JPH0342077B2 - - Google Patents

Info

Publication number
JPH0342077B2
JPH0342077B2 JP9747983A JP9747983A JPH0342077B2 JP H0342077 B2 JPH0342077 B2 JP H0342077B2 JP 9747983 A JP9747983 A JP 9747983A JP 9747983 A JP9747983 A JP 9747983A JP H0342077 B2 JPH0342077 B2 JP H0342077B2
Authority
JP
Japan
Prior art keywords
saccharification
tank
mixture
liquid
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9747983A
Other languages
Japanese (ja)
Other versions
JPS59224694A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9747983A priority Critical patent/JPS59224694A/en
Publication of JPS59224694A publication Critical patent/JPS59224694A/en
Publication of JPH0342077B2 publication Critical patent/JPH0342077B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は、わら類、バガス、コーンストーバー
及び木くず等のセルロース系物質を繊維素分解酵
素で糖化するに当り、セルロース系物質を高濃度
で仕込み、連続又は半連続的に糖化を行う、改良
された糖化方法及びその装置に関する。 〔発明の背景〕 従来、セルロース系物質は繊維素分解酵素を作
用させるためには、前処理として、脱リグニン及
びセルロース結晶構造の破壊が必要である。しか
してこの前処理方法を実用化するためには、(1)前
処理に要する消費エネルギーが少ないこと、(2)前
処理原料から糖への転換率が高いこと、及び(3)糖
化反応において少ない消費エネルギーで効率良く
高濃度の糖液が得られることが要求される。 このうち、(1)及び(2)については、アルカリ処理
と微粉砕又はオゾン処理との組合せのような各前
処理方法の組合せが検討されている。 他方、(3)の高濃度の糖液を得るためには、前処
理原料を高濃度に仕込む必要がある。その場合、
原料の繊維長さが糖化反応に影響を与える。原料
の繊維長さを、10〜30μ程度まで微粉砕すれば、
かくはん混合及び連続糖化に問題はないが、この
微粉砕に要する消費エネルギーは著しく大きいた
め、実用的ではない。そこで、従来、微粉砕しな
い前処理原料でも高濃度に仕込める方法が検討さ
れている。しかしながら、いまだ満足な方法は開
発されていないのが現状である。例えば、原料を
逐次添加し、スラリー化状態で糖化を行う方法で
は、添加量が増大するに従つて残渣が蓄積してス
ラツジ化するため、添加量に限界があるという問
題点がある。また別法として、スラツジの混練操
作ができる糖化槽を用いる糖化方法では、糖化槽
を大容積とし、大容量のかくはんモーターの設置
が必要であり、しかも槽内での混合が不完全であ
るため、原料のシヨートパスが生じ、連続糖化は
困難であるという問題点がある。 したがつて、微粉砕しない前処理原料でも、高
濃度でかつ高仕込み率で連続糖化のできる糖化方
法の開発が要望されている。 〔発明の目的〕 本発明は、前記した従来技術の問題点を解決す
るためになされたものであり、その目的は、微粉
砕しない前処理原料を、高濃度で仕込み、無かく
はん下に糖化を行なう糖化方法及びその装置を提
供することにある。 〔発明の概要〕 本発明を概説すれば、本発明の第1の発明はセ
ルロース系物質の糖化方法に関する発明であり、
セルロース系物質を繊維素分解酵素で分解して糖
液を得る糖化方法において、(1)セルロース系物質
と繊維素分解酵素とを水を介して混合する工程、
(2)該混合物を塔型糖化槽に供給し、所定時間滞留
後、槽底部より生成混合物を抜取る工程、及び(3)
該生成混合物を固液分離し、糖液を回収する工程
の各工程を包合することを特徴とする。 また、本発明の第2の発明はセルロース系物質
の糖化装置に関する発明であつて、セルロース系
物質を繊維素分解酵素で分解して糖液を得る糖化
装置において、セルロース系物質原料と繊維素分
解酵素を含む処理剤含有水溶液との混合手段、そ
の混合物の糖化槽への装入手段、ジヤケツト付塔
型糖化槽、糖化槽下部における生成混合物の抜取
り手段、及び固液分離手段を包含することを特徴
とする。 本発明は、下記のような原料高濃度仕込みの糖
化反応を解析することにより完成し得たものであ
る。 微粉砕しないアルカリ処理又はオゾン処理した
バガス(平均粒径0.7mm)を10〜15重量%の濃度
で、内径20cm、長さ40cmの横型槽(リボン型翼を
もつもの)において回分の糖化を行つた。なお、
セルラーゼとしては、市販のセルラーゼオノズカ
R−10(近畿ヤクルト社製、最適温度50℃、
pH4.8)を用いた。その結果、アルカリ処理及び
オゾン処理バガスの両方共、糖化前にスラツジ状
態であつたものが、糖化反応に伴い、スラツジの
容積が減少して遊離水性液が増加しスラリー化し
た。そして、このときのスラリー化状態を解析し
た。 内径4cm、高さ6cmで、底部に網を設置した反
応管を試作し、遊離水性液を経時的に抜取り変化
量を測定した。第1図に測定結果を示す。すなわ
ち第1図は、時間(時)(横軸)と、充てん層の
容積(ml)及びグルコース、セロビオース濃度
(g/)、また遊離水性液の流出速度(ml/時)
及びグルコース、セロビオース濃度(g/)
(縦軸)との関係を示すグラフである。 第1図から明らかなように、糖化初期に遊離水
性液が多く生成する。その総量は、全水分量の約
30%であつた。このとき原料スラツジは、スラツ
ジ状態のまま糖化反応に従つてその容積が減少し
た。この容積の減少割合は、約30〜40%であつ
た。このことから、上記反応管のような構造をも
つ糖化槽を用い、逐次添加法の糖化反応を行え
ば、原料スラツジの減少容積分の原料を多く仕込
めると考えた。そこで、槽底部に網を内設した内
径5cm、高さ20cmの塔型糖化槽を用い、24時間ご
とに該オゾン処理バガスとセルラーゼ水溶液の混
合物(水分量約85重量%)を100g(充てん高さ7
cm)逐次添加して糖化反応を実施した。第2図に
その結果を示す。すなわち第2図は、糖化時間
(時)(横軸)と、糖化槽底部から抜取つた遊離水
性液の生成量(累積流出量)(ml)及びグルコー
ス濃度(mg/ml)(縦軸)との関係を示すグラフ
である。 第2図から明らかなように、遊離水性液の糖濃
度は、逐次添加量が増大するに従つて増加し、3
〜4回目以上では、ほぼ一定となつた。また添加
ごとに50〜60mlの遊離水性液が生成した。このと
きの総原料の仕込み容積は、遊離水性液を除かな
い回分反応系に比べて約1/3となつた。しかし、
糖化槽内の全残留スラツジから分離した液の糖濃
度は、遊離水性液を除かない回分反応系に比べて
小さくなつた。これは、充てん高さ方向で糖化反
応の分布が生じているためである。このことか
ら、上記様式の糖化方法では、逐次添加と合せ、
糖化槽下部よりスラツジを抜取る、すなわち連続
又は半連続的な操作の方がよいことを見出した。 しかして、糖化反応速度は、糖化反応の初期ほ
ど大きく、その増加割合は、次第に減少して一定
となる。本実験では、30〜48時間で一定となつ
た。したがつて、糖化槽底部の原料の滞留時間
が、糖化速度が一定となる時間程度となつたとき
に、槽からスラツジを抜出せば効率的である。そ
して、抜出した原料スラツジより液分を分離すれ
ば、高い濃度の糖液が得られる。しかし、遊離水
による希釈が心配された。そこで、スラツジ充て
ん層内の水の流れを調べた。その結果、充てん層
の保持水量が80重量%以上となつて初めて充てん
層より水が遊離し、押出し流れで下降することが
判明した。また、前記実験データにおいて、6回
目の添加後の遊離水の単位時間当りの最大生成量
は、全保持水量の約2.6%と少ない。そして、上
段の遊離水が下段にまで達するのに約50時間以上
要する。したがつて、糖化槽底部より得られる遊
離水性液は、槽底部付近にあるスラツジより押出
されたものであると推定した。そして事実、前記
実験では、6回目の遊離水性液の糖濃度は、槽底
部付近にあるスラツジに含まれる糖液の濃度にほ
ぼ一致していた。このことから、遊離水による希
釈はないものと判断した。 そこで、上記糖化槽を用い、半連続の糖化を行
つた。12時間ごとに該前処理バガスとセルラーゼ
液との混合物100gを5区分添加後、滞留時間を
60時間として糖化を行つた。なお、各区分の原料
スラツジが判定できるように、各スラツジ間に網
を設置した。その結果、抜取りスラツジから分離
した液及び遊離水性液の糖濃度は、ほぼ一致し
(グルコース54g/)、回分系での糖化反応での
値と一致した。 次に、本発明を効果的に実施するための条件、
すなわち、スラツジ状原料の容積減少率が大きく
なる条件を調べた。影響を与える因子として、ス
ラツジ状原料の保持水分量及びセルロース系物質
の繊維長さに注目した。 まず、バガスとセルラーゼ水溶液との混合比を
種々変更した糖化原料を調製し、これを内径4
cm、高さ6cmで槽底部に網を設置した糖化管に装
入し、該原料の容積減少率、すなわち (糖化後の容積/糖化前の容積)×100(%) を調べた。なお、バガスの繊維長さは、平均0.7
mmとした。測定結果を第3図に示す。すなわち第
3図は、固型分濃度(重量%)(横軸)と容積減
少率(%)(縦軸)との関係を示すグラフである。 第3図から明らかなように、固型分濃度5重量
%では、上記調製原料はスラリー状であり、液は
網より流出し、糖化管内にはバガスがスラツジ状
で残留した。このときの残留バガスの保持水分
率、すなわち 〔(保持水量/(保持水量+固型物量)〕 ×100(%) は、80〜90重量%であつた。しかも、この残留バ
ガスは、糖化反応が進行し、そのスラツジ容積は
減少した。これに対して、固型分濃度が10〜20重
量%では、原料はスラツジ状となつた。そして、
20重量%超では、原料は団塊状となつた。これら
のスラツジ及び団塊状の原料は、糖化反応により
容積が減少した。その結果、容積減少率は、固型
分濃度が10〜20重量%で大きくなり、特に15重量
%で最大となることが判明した。この値は、原料
バガスが吸水できる限界値(限界保持水量約85重
量%)と一致している。 これらの結果は、稲わらを試料とした場合にも
同様であつた。 次に、上記限界保持水量の条件で容積減少率に
与える繊維長さ(平均径)の影響を調べた。その
測定結果を第4図に示す。すなわち第4図は、繊
維長さ(mm)(横軸)と容積減少率(%)(縦軸)
との関係を示すグラフである。 第4図から明らかなように、繊維長さは0.1mm
以上で効果的である。なお、繊維長さが2mm以上
で容積減少率が向上するが、仕込み時の容積が大
きくなることから、それが必ずしも効果的とはい
えない。また、繊維長さが0.06mm以下では、容積
の減少がほとんど無い。これは、遊離水が形成さ
れるものの、目詰りにより網を通して溶出しなか
つたためである。以上のことよりみて、繊維長さ
としては、0.1mm〜2.0mm程度が好適である。 以上の説明は、遊離水性液について検討するた
めに、糖化槽の下部に網を設置した場合について
行つたが、実際面では、後記するように網の有無
が、糖化反応自体に影響を与えることはないこと
を確認した。 以上のように、本発明の糖化方法によれば、微
粉砕しないセルロース系物質でも、高濃度で、か
つ高い仕込み率で連続的な糖化を行うことができ
た。 以下、本発明の装置の実施の態様を、添付図面
に基づいて具体的に説明する。 第5図は、本発明装置の一例を示す一部断面概
略図である。第5図において、符号1はセルロー
ス系物質、2は酵素水溶液、3は混合槽、3aは
ホツパー、3bはかくはんモーター、3cはリボ
ン翼、3dはアルカリ又は酸水溶液、3eはポン
プ、3fはポンプ、4はスクリユーフイーダー、
4aはスクリユー翼、5は糖化槽、5aは温水ジ
ヤケツト、6はエクスクルーダー、6aはスクリ
ユー翼、6bは排水口、7は網、7aは遊離水性
液、8は遠心分離機、8aは残留セルロース系物
質、8bは分離液を意味する。 第5図の装置は、混合、輸送、糖化、及び固液
分離の4工程から構成されている。 (1) 混合工程 混合槽3にはホツパー3aより原料であるセ
ルロース系物質1が供給される。そして、ポン
プ3fによりセルラーゼやヘミセルラーゼなど
の酵素水溶液2が供給される。そしてかくはん
モーター3bの回転軸上に設置されたリボン翼
3cの回転により混合される。このときの水分
量は、前述の限界保持水分量とし、この値をあ
らかじめ求めておき、計算量添加すればよい。 該混合物のpHは、アルカリ又は酸の水溶液
3dをポンプ3eにより供給して調整する。こ
のときの添加量は、あらかじめ測定しておく。
なお、上記混合槽の構造は、特に限定されな
い。 (2) 輸送工程 該混合物の糖化槽5への輸送は、スクリユー
フイーダー4を用いた。混合物の供給量の制御
は、スクリユー翼4aの回転数と運転時間とに
より行つた。 (3) 糖化工程 糖化槽5は、塔型充てん槽で、槽壁に温水ジ
ヤケツト5aが設置されている。槽底部は、横
送りのエクスクルーダー6と接続されている。
そして、糖化槽5の下方延長上のエクスクルー
ダー6の下方位置に網7が設置されている。網
7の口径は、セルロース系物質1を保持できる
ものであればよい。スクリユーフイーダー4か
ら供給された該混合物は、糖化槽5内で充てん
層を形成する。そして、温水ジヤケツト5aに
より繊維素分解酵素の最適温度に加温される。
糖化槽が大型化した場合、充てん層内に混合物
の下降の妨害とならないように、伝熱管を設置
すればよい。糖化反応によつて生じた遊離水性
液を、網7により混合物から抜取り、また、槽
底部付近のセルロース系物質1を、エクスクル
ーダー6により抜出した。このときの抜取り量
の制御は、エクスクルーダー6のスクリユー翼
6aの回転数と運転時間とにより行つた。 スクリユーフイーダー4とエクスクルーダー
6の運転は関連を持つており、エクスクルーダ
ー6が運転終了後、スクリユーフイーダー4が
運転を開始する。それぞれの運転時間は、糖化
槽内の設定滞留時間での上記混合物の容積減少
量をあらかじめ調べておき、それぞれの輸送能
力から決めればよい。すなわち、スクリユーフ
イーダー4及びエクスクルーダー6の運転時間
は、各々下記の式で計算される: Δt6=VF/QF …(1) Δt7=VEX/QEX …(2) VEX/VF=α …(3) α=f(T) …(4) 〔上記各式において、Δt6:スクリユーフイー
ダーの運転時間(分)、Δt7:エクスクルーダ
ーの運転時間(分)、QF:スクリユーフイーダ
ーの輸送速度(m3/分)、QEX:エクスクルー
ダーの輸送速度(m3/分)、VF:供給混合物の
容積(m3)、VEX:抜出し物の容積(m3)、α:
糖化による混合物容積の減少割合、T:混合物
の滞留時間(時)〕 (4) 固液分離工程 エクスクルーダー6で抜出した混合物(残留
セルロース系物質8aと糖及び酵素を含む水溶
液よりなる)を、遠心分離機8で固液分離す
る。分離液8bと遊離水性液7aとを合せて糖
液とする。 なお、固液分離方法は、特に上記の遠心分離
方法に限定されない。 次に、第6図は、同じく本発明装置の他の一例
を示す一部断面概略図である。第6図の各符号は
第5図と同義であり、第5図との差異は、糖化槽
5の底部に網7が内設されていない点にある。 第6図に示した装置における工程は、第5図と
同じく4工程からなり、混合工程及び輸送工程は
第5図の場合と同じである。糖化工程以降は、以
下のように行う。 スクリユーフイーダー4から供給されたセルロ
ース系物質1と繊維素分解酵素水溶液との混合物
が、糖化槽5内で充てん層を形成できるように、
スクリユーフイーダー4とエクスクルーダー6の
運転を調整する。この充てん層から糖化反応によ
り糖を含む水溶液が形成される。この水溶液は、
充てん槽内を下降して槽底部に達する。そして、
エクスクルーダー6を通り、その出口6bより槽
系外に抜取る。この水溶液とエクスクルーダー6
により抜出したセルロース系物質1とを遠心分離
機8にかけ、残留セルロース系物質8aと、糖を
含む分離液8bとを分離する。 このとき、セルロース系物質1の繊維長さによ
つては、糖化反応により生ずる水溶液が充てん層
内を下降せず、上部に滞留することがある。この
状態で新たな原料を供給して糖化を行うと、水溶
液量が増加するので、糖化槽5の上部に抜出口を
設け、水溶液を抜出して液面を一定にすればよ
い。なお、抜出した液は糖を含んでいるので、前
記の分離液8bと共に回収する。 〔発明の実施例〕 以下、本発明を、実施例及び比較例により更に
具体的に説明するが、本発明はこれら実施例に限
定されるものではない。 実施例 1 オゾン処理バガスを原料とし、第5図に示す装
置を用いて連続糖化を行つた。なお、オゾン処理
方法は、特開昭57−29293号公報記載の方法によ
つた。 糖化槽は、内径20cm、高さ65cmである。 オゾン処理バガス(平均繊維長さ0.7mm、セル
ロース含量40%)とセルラーゼオノズカR−10含
有水溶液との混合物の保持水率を85重量%とし
た。この混合物を、1Kg/時で供給し、この混合
物区分の槽内滞留時間を約24時間とし、槽内温度
は50℃に制御した。 その結果、反応を開始してから48時間以降に
は、遊離水性液及び抜出しバガスに含まれる水溶
液中のグルコース濃度は、44g/となり、合せ
た糖液量は、単位時間当り0.65であつた。 比較例 1 実施例1と同一のバガスを用い、内容量50の
機械かくはん槽(リボン型翼付)で連続糖化反応
を行つた。あらかじめpHを4.8に調整したオゾン
処理バガスとセルラーゼ水溶液との混合物を1
Kg/時で、上記機械かくはん槽に供給し、滞留時
間を48時間とした。槽内温度は50℃とした。 その結果、排出液中のグルコース濃度は、約
42g/であつた。更に、滞留時間を24時間とし
た場合の排出液の糖濃度は、約24g/となつ
た。したがつて、該混合物の供給量1Kg/時で約
42g/程度のグルコース濃度の糖液を得るため
には、滞留時間48時間で、糖容積が50程度は必
要となつた。 以上の比較例1から明らかなように、本発明に
よれば、従来法に比べて槽容積は2/5程度で良い
ことが判明した。 実施例 2 アルカリ処理バガスを用い、実施例1と同様な
実験を行つた。アルカリ処理バガスは、以下のよ
うに調製した。0.5重量%苛性ソーダ水溶液とバ
ガス(平均繊維長さ0.7mm)とを、混合比が20:
1となるように混合し、100℃で30分間加熱した。
そして、バガスを回収後、洗浄し、乾燥した。こ
のアルカリ処理バガスとセルラーゼ水溶液とを混
合した。混合比は、3:17とした。その他の糖化
条件は、実施例1と同一とした。 反応安定後に、遊離水性液及び抜出し混合物に
含まれる水溶液のグルコース濃度は、約68g/
であつた。なお、ここで実施例1に比べて糖濃度
が高いのは、アルカリ処理バガスの方が、セルロ
ース含有量が高いためである。 それに対して、比較例1と同じく、機械かくは
ん槽(リボン型翼付)内での糖化実験を行つた。 その結果、実施例2記載の糖濃度の糖液を得る
ためには、その槽容積は、実施例1の場合と同じ
く50程度必要であつた。 これから明らかなように、アルカリ処理バガス
を使用する場合においても、本発明により槽容積
を低減することができることが判明した。 実施例 3 セルロース系物質として、稲わら、トウモロコ
シの穂軸(コーンストーバー)及び木くずを用い
て、実施例1と同様の実験を行つた。前処理方法
は、アルカリ処理とし、その処理条件は実施施例
2と同一とした。なお、それぞれの繊維長さは、
平均0.8mmであつた。その結果を下記表1に示す。
[Field of Application of the Invention] The present invention provides a method for saccharifying cellulosic substances such as straw, bagasse, corn stover, and wood chips using a fibrinolytic enzyme, by adding a high concentration of cellulosic substances and continuously or semi-continuously The present invention relates to an improved saccharification method and apparatus for saccharification. [Background of the Invention] Conventionally, cellulose-based materials require delignification and destruction of the cellulose crystal structure as pretreatment in order to allow fibrinolytic enzymes to act on them. However, in order to put this pretreatment method into practical use, (1) the energy consumption required for pretreatment is low, (2) the conversion rate of pretreated raw materials to sugar is high, and (3) the saccharification reaction It is required to efficiently obtain a highly concentrated sugar solution with less energy consumption. Among these, for (1) and (2), combinations of pretreatment methods, such as a combination of alkali treatment and pulverization or ozone treatment, are being considered. On the other hand, in order to obtain the highly concentrated sugar solution (3), it is necessary to prepare the pretreated raw materials at a high concentration. In that case,
The fiber length of the raw material affects the saccharification reaction. If the raw material fiber length is finely pulverized to about 10 to 30μ,
Although there is no problem with stirring and mixing and continuous saccharification, the energy consumption required for this fine pulverization is extremely large, so it is not practical. Therefore, methods have been studied that allow pretreated raw materials that are not pulverized to be charged at a high concentration. However, the current situation is that no satisfactory method has been developed yet. For example, in a method in which raw materials are sequentially added and saccharification is performed in a slurry state, as the amount added increases, residue accumulates and becomes a sludge, so there is a problem that there is a limit to the amount added. As another method, a saccharification method using a saccharification tank that can perform sludge kneading operations requires a large capacity saccharification tank and the installation of a large-capacity stirring motor, and the mixing within the tank is incomplete. However, there are problems in that continuous saccharification is difficult due to the production of raw materials. Therefore, there is a need for the development of a saccharification method that can continuously saccharify pretreated raw materials that are not pulverized at high concentrations and at high loading rates. [Object of the Invention] The present invention was made to solve the problems of the prior art described above, and its purpose is to prepare pretreated raw materials that are not pulverized at a high concentration and perform saccharification without stirring. An object of the present invention is to provide a saccharification method and an apparatus for the same. [Summary of the Invention] To summarize the present invention, the first invention of the present invention is an invention relating to a method for saccharification of cellulose-based substances,
In a saccharification method for obtaining a sugar solution by decomposing a cellulose substance with a fibrinolytic enzyme, (1) a step of mixing the cellulose substance and a fibrinolytic enzyme via water;
(2) a step of supplying the mixture to a tower-type saccharification tank and extracting the product mixture from the bottom of the tank after residence for a predetermined time; and (3)
It is characterized in that it includes the steps of separating the product mixture into solid and liquid and recovering a sugar solution. Further, the second invention of the present invention is an invention related to a saccharification device for cellulosic substances, and in the saccharification device for obtaining a sugar solution by decomposing a cellulose material with a fibrinolytic enzyme, a cellulose-based material raw material and a fibrinolytic enzyme are used. A means for mixing with an aqueous solution containing a processing agent containing an enzyme, a means for charging the mixture into the saccharification tank, a tower-type saccharification tank with a jacket, a means for extracting the product mixture from the lower part of the saccharification tank, and a solid-liquid separation means. Features. The present invention was completed by analyzing the saccharification reaction of high-concentration raw materials as described below. Batch saccharification of unpulverized alkali-treated or ozonated bagasse (average particle size 0.7 mm) at a concentration of 10 to 15% by weight is carried out in a horizontal tank (with ribbon-shaped blades) with an inner diameter of 20 cm and a length of 40 cm. Ivy. In addition,
As cellulase, commercially available Cellulase Onozuka R-10 (manufactured by Kinki Yakult Co., Ltd., optimal temperature 50°C,
pH4.8) was used. As a result, both the alkali-treated and ozone-treated bagasse were in a sludge state before saccharification, but with the saccharification reaction, the sludge volume decreased and free aqueous liquid increased, resulting in slurry. Then, the slurry state at this time was analyzed. A reaction tube with an inner diameter of 4 cm and a height of 6 cm with a net installed at the bottom was prototyped, and free aqueous liquid was sampled over time to measure the amount of change. Figure 1 shows the measurement results. In other words, Figure 1 shows the relationship between time (hours) (horizontal axis), the volume of the packed layer (ml), the concentration of glucose and cellobiose (g/h), and the outflow rate of free aqueous liquid (ml/h).
and glucose, cellobiose concentration (g/)
(vertical axis). As is clear from FIG. 1, a large amount of free aqueous liquid is produced at the early stage of saccharification. The total amount is approximately the total water content.
It was 30%. At this time, the raw material sludge remained in a sludge state and its volume decreased as a result of the saccharification reaction. This volume reduction rate was approximately 30-40%. Based on this, it was thought that if a saccharification tank having a structure similar to the reaction tube described above was used to carry out the saccharification reaction using the sequential addition method, a large amount of raw material could be charged to cover the reduced volume of the raw material sludge. Therefore, we used a tower-type saccharification tank with an internal diameter of 5 cm and a height of 20 cm, which had a mesh installed at the bottom of the tank, and added 100 g of the ozonated bagasse and cellulase aqueous solution (water content approximately 85% by weight) every 24 hours (filling height: Sa7
cm) was added sequentially to carry out the saccharification reaction. Figure 2 shows the results. In other words, Figure 2 shows the relationship between the saccharification time (hours) (horizontal axis), the amount of free aqueous liquid produced (cumulative flow rate) (ml) extracted from the bottom of the saccharification tank, and the glucose concentration (mg/ml) (vertical axis). It is a graph showing the relationship between. As is clear from Fig. 2, the sugar concentration of the free aqueous liquid increases as the amount of addition increases, and 3
- After the 4th time, it became almost constant. Each addition also produced 50-60 ml of free aqueous liquid. The total volume of raw materials charged at this time was about 1/3 compared to a batch reaction system in which free aqueous liquid was not removed. but,
The sugar concentration of the liquid separated from the total residual sludge in the saccharification tank was lower than in the batch reaction system in which free aqueous liquid was not removed. This is because the saccharification reaction is distributed in the filling height direction. For this reason, in the above-mentioned saccharification method, in addition to sequential addition,
It has been found that it is better to extract the sludge from the bottom of the saccharification tank, that is, to operate continuously or semi-continuously. Therefore, the saccharification reaction rate is higher in the early stages of the saccharification reaction, and the rate of increase gradually decreases and becomes constant. In this experiment, it became constant after 30 to 48 hours. Therefore, it is efficient to extract the sludge from the tank when the residence time of the raw material at the bottom of the saccharification tank reaches a time at which the saccharification rate becomes constant. Then, by separating the liquid from the extracted raw material sludge, a highly concentrated sugar solution can be obtained. However, there were concerns about dilution due to free water. Therefore, we investigated the flow of water in the sludge-filled layer. As a result, it was found that water was released from the packed layer only when the amount of water retained in the packed layer reached 80% by weight or more, and the water moved downward due to the extrusion flow. Furthermore, in the above experimental data, the maximum amount of free water produced per unit time after the sixth addition is as small as about 2.6% of the total amount of retained water. It takes about 50 hours or more for the free water in the upper stage to reach the lower stage. Therefore, it was estimated that the free aqueous liquid obtained from the bottom of the saccharification tank was extruded from the sludge located near the bottom of the tank. In fact, in the experiment described above, the sugar concentration of the free aqueous liquid in the sixth experiment almost matched the concentration of the sugar solution contained in the sludge near the bottom of the tank. From this, it was determined that there was no dilution due to free water. Therefore, semi-continuous saccharification was performed using the saccharification tank described above. After adding 100 g of the mixture of pretreated bagasse and cellulase solution to 5 portions every 12 hours, the residence time was
Saccharification was performed for 60 hours. In addition, a net was installed between each sludge so that the raw material sludge in each category could be determined. As a result, the sugar concentrations of the liquid separated from the sampled sludge and the free aqueous liquid were almost the same (glucose 54 g/g), which was the same as the value in the batch system saccharification reaction. Next, conditions for effectively implementing the present invention,
That is, the conditions under which the volume reduction rate of the sludge-like raw material becomes large were investigated. We focused on the retained moisture content of the sludge-like raw material and the fiber length of the cellulose material as influencing factors. First, saccharification raw materials with various mixing ratios of bagasse and cellulase aqueous solution were prepared, and
The material was charged into a saccharification tube with a height of 6 cm and a screen installed at the bottom of the tank, and the volume reduction rate of the raw material, that is, (volume after saccharification/volume before saccharification) x 100 (%), was determined. The average fiber length of bagasse is 0.7
mm. The measurement results are shown in Figure 3. That is, FIG. 3 is a graph showing the relationship between solid content concentration (weight %) (horizontal axis) and volume reduction rate (%) (vertical axis). As is clear from FIG. 3, at a solid content concentration of 5% by weight, the prepared raw material was in the form of a slurry, the liquid flowed out through the net, and bagasse remained in the form of sludge in the saccharification tube. At this time, the retained moisture content of the residual bagasse, that is, [(retained water amount/(retained water amount + solid material amount)] × 100 (%)) was 80 to 90% by weight. progressed, and the sludge volume decreased.On the other hand, when the solid content concentration was 10 to 20% by weight, the raw material became sludge-like.
Above 20% by weight, the material became lumpy. The volume of these sludge and nodular raw materials decreased due to the saccharification reaction. As a result, it was found that the volume reduction rate becomes large when the solid content concentration is 10 to 20% by weight, and becomes maximum when the solid content concentration is 15% by weight. This value coincides with the limit value for the raw material bagasse to absorb water (limit water retention amount of approximately 85% by weight). These results were similar when rice straw was used as the sample. Next, the effect of fiber length (average diameter) on the volume reduction rate was investigated under the above-mentioned limit water retention conditions. The measurement results are shown in FIG. In other words, Figure 4 shows the fiber length (mm) (horizontal axis) and volume reduction rate (%) (vertical axis).
It is a graph showing the relationship between As is clear from Figure 4, the fiber length is 0.1 mm.
The above is effective. Incidentally, when the fiber length is 2 mm or more, the volume reduction rate improves, but since the volume at the time of preparation increases, this is not necessarily effective. Further, when the fiber length is 0.06 mm or less, there is almost no decrease in volume. This is because although free water was formed, it was not eluted through the screen due to clogging. In view of the above, the fiber length is preferably about 0.1 mm to 2.0 mm. The above explanation was based on the case where a screen was installed at the bottom of the saccharification tank in order to study free aqueous liquid, but in reality, as will be explained later, the presence or absence of a screen will affect the saccharification reaction itself. I confirmed that there is no. As described above, according to the saccharification method of the present invention, continuous saccharification could be performed at a high concentration and at a high charging rate even with a cellulosic material that is not pulverized. Embodiments of the apparatus of the present invention will be specifically described below based on the accompanying drawings. FIG. 5 is a partially cross-sectional schematic diagram showing an example of the device of the present invention. In Fig. 5, numeral 1 is a cellulose-based material, 2 is an enzyme aqueous solution, 3 is a mixing tank, 3a is a hopper, 3b is a stirring motor, 3c is a ribbon blade, 3d is an alkali or acid aqueous solution, 3e is a pump, and 3f is a pump , 4 is screw feeder,
4a is a screw blade, 5 is a saccharification tank, 5a is a hot water jacket, 6 is an excluder, 6a is a screw blade, 6b is a drain port, 7 is a screen, 7a is a free aqueous liquid, 8 is a centrifugal separator, 8a is a residue Cellulose-based material, 8b means separation liquid. The apparatus shown in FIG. 5 consists of four steps: mixing, transportation, saccharification, and solid-liquid separation. (1) Mixing process Cellulose-based material 1, which is a raw material, is supplied to the mixing tank 3 from the hopper 3a. Then, an aqueous enzyme solution 2 such as cellulase or hemicellulase is supplied by the pump 3f. The mixture is then mixed by the rotation of the ribbon blade 3c installed on the rotating shaft of the stirring motor 3b. The amount of water at this time is set to the above-mentioned limit retention amount of water, and this value may be determined in advance and the calculated amount may be added. The pH of the mixture is adjusted by supplying an aqueous alkali or acid solution 3d via a pump 3e. The amount added at this time is measured in advance.
Note that the structure of the mixing tank is not particularly limited. (2) Transportation process The mixture was transported to the saccharification tank 5 using a screw feeder 4. The supply amount of the mixture was controlled by the rotation speed and operating time of the screw blade 4a. (3) Saccharification process The saccharification tank 5 is a tower-shaped packed tank, and a hot water jacket 5a is installed on the tank wall. The bottom of the tank is connected to a cross-feeding excluder 6.
A net 7 is installed below the excluder 6 on the downward extension of the saccharification tank 5. The diameter of the net 7 may be any diameter as long as it can hold the cellulose material 1. The mixture supplied from the screw feeder 4 forms a packed layer in the saccharification tank 5. Then, the water is heated to the optimum temperature for the fibrinolytic enzyme by the hot water jacket 5a.
When the saccharification tank is enlarged, heat transfer tubes may be installed in the packed layer so as not to interfere with the descent of the mixture. The free aqueous liquid produced by the saccharification reaction was extracted from the mixture using a net 7, and the cellulose-based material 1 near the bottom of the tank was extracted using an excluder 6. The extraction amount at this time was controlled by the rotational speed of the screw blade 6a of the excluder 6 and the operating time. The operations of the screw feeder 4 and excluder 6 are related, and after the excluder 6 finishes operating, the screw feeder 4 starts operating. The operating time for each can be determined based on the transport capacity of each by checking in advance the volume reduction of the mixture during the set residence time in the saccharification tank. That is, the operating times of the screw feeder 4 and excluder 6 are calculated using the following formulas: Δt 6 =V F /Q F …(1) Δt 7 =V EX /Q EX …(2) V EX /V F = α ... (3) α = f (T) ... (4) [In each of the above formulas, Δt 6 : Operating time of the screw feeder (minutes), Δt 7 : Operating time of the excluder (min), Q F : Transport speed of screw feeder (m 3 / min), Q EX : Transport speed of excluder (m 3 / min), V F : Volume of feed mixture (m 3 ), V EX : Volume of extracted material (m 3 ), α:
Reduction rate of mixture volume due to saccharification, T: Residence time of mixture (hours)] (4) Solid-liquid separation step The mixture extracted by excluder 6 (consisting of residual cellulose substance 8a and aqueous solution containing sugar and enzymes) is , solid-liquid separation is performed using a centrifuge 8. The separated liquid 8b and the free aqueous liquid 7a are combined to form a sugar solution. Note that the solid-liquid separation method is not particularly limited to the above centrifugation method. Next, FIG. 6 is a partially cross-sectional schematic diagram showing another example of the apparatus of the present invention. Each symbol in FIG. 6 has the same meaning as in FIG. 5, and the difference from FIG. 5 is that the net 7 is not installed at the bottom of the saccharification tank 5. The process in the apparatus shown in FIG. 6 consists of four steps as in FIG. 5, and the mixing step and transport step are the same as in FIG. The steps after the saccharification step are performed as follows. so that the mixture of the cellulose material 1 and the fibrinolytic enzyme aqueous solution supplied from the screw feeder 4 can form a packed layer in the saccharification tank 5.
Adjust the operation of screw feeder 4 and excluder 6. An aqueous solution containing sugar is formed from this packed layer through a saccharification reaction. This aqueous solution is
It descends inside the filling tank and reaches the bottom of the tank. and,
It passes through the excluder 6 and is extracted out of the tank system from its outlet 6b. This aqueous solution and excluder 6
The cellulose-based substance 1 extracted by the method is subjected to a centrifuge 8 to separate the residual cellulose-based substance 8a and a separated liquid 8b containing sugar. At this time, depending on the fiber length of the cellulose-based material 1, the aqueous solution produced by the saccharification reaction may not descend within the filled layer and may stay in the upper part. If a new raw material is supplied and saccharification is performed in this state, the amount of aqueous solution will increase, so it is sufficient to provide an outlet in the upper part of the saccharification tank 5 and draw out the aqueous solution to keep the liquid level constant. Note that since the extracted liquid contains sugar, it is collected together with the above-mentioned separated liquid 8b. [Examples of the Invention] Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Example 1 Using ozone-treated bagasse as a raw material, continuous saccharification was performed using the apparatus shown in FIG. Note that the ozone treatment method was the method described in Japanese Patent Application Laid-Open No. 57-29293. The saccharification tank has an inner diameter of 20 cm and a height of 65 cm. The retained water percentage of the mixture of ozonated bagasse (average fiber length 0.7 mm, cellulose content 40%) and Cellulase Onozuka R-10 containing aqueous solution was 85% by weight. This mixture was supplied at a rate of 1 kg/hour, the residence time of this mixture section in the tank was about 24 hours, and the temperature in the tank was controlled at 50°C. As a result, 48 hours after the start of the reaction, the glucose concentration in the free aqueous liquid and the aqueous solution contained in the extracted bagasse was 44 g/hour, and the combined amount of sugar solution was 0.65 per unit time. Comparative Example 1 Using the same bagasse as in Example 1, a continuous saccharification reaction was carried out in a mechanical stirring tank (with ribbon type blades) having an internal capacity of 50 ml. A mixture of ozonated bagasse and cellulase aqueous solution whose pH was adjusted to 4.8 in advance was added to
Kg/hour was fed into the mechanically stirred tank, and the residence time was 48 hours. The temperature inside the tank was 50°C. As a result, the glucose concentration in the effluent is approximately
It was 42g/. Furthermore, when the residence time was 24 hours, the sugar concentration of the effluent was approximately 24 g/g/. Therefore, at a feed rate of 1 kg/hour of the mixture, approximately
In order to obtain a sugar solution with a glucose concentration of about 42 g/g, a residence time of 48 hours and a sugar volume of about 50 g were required. As is clear from Comparative Example 1 above, it was found that according to the present invention, the tank volume could be reduced to about 2/5 of that of the conventional method. Example 2 An experiment similar to Example 1 was conducted using alkali-treated bagasse. Alkali-treated bagasse was prepared as follows. A 0.5% by weight aqueous solution of caustic soda and bagasse (average fiber length 0.7mm) were mixed at a mixing ratio of 20:
1 and heated at 100°C for 30 minutes.
After collecting the bagasse, it was washed and dried. This alkali-treated bagasse and an aqueous cellulase solution were mixed. The mixing ratio was 3:17. Other saccharification conditions were the same as in Example 1. After the reaction stabilizes, the glucose concentration of the free aqueous liquid and the aqueous solution contained in the withdrawal mixture is approximately 68 g/g/g.
It was hot. Note that the sugar concentration is higher here than in Example 1 because the alkali-treated bagasse has a higher cellulose content. On the other hand, as in Comparative Example 1, a saccharification experiment was conducted in a mechanical stirring tank (with ribbon type blades). As a result, in order to obtain a sugar solution having the sugar concentration described in Example 2, the tank volume was required to be about 50, as in Example 1. As is clear from this, it has been found that the tank volume can be reduced by the present invention even when alkali-treated bagasse is used. Example 3 An experiment similar to Example 1 was conducted using rice straw, corn cob, and wood chips as cellulosic materials. The pretreatment method was alkaline treatment, and the treatment conditions were the same as in Example 2. The length of each fiber is
The average diameter was 0.8 mm. The results are shown in Table 1 below.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、
微粉砕することなく糖化を行うことができるの
で、前処理のための消費エネルギーを著しく低減
することができる。また、その工程は、連続糖化
であり実用的であると共に、糖化槽は、従来の機
械かくはん槽容積の1/3〜2/5でよく、しかも無か
くはんであるために、かくはん動力は零であると
いう顕著な効果が奏せられた。
As explained in detail above, according to the present invention,
Since saccharification can be performed without pulverization, energy consumption for pretreatment can be significantly reduced. In addition, the process is practical as it is continuous saccharification, and the saccharification tank requires only 1/3 to 2/5 of the volume of a conventional mechanical stirring tank, and since there is no stirring, the stirring power is zero. A remarkable effect was achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は、本発明の操作条件を決定す
るために行つた各種実験の結果を示すグラフ、第
5図及び第6図は、本発明の装置の一例を示す一
部断面概略図である。 1…セルロース系物質、2…酵素水溶液、3…
混合槽、4…スクリユーフイーダー、5…糖化
槽、6…エクスクルーダー、7…網、8…遠心分
離機。
Figures 1 to 4 are graphs showing the results of various experiments conducted to determine the operating conditions of the present invention, and Figures 5 and 6 are partial cross-sectional schematic diagrams showing an example of the apparatus of the present invention. It is a diagram. 1... Cellulose-based material, 2... Enzyme aqueous solution, 3...
Mixing tank, 4... Screw feeder, 5... Saccharification tank, 6... Excluder, 7... Net, 8... Centrifugal separator.

Claims (1)

【特許請求の範囲】 1 セルロース系物質を繊維素分解酵素で分解し
て糖液を得る糖化方法において、(1)セルロース系
物質と繊維素分解酵素とを水を介して混合する工
程、(2)該混合物を塔型糖化槽に供給し、所定時間
滞留後、槽底部より生成混合物を抜取る工程、及
び(3)該生成混合物を固液分離し、糖液を回収する
工程の各工程を包合することを特徴とするセルロ
ース系物質の糖化方法。 2 該セルロース系物質、繊維素分解酵素及び水
を含有する混合物における水分含量が、セルロー
ス系物質を保持できる最大水量である特許請求の
範囲第1項記載のセルロース系物質の糖化方法。 3 該セルロース系物質、繊維素分解酵素及び水
を含有する混合物における水分含量が、80〜90重
量%である特許請求の範囲第1項記載のセルロー
ス系物質の糖化方法。 4 セルロース系物質を繊維素分解酵素で分解し
て糖液を得る糖化装置において、セルロース系物
質原料と繊維素分解酵素を含む処理剤含有水溶液
との混合手段、その混合物の糖化槽への装入手
段、ジヤケツト付塔型糖化槽、糖化槽下部におけ
る生成混合物の抜取り手段、及び固液分離手段を
包含することを特徴とするセルロース系物質の糖
化装置。 5 該固液分離手段が、生成混合物からの遊離水
性液分離手段、残存物の固液分離手段及びその分
離液と該遊離水性液とを混合して糖液として回収
する手段からなる特許請求の範囲第4項記載のセ
ルロース系物質の糖化装置。
[Scope of Claims] 1. A saccharification method for obtaining a sugar solution by decomposing a cellulose substance with a fibrinolytic enzyme, which comprises: (1) mixing a cellulose substance and a fibrinolytic enzyme via water; (2) ) supplying the mixture to a tower-type saccharification tank and extracting the product mixture from the bottom of the tank after residence for a predetermined time; and (3) separating the product mixture into solid and liquid and recovering the sugar solution. A method for saccharification of cellulosic substances characterized by encapsulation. 2. The method for saccharifying a cellulosic material according to claim 1, wherein the water content in the mixture containing the cellulosic material, fibrinolytic enzyme, and water is the maximum amount of water that can retain the cellulosic material. 3. The method for saccharifying a cellulosic material according to claim 1, wherein the mixture containing the cellulosic material, fibrinolytic enzyme, and water has a water content of 80 to 90% by weight. 4. In a saccharification device that obtains a sugar solution by decomposing a cellulose material with a fibrinolytic enzyme, means for mixing the cellulosic material raw material and an aqueous solution containing a treatment agent containing a fibrinolytic enzyme, and charging the mixture into the saccharification tank. 1. An apparatus for saccharification of cellulosic substances, comprising: a jacketed tower-type saccharification tank; a means for extracting a product mixture at the bottom of the saccharification tank; and a solid-liquid separation means. 5. A patent claim in which the solid-liquid separation means comprises a means for separating a free aqueous liquid from a product mixture, a means for separating solid-liquid from a residue, and a means for mixing the separated liquid with the free aqueous liquid and recovering it as a sugar solution. The apparatus for saccharification of cellulosic substances according to item 4.
JP9747983A 1983-05-31 1983-05-31 Saccharification of cellulosic substance and its device Granted JPS59224694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9747983A JPS59224694A (en) 1983-05-31 1983-05-31 Saccharification of cellulosic substance and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9747983A JPS59224694A (en) 1983-05-31 1983-05-31 Saccharification of cellulosic substance and its device

Publications (2)

Publication Number Publication Date
JPS59224694A JPS59224694A (en) 1984-12-17
JPH0342077B2 true JPH0342077B2 (en) 1991-06-26

Family

ID=14193420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9747983A Granted JPS59224694A (en) 1983-05-31 1983-05-31 Saccharification of cellulosic substance and its device

Country Status (1)

Country Link
JP (1) JPS59224694A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7807419B2 (en) * 2007-08-22 2010-10-05 E. I. Du Pont De Nemours And Company Process for concentrated biomass saccharification
TW201100547A (en) * 2009-03-31 2011-01-01 Chemtex Italia S R L An improved process for the rapid hydrolysis of high solids biomass
JP6099186B2 (en) * 2012-07-10 2017-03-22 国立研究開発法人国際農林水産業研究センター Cassava processing method
JP6307789B2 (en) * 2013-01-07 2018-04-11 東レ株式会社 Sugar solution manufacturing apparatus and sugar solution manufacturing method
BR112016010335B1 (en) * 2013-11-12 2021-07-20 Kao Corporation METHOD FOR THE PRODUCTION OF COMPOSITION CONTAINING XYLANA AND METHOD FOR PRODUCTION OF COMPOSITION CONTAINING GLUCAN

Also Published As

Publication number Publication date
JPS59224694A (en) 1984-12-17

Similar Documents

Publication Publication Date Title
US5125977A (en) Two-stage dilute acid prehydrolysis of biomass
US5221357A (en) Method of treating biomass material
JP4990271B2 (en) Method and apparatus for saccharification and decomposition of cellulosic biomass
US8328947B2 (en) Method for low water hydrolysis or pretreatment of polysaccharides in a lignocellulosic feedstock
US4941944A (en) Method for continuous countercurrent ogranosolv saccharification of comminuted lignocellulosic materials
JP3615767B2 (en) Method and hydrolysis reactor for rapid acid hydrolysis of lignocellulosic materials
US4706903A (en) Apparatus for the hydrolysis and disintegration of lignocellulosic
JP2008523788A (en) Upflow precipitation reactor for enzymatic hydrolysis of cellulose
BR112013004261B1 (en) METHOD FOR THE TREATMENT OF ENZYMATIC SACARIFICATION OF A RAW MATERIAL BASED ON LIGNOCELLULOSIS
FI78711C (en) Process for the preparation of oligosaccharide-containing products from finely divided biomass by hydrochloric hydrolysis
US4025356A (en) Method for continuous hydrolysis of pentose containing material and apparatus for implementing the method
BR102019004828A2 (en) FRONT END OIL SEPARATION SUGAR FLOW PRODUCTION SYSTEM AND METHOD
US2945777A (en) Process for the saccharification of softwood sawdust
JPH0342077B2 (en)
CN104884603B (en) The manufacturing device of liquid glucose and the manufacturing method of liquid glucose
JPS6387994A (en) Production of sugar syrup and enzyme from saccharified liquid
US4447535A (en) Process for the recovery of a concentrated stillage
EP3746455A1 (en) Process for the conversion of a solid material containing hemicellulose, cellulose and lignin
JPS59192093A (en) Pretreatment for treatment of biomass with enzyme
CN102266065A (en) Potato insoluble dietary fiber and processing method thereof
JPH0559390A (en) Method for extracting olive oil
JPS59192094A (en) Pretreatment for treatment of biomass with enzyme
US1816136A (en) Method of converting wood into sugar and other products
US1358129A (en) Treatment of wood and recovery of organic products therefrom
CN116180479A (en) Lignin and holocellulose separation device and separation method