separating device and method of clarifying must during the production of wine
CN207175966U (en) A kind of novel saccharification tank
CN102266065A (en) Potato insoluble dietary fiber and processing method thereof
CN103228153B (en) Colloid product and manufacture method thereof and application