JPS59223407A - Optical device for laser - Google Patents

Optical device for laser

Info

Publication number
JPS59223407A
JPS59223407A JP58097863A JP9786383A JPS59223407A JP S59223407 A JPS59223407 A JP S59223407A JP 58097863 A JP58097863 A JP 58097863A JP 9786383 A JP9786383 A JP 9786383A JP S59223407 A JPS59223407 A JP S59223407A
Authority
JP
Japan
Prior art keywords
mirror
spherical
plane
condensing
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58097863A
Other languages
Japanese (ja)
Inventor
Akira Wada
和田 昭
Hiroyuki Sugawara
宏之 菅原
Koji Kuwabara
桑原 晧二
Sei Takemori
竹森 聖
Hiroharu Sasaki
弘治 佐々木
Makoto Yano
眞 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58097863A priority Critical patent/JPS59223407A/en
Publication of JPS59223407A publication Critical patent/JPS59223407A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Abstract

PURPOSE:To improve the condensing property of a beam condensing device by arranging at least two spherical mirrors between a projected spherical mirror and a substance to be worked so that planes formed by incident light and reflected light intersect with each other at right angles. CONSTITUTION:A beam 3 is folded and contracted by a recessed spherical mirror 4 and the projected spherical mirror 5 and projected as beam 9. The beam 9 is changed upwards at its direction by a plane mirror 20 as a beam 21, reflected by a condensing recessed mirror 22 and condensed like a beam 23. The plane mirror 20 and the recessed spherical mirror 22 are arranged so that a plane constituted of the optical axis of the contracting beam and a plane constituted of the condensing beam, i.e. the plane constituted of the optical axes of the beams 3, 7, 9 and the plane constituted of the optical axes of the beams 9, 21, 23, intersect with each other. In addition, the angle theta3 formed by the beam 23 and the optical axis is set up so that the ratio of the major axis to the minor axis of an ellipse formed by the beam 23 on the basis of the folding spherical aberration of the recessed spherical mirror 22 is almost equal to the ratio of the major axis to the minor axis of the section 17 of the beam 9.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高出力レーザ用光学装置に係シ、考にレーザ加
工に好適な小さなスポットを発生するレーザ共振器の加
工装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical device for a high-power laser, and more particularly to a laser resonator processing device that generates a small spot suitable for laser processing.

〔発明の背景〕[Background of the invention]

レーザ加工では、レーザ共振器から発生す餐レーザビー
ムを特殊な結晶体レンズまたは金属fJ1反射鏡によっ
て微小なスポットに集光させ、加]二物に照射している
。従来の高出力レーザ装置にコ?いて、レンズによる集
光方式は、レンズが熱的な損傷の発生で破損する恐れが
ある。全綱製凹面反射鏡による集光方式は、入射角が零
にできないので球面収差が大きく、小さなスポットに絞
れない。
In laser processing, a laser beam generated from a laser resonator is focused onto a minute spot using a special crystal lens or metal fJ1 reflector, and is irradiated onto an object. Is it compatible with conventional high-power laser equipment? However, in the light focusing method using a lens, there is a risk that the lens may be damaged due to thermal damage. The condensing method using a concave reflector made of all steel cannot reduce the incident angle to zero, resulting in large spherical aberrations and cannot be narrowed down to a small spot.

また、金属製放物面反射鏡による集光方式は、球面収差
が小さく、小さなスポットに絞れるが、放散物面反射鏡
の製作費がきわめて高価で、その上、取付調整が困難と
なシ、一般的には使用できない。
In addition, the condensing method using a metal parabolic reflector has small spherical aberration and can be narrowed down to a small spot, but the manufacturing cost of the emissive reflector is extremely high, and in addition, it is difficult to adjust the installation. Not generally available.

まず、第1図を参照して、従来のレンズ集光方式による
加工装置について説明する。
First, a conventional processing apparatus using a lens condensing method will be described with reference to FIG.

従来の高出力レーザ装置では、レーザ出力を高めるため
に、レーザ媒質部の体積を増加させて、ビーム径を大き
くしていたので、レーザ共振器よシ取シ出したビームを
一対の凹凸面鏡を用いて縮小し、比較的低出力レーザ装
置と同等の小口径ビームを発生する構造としている。第
1図は、このビーム縮小器を兼ねそなえた加工装置であ
る。
In conventional high-power laser devices, in order to increase the laser output, the volume of the laser medium was increased to increase the beam diameter. The structure is designed to generate a small-diameter beam equivalent to a relatively low-power laser device. FIG. 1 shows a processing device that also serves as this beam condenser.

第1図において、レーザ共振器1よシ矢印2の方向に放
出されたレーザビーム3は、ビーム縮小器を構成してい
る球凹面鏡4と原画面鏡5で矢印6の方向のビーム7を
経て矢印8の方向のビーム9に縮小される。平面鏡10
によってビーム9に対し下側に方向変更されたビーム1
1は、メニスカスレンズ12を透過してビーム13の如
く集光され、加工物14に照射され、切断または溶づi
等の加工に用いられる。15,16,17.IZ、およ
び19は各々、ビーム3のa点、ビーム7のb点、ビー
ム9の0点、ビーム11のd点およびビーム13のe点
における光軸に直交する断面である。
In FIG. 1, a laser beam 3 emitted from a laser resonator 1 in the direction of an arrow 2 passes through a beam 7 in the direction of an arrow 6 through a spherical concave mirror 4 and an original mirror 5, which constitute a beam condenser. It is reduced to a beam 9 in the direction of arrow 8. plane mirror 10
Beam 1 redirected downwards with respect to beam 9 by
1 passes through a meniscus lens 12 and is focused as a beam 13, which is irradiated onto a workpiece 14 for cutting or melting.
Used for processing such as 15, 16, 17. IZ and 19 are cross sections perpendicular to the optical axis at point a of beam 3, point b of beam 7, point 0 of beam 9, point d of beam 11, and point e of beam 13, respectively.

レーザ共振器1よシ最初に放出されるビーム3の断面1
5は、円形であるが、球凹面鏡4および球凸面鏡5によ
って折シ返し縮小すると、その折シ返し角度θ1.θ2
が大きくなるにつれて球面鏡による球面収差が大きくな
シ、断面16.断面17の如く、次第に、いびつの著し
い楕円形となシ、集束性の悪いビーム9,11となる。
Cross section 1 of the beam 3 first emitted from the laser resonator 1
5 is circular, but when it is folded and reduced by the spherical concave mirror 4 and the spherical convex mirror 5, the folding angle θ1. θ2
As the spherical mirror becomes larger, the spherical aberration due to the spherical mirror becomes larger. As shown in the cross section 17, the beams 9 and 11 gradually take on a severely distorted elliptical shape and have poor convergence.

メ;・スカスレンズは、ビーム13の集光過程において
、球面収差を少なくする作用をするが、ビーム縮小器の
光路折シ返しによシ発生した球面収差は補正することは
できない。従って、加工物14上e(焦点を結んだビー
ム13の断面19は断面182はt丁相似形に縮小した
集束性の悪い楕円形となる。
Although the scathe lens acts to reduce spherical aberration in the process of focusing the beam 13, it cannot correct the spherical aberration caused by the optical path folding of the beam condenser. Therefore, the cross section 19 of the focused beam 13 on the workpiece 14 (e) has a cross section 182 that is an elliptical shape with poor convergence reduced to a similar shape.

以上、述べた如く、従来は、メニスカスレンズや放物面
反射鏡を用いれば、集光時における球面収差を小さくで
きるが、メニスカスレンズは材料の熱的特性によシ数k
W以上の高出力レーザ装置には適用不可能であシ、また
、放物面反射鏡は製作困難で高価格でおる。その上、高
出力レーザ装置では、不可欠でおるビーム縮小器の光路
折シ返しによシ発生する球面収差は補正することができ
ないという欠点がめった。
As mentioned above, conventionally, the spherical aberration during focusing can be reduced by using a meniscus lens or a parabolic reflector, but the meniscus lens
It cannot be applied to high-output laser devices of W or higher, and parabolic reflectors are difficult to manufacture and expensive. Furthermore, high-power laser devices often have the disadvantage that spherical aberrations caused by the optical path folding of the beam condenser, which is essential, cannot be corrected.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、集束性のよいビーム集光装置を具備し
たレーザ用光学装置を提供することにある。
An object of the present invention is to provide a laser optical device equipped with a beam focusing device with good focusing properties.

〔発明の概要〕[Summary of the invention]

本発明は、この球面収差を逆に利用して、球面鏡によシ
折シ返し光路変更を、少なくとも2回5s)施し、1回
目の球面収差を、2回目の球面収差で補正しようとする
ものである。すなわち、1回目の光路変更用球面鏡への
人、反射光軸を含む平面と2回目の集光のための光路変
更用球面鏡への人、反射光軸を含む平面が直交し、かつ
1、各々の人、反射光軸間の角度を選定することによっ
て、集束性のよい円形ビームとし、前記の目的を達成す
るものである。
The present invention utilizes this spherical aberration to reverse the optical path change using the spherical mirror at least twice (5 seconds), and corrects the spherical aberration of the first time with the spherical aberration of the second time. It is. That is, the person facing the spherical mirror for changing the optical path for the first time, the person facing the spherical mirror for changing the optical path for condensing the light for the second time, the plane containing the reflected optical axis, and the plane containing the reflected optical axis are perpendicular to each other, and 1. By selecting the angle between the reflected optical axes, a well-focused circular beam is obtained, and the above objective is achieved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第2図、第3図により説明する
。第2図および第3図は、前記の第【図と同様、高出力
レーザ装置としては、一般的に用いられているビーム縮
小器を兼ねそなえた加ゴー装置である。
Embodiments of the present invention will be described below with reference to FIGS. 2 and 3. FIGS. 2 and 3, like the above-mentioned FIG.

第2図において、レーザ共振器1よシ放出されたビーム
3は、球凹面鏡4および球凸面鏡5によって折シ返し縮
小され、ビーム9となる。このビーム9は平面鏡20に
よってビーム21のごとく、上に方向変更され、集光用
球凹面鏡22を折9返し、ビーム23のごとく集光され
加工物14に照射される。ここで、縮小用ビームの光軸
で構成される平面と集光用ビームで構成される平面、す
なわチ、ビーム3、ビーム7およびビーム9のテ軸で構
成される平面とビーム9、ビーム21およびビーム23
で構成される平面は、直交するように、平面鏡20、球
凹面鏡22を配置し、かつ、ビーム23が球凹面鏡22
の折シ返し球面収差作用によって出来る楕円の長径と短
径の比がビーム9の断面17(楕円)の長径と短径の比
とほぼ等しくなるようにビーム21とビーム23の光軸
開角度θ3を設定する。
In FIG. 2, a beam 3 emitted from a laser resonator 1 is folded back and reduced by a spherical concave mirror 4 and a spherical convex mirror 5 to become a beam 9. This beam 9 is redirected upward as a beam 21 by a plane mirror 20, turned back around a condensing spherical concave mirror 22, is condensed as a beam 23, and is irradiated onto the workpiece 14. Here, a plane composed of the optical axis of the reducing beam and a plane composed of the condensing beam, that is, a plane composed of the Te axes of beam 3, beam 7, and beam 9, beam 9, beam 21 and beam 23
A plane mirror 20 and a spherical concave mirror 22 are arranged so as to be orthogonal to each other, and the beam 23
The optical axis opening angle θ3 of the beams 21 and 23 is set so that the ratio of the major axis to the minor axis of the ellipse created by the folded spherical aberration effect is approximately equal to the ratio of the major axis to the minor axis of the cross section 17 (ellipse) of the beam 9. Set.

このような構成にすれば、球凹面鏡4と球凸面鏡5で縮
小され平面鏡20で方向変更されて、点fの断面24の
ような楕円に変歪されたビーム21は、集光用球凹面鏡
22で折シ返し球面収差作用によって、楕円の長径側が
短くなυ、また短径側が長くなって、加工物14におい
てX−Yの実像が等しい断面25のような集束性のよい
円形ビームとなる。
With such a configuration, the beam 21 that has been reduced by the spherical concave mirror 4 and the spherical convex mirror 5, changed its direction by the plane mirror 20, and has been deformed into an ellipse such as the cross section 24 at point f is transmitted to the condensing spherical concave mirror 22. Due to the effect of folded spherical aberration, the longer axis side of the ellipse becomes shorter υ and the shorter axis side becomes longer, resulting in a well-focused circular beam such as a cross section 25 with equal real images in X-Y on the workpiece 14.

また、第3図は集光用球凹面鏡を2枚組合せた場合の実
施例である。ビーム縮小器よシ放出されたビーム9は、
平面鏡10によって下に方向変更してビーム11となる
。ビーム11は球凹面鏡26と球凹面鏡28によシビー
ム27、ビーム29と折り返し集光され加工物14に照
射される。
Moreover, FIG. 3 shows an embodiment in which two condensing spherical concave mirrors are combined. The beam 9 emitted by the beam condenser is
It is redirected downward by a plane mirror 10 to become a beam 11. The beam 11 is condensed by a spherical concave mirror 26 and a spherical concave mirror 28 into a beam 27 and a beam 29, and is irradiated onto the workpiece 14.

ここで、ビーム3、ビーム7およびビーム9の縮小用ビ
ーム光軸で構成される平面とビーム9、ビーム11、ビ
ーム27およびビーム29の集光用ビーム光軸で構成さ
れる平面は直交するよう、平面鏡10、球凹面鏡26.
28を配置し、かつ、ビーム11が球゛凹面鏡26およ
び28の2回の折り返し球面収差作用によって出来る楕
円の長径と短径の比が、ビーム11の断面18の楕円の
長径と短径の比とほぼ等しくなるように、ビーム11と
ビーム27の光軸開角度θ4、ビーム27とビーム29
の光軸開角度θ6を設定する。前述のように、縮小用お
よび集光用反射鏡を配置し設定すれば、ビーム縮小器よ
シ放出されたビーム9の断面17は、平面鏡lOによっ
て方向変更され、ビーム11の断面18の如く楕円の長
径と短径が逆転する(y軸〉X軸→X軸〉y軸)。ビー
ム11は球凹面鏡26と球凹面鏡2Bの2回の折シ返し
球面収差作用によって、楕円の長径側が短くなシ、また
、短径側が長くなって加工物14において断面31のよ
うな集束性のよい円形ビームとなる。
Here, the plane formed by the reduction beam optical axes of beam 3, beam 7, and beam 9 and the plane formed by the condensing beam optical axes of beam 9, beam 11, beam 27, and beam 29 are orthogonal to each other. , plane mirror 10, spherical concave mirror 26.
28, and the beam 11 is folded twice by the spherical concave mirrors 26 and 28. The ratio of the major axis to the minor axis of the ellipse formed by the spherical aberration action is the ratio of the major axis to the minor axis of the ellipse of the cross section 18 of the beam 11. The optical axis opening angle θ4 of beam 11 and beam 27, beam 27 and beam 29 are approximately equal to
The optical axis opening angle θ6 is set. As described above, by arranging and setting the demagnifying and focusing mirrors, the cross section 17 of the beam 9 emitted by the beam condenser is redirected by the plane mirror lO, and becomes an ellipse like the cross section 18 of the beam 11. The major and minor axes of are reversed (y axis > X axis → X axis > y axis). The beam 11 is folded twice by the spherical concave mirror 26 and the spherical concave mirror 2B, and due to the spherical aberration effect, the long axis side of the ellipse is short and the short axis side is long, so that the beam 11 has a convergence like the cross section 31 in the workpiece 14. Makes a good circular beam.

第2図および第3図の球凹面@4と原曲面鏡5で構成し
ているビーム縮小器をレーザ共振器1内に配置しても、
前述と同一効果を有する。
Even if the beam condenser composed of the spherical concave surface @4 and the original curved mirror 5 in FIGS. 2 and 3 is placed inside the laser resonator 1,
It has the same effect as above.

このように、本実施例によれば、ビーム縮小器よシ放出
されたビームが、変歪の著しい楕円形のものでも、集光
用球凹面鏡の配置を、前述の条件に設定し、球面収差を
補正すれば、加工物面での集光ビームスポットを小さく
できるという効果がある。
As described above, according to this embodiment, even if the beam emitted from the beam condenser has an elliptical shape with significant distortion, the arrangement of the condensing spherical concave mirror is set to the above-mentioned conditions, and the spherical aberration is eliminated. If this is corrected, the focused beam spot on the surface of the workpiece can be made smaller.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、平面鏡および球面鏡で構成した集束性
のよいレーザ集光装置を提供することができるので、安
価で、加工性能のよい高出力レーザ加工装置ができると
いう効果がある。
According to the present invention, it is possible to provide a laser condensing device with good focusing properties, which is composed of a plane mirror and a spherical mirror, so that a high-power laser processing device with good processing performance can be produced at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のレーザ加工装置の構成を示す斜    
   (l□視図、第2図および第3図は本発明の実施
例であるレーザ加工装置の構成を示す斜視図である。 1・・・レーザ共振器、3,7,9,11,12゜21
.23,27.29・・・レーザビーム、4・・・縮小
用球凹面鏡、5・・・縮小剛球凸面鏡、10.20・・
・平面鏡、12・・・メニスカスレンズ、14・・・加
工物、15〜19.24,30.31・・・ビー詰所面
、22.26.28・・・集光用球凹面鏡。 代理人 弁理士 高橋明夫 ¥1図 72図 V3図
Figure 1 shows the configuration of a conventional laser processing device.
(l □ perspective view, FIG. 2, and FIG. 3 are perspective views showing the configuration of a laser processing apparatus that is an embodiment of the present invention. 1... Laser resonator, 3, 7, 9, 11, 12゜21
.. 23,27.29...Laser beam, 4...Reduction spherical concave mirror, 5...Reduction rigid spherical convex mirror, 10.20...
- Plane mirror, 12... Meniscus lens, 14... Workpiece, 15-19.24, 30.31... Bead stop surface, 22.26.28... Spherical concave mirror for condensing light. Agent Patent Attorney Akio Takahashi ¥1 Figure 72 Figure V3

Claims (1)

【特許請求の範囲】[Claims] 1、レーザ光を球凹面鏡と原画面鏡とを介して被加工物
に焦束性レーザ光を照射するものにおいて、原画面鏡と
被加工物との間に入射光と反射光とのなす平面が直交す
るように少なくとも2枚の球面鏡を配置することを特徴
とするレーザ用光学装置。
1. In a device that irradiates a workpiece with a focused laser beam via a spherical concave mirror and an original screen mirror, a plane formed by the incident light and reflected light between the original screen mirror and the workpiece. 1. A laser optical device characterized in that at least two spherical mirrors are arranged so that the mirrors are perpendicular to each other.
JP58097863A 1983-06-03 1983-06-03 Optical device for laser Pending JPS59223407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58097863A JPS59223407A (en) 1983-06-03 1983-06-03 Optical device for laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58097863A JPS59223407A (en) 1983-06-03 1983-06-03 Optical device for laser

Publications (1)

Publication Number Publication Date
JPS59223407A true JPS59223407A (en) 1984-12-15

Family

ID=14203586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58097863A Pending JPS59223407A (en) 1983-06-03 1983-06-03 Optical device for laser

Country Status (1)

Country Link
JP (1) JPS59223407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371781A2 (en) * 1988-12-01 1990-06-06 Coherent, Inc. High power laser with focusing mirror sets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371781A2 (en) * 1988-12-01 1990-06-06 Coherent, Inc. High power laser with focusing mirror sets

Similar Documents

Publication Publication Date Title
US20060186098A1 (en) Method and apparatus for laser processing
JP2866267B2 (en) Optical drawing apparatus and optical drawing method for wafer substrate
JPH0412039B2 (en)
JP2720811B2 (en) Laser focusing method and apparatus
US5080474A (en) Laser beam shaping device
JPH11501738A (en) Laser scanner with reflective optics
KR100491558B1 (en) Light projecting device and light projecting method
JP2000042779A (en) Laser beam machining device
JP2002519715A (en) Hole scanning laser scanner
JP2005028428A (en) Laser beam machining device
JPH02137687A (en) Laser light condensing device
JP3285214B2 (en) Optical equipment for laser processing
JPS59223407A (en) Optical device for laser
JPS58154484A (en) Method for converting laser beam
JPH0462568B2 (en)
JP3644431B2 (en) Laser equipment
JPH01113192A (en) Converging device for laser beam machine
JP2001075043A (en) Precise variable type long beam optical system
JP2800006B2 (en) Laser device
JPS5843420A (en) External optical device for laser
JP3479197B2 (en) Laser device
JPH07144291A (en) Method for reducing astigmatism of laser beam machine
CN215867289U (en) Laser beam expanding lens
JPS58179813A (en) Optical beam scanner
JP3397312B2 (en) Laser beam synthesizer and laser processing system