JPS5922322B2 - insulation paint - Google Patents

insulation paint

Info

Publication number
JPS5922322B2
JPS5922322B2 JP49006873A JP687374A JPS5922322B2 JP S5922322 B2 JPS5922322 B2 JP S5922322B2 JP 49006873 A JP49006873 A JP 49006873A JP 687374 A JP687374 A JP 687374A JP S5922322 B2 JPS5922322 B2 JP S5922322B2
Authority
JP
Japan
Prior art keywords
temperature
wire
heat
reaction
pyrrolidone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49006873A
Other languages
Japanese (ja)
Other versions
JPS50101428A (en
Inventor
宗孝 川口
洋彦 中林
正芳 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP49006873A priority Critical patent/JPS5922322B2/en
Priority to CA217,519A priority patent/CA1055794A/en
Priority to GB87075A priority patent/GB1472391A/en
Publication of JPS50101428A publication Critical patent/JPS50101428A/ja
Priority to US06/514,851 priority patent/US4511624A/en
Publication of JPS5922322B2 publication Critical patent/JPS5922322B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】 本発明は、本発明のエナメル線を用いて製作された変圧
器或は電動機等の電気機器(特に小型の変圧器或は小型
モーター)が焼損時に発煙事故を発生するのを防止でき
、必要ならば更にある一定の温度に達するとエナメル線
の絶縁層が容易に溶融し線間が短絡して、短絡していな
い箇所で電線を溶断し、電気機器による発煙、火災或は
感電事故を防止できる事を特徴とするエナメル線に関す
るものである。
[Detailed Description of the Invention] The present invention prevents smoke accidents from occurring when electrical equipment such as transformers or motors (particularly small transformers or small motors) manufactured using the enameled wire of the present invention burns out. If necessary, the insulating layer of the enamelled wire can easily melt when it reaches a certain temperature, causing a short circuit between the wires, causing the wire to melt at the point where there is no short circuit, and causing smoke and fire caused by electrical equipment. Alternatively, the present invention relates to an enameled wire that is characterized by being able to prevent electric shock accidents.

近年、テレビジョン等の家庭電化製品による発煙事故、
火災事故或は感電事故発生の頻度が大となり、これらの
事故を防止する事が強く望まれている。
In recent years, smoke accidents caused by home appliances such as televisions,
The frequency of occurrence of fire accidents and electric shock accidents is increasing, and it is strongly desired to prevent these accidents.

これに対応して各国に於て電気、電子機器の安全規準が
ますます厳しくなりつつある。これら機器のうち、低圧
小電力を利用するものについては、問題解決は比較的容
易であろうが、高圧高電力を使用するテレビジョン受信
機、電子レンジなどは、発煙事故、火災事故或は感電事
故防止の点で多くの弱点があり、これを克服する設計が
強く要求されている。これらの機器の部品別の火災およ
び発煙事故の一例として米国におけるテレビジョン受信
機の統計をみると、第1位が変圧器であり約30%近く
を占めており、変圧器と高圧回路から発生するものが約
半数を占めている。
In response to this, safety standards for electrical and electronic equipment are becoming increasingly strict in each country. Among these devices, problems may be relatively easy to solve for those that use low voltage and low power, but television receivers, microwave ovens, etc. that use high voltage and high power may cause smoke accidents, fire accidents, or electric shocks. There are many weaknesses in terms of accident prevention, and there is a strong demand for a design that overcomes these weaknesses. Looking at statistics on television receivers in the United States as an example of fire and smoke accidents caused by parts of these devices, transformers account for approximately 30% of the accidents, and fires and smoke accidents occur from transformers and high-voltage circuits. About half of them do so.

この為、単にこれら機器或は部品の難燃化ではなく、異
常な状態になつた場合火災或は感電事故のおこる前に自
動的に回路が切れ、しかも煙を発生しないことが強く要
望されている。これ対処する為変成器業界等では、変圧
器中に保護装置としてバイメタル方式等のヒューズ方式
を装入して故障状態における信頼性を確保する事が検討
されているが、この場合、例えばトランジスター用の小
型変成器の売値を100とすると、このヒユーズの価値
が大略30〜100程度となり、著しいコストアツプを
招き、且つ機器のスペースフアクタ一の点でも好ましく
ない。しかしながら、安全規準強化の動きに対処する為
にはコストアツプも止むを得ないとして、この方式の採
用の方向に傾きつつあるのが現状である。同様な問題は
、テープレコーダ等に使用する小型モーターについても
同様であり、過負荷等による異常温度上昇時等発煙事故
、火災事故の防止が強く望まれている。本発明は、上記
の如きヒユーズの機能をエナメル線自体に内蔵せしめて
、従来の変成器、小型モーター等の電気電子機器部品と
何ら構造上の変化を伴う事なく、価格上の影響も最少限
に止めて且つ上記の如き問題点を解決出来るエナメル線
を提供するものである。
For this reason, it is strongly desired not only to make these devices and parts flame retardant, but also to automatically cut off the circuit in the event of an abnormal condition before a fire or electric shock occurs, and also to not generate smoke. There is. In order to deal with this, the transformer industry is considering inserting a fuse system such as a bimetal system as a protection device into the transformer to ensure reliability in a fault condition. If the selling price of a small transformer is 100 yen, the value of this fuse is approximately 30 to 100 yen, which leads to a significant increase in cost and is also undesirable in terms of the space factor of the equipment. However, in order to cope with the trend of strengthening safety standards, the cost increase is unavoidable, and the current situation is that the trend is towards adopting this method. Similar problems occur with small motors used in tape recorders and the like, and it is strongly desired to prevent smoke and fire accidents when abnormal temperatures rise due to overload or the like. The present invention incorporates the fuse function as described above into the enameled wire itself, so that there is no structural change from conventional electric/electronic equipment parts such as transformers and small motors, and the impact on price is minimized. The object of the present invention is to provide an enameled wire that can solve the above-mentioned problems.

即ち、変成器或は小型モーター等の電気、電子機器部品
の焼損時、発煙事故、火災事故、或は感電事故をおこさ
ず、更には回路力相動的に切れるように、エナメル線の
絶縁皮膜として、特定のジオールと特定のジイソシアネ
ートとより得られる熱可塑性直鎖状ポリウレタンを主成
分とする絶縁塗料を塗布焼付けて得られるものを用いる
事により、一定温度で絶縁皮膜が溶融して線間絶縁をな
くす事によりこの目的を達成出来る事を究明した。この
場合、エナメル線に要求される特性は非常に微妙で困難
なものである。即ち通常の運転状態ではエナメル線とし
て絶縁が充分であり、耐熱性、耐含浸ワニス性、半田付
性、耐熱衝撃性、耐薬品性、密着性、耐加工劣化性、焼
付加工性等の特性に於て従来使用されているエナメル線
に劣る事なく、一方ではこれら特性と両立し難い特性で
ある、一定温度に達した場合、非常に敏感且つ感応温度
のばらつきも少く絶縁皮膜が溶融して線間が短絡する必
要がある。しかも米国では焼損時、変成器表面においた
チーズクロスが焦げたり、燃えたりしない事が要求され
ておりこれに対処するには表面温度を250℃以下程度
\にする必要があると考えられる。従つて通常運転時の
絶縁特性も考慮に入れると、内部温度としては150〜
250℃程度、最も好ましくは170〜230℃程度で
皮膜が溶融し、線間が短絡する事が必要であると考えら
れる。これは従来のエナメル線の常識と比較して非常に
低い畠度であり、又新しいエナメル線の研究開発の方向
が耐熱化の方向にあり、当然、熱軟化温度の出来るだけ
高い材料を求めていたのとは全く逆のものであり、従来
のエナメル線の常識とは反するものであり、従来のエナ
メル線には、このような特性の賦与せられたものは全く
みられない。又、参考例に示す如く単に熱軟化温度或は
融点が低いだけでは必ずしもその温度近辺で短絡出来ず
、又焼損時の発煙が防止出来るものではない事も判明し
ており、絶縁材料の選択範囲が非常に狭い事も判明し、
極く特定の材料しかこれらの目的には使用出来ないであ
ろう事が推察される。本発明者は、以上の点についで鋭
意検討の結果本発明のエナメル線の場合、耐熱性、耐含
浸ワニス性、半田付性、耐熱衝撃性、耐薬品性、密着性
、耐加工劣化性、焼付加工性等の特性にすぐれ、しかも
使用当初は勿論、長時間の熱劣化をうけた後でも焼損等
で異常温度に達した場合、非常に敏感に絶縁皮膜が溶融
し、電線が溶断し、かつ発煙のほとんどみられないもの
となる事を究明した。
In other words, the insulating coating of the enamelled wire is designed to prevent electrical or electronic equipment parts such as transformers or small motors from burning out, causing smoke accidents, fire accidents, or electric shock accidents, and furthermore, so that they can be cut dynamically by circuit forces. By applying and baking an insulating paint whose main component is thermoplastic linear polyurethane obtained from a specific diol and a specific diisocyanate, the insulating film melts at a constant temperature and creates line-to-line insulation. We have discovered that this purpose can be achieved by eliminating the . In this case, the characteristics required of the enamelled wire are very delicate and difficult. In other words, under normal operating conditions, the enameled wire has sufficient insulation, and has excellent properties such as heat resistance, impregnation varnish resistance, solderability, thermal shock resistance, chemical resistance, adhesion, processing deterioration resistance, and baking workability. Although it is not inferior to the enamelled wire used in the past, it has characteristics that are difficult to reconcile with these characteristics.When a certain temperature is reached, it is extremely sensitive and there is little variation in the sensitive temperature, so the insulating film melts and the wire There needs to be a short circuit between them. Moreover, in the United States, it is required that the cheesecloth placed on the surface of the transformer not burn or burn in the event of a burnout, and to meet this requirement, it is considered necessary to keep the surface temperature below 250°C. Therefore, taking into account the insulation properties during normal operation, the internal temperature should be 150~
It is thought that it is necessary for the film to melt at about 250°C, most preferably at about 170 to 230°C, and to short-circuit the wires. This is a very low hardness compared to the common sense of conventional enamelled wires, and the direction of research and development of new enameled wires is toward heat resistance, so it is natural that materials with as high a heat softening temperature as possible are sought. This is the complete opposite of the conventional enamelled wire, and is contrary to common sense regarding conventional enamelled wire, and conventional enamelled wire has never been endowed with such characteristics. In addition, as shown in the reference example, it has been found that simply having a low thermal softening temperature or melting point does not necessarily result in short circuits near that temperature, nor does it prevent smoke from burning out, so the selection range of insulating materials may vary. It was also found that the
It is assumed that only very specific materials can be used for these purposes. As a result of intensive studies regarding the above points, the present inventor found that the enameled wire of the present invention has good heat resistance, impregnation varnish resistance, solderability, thermal shock resistance, chemical resistance, adhesion, processing deterioration resistance, It has excellent properties such as baking workability, and is extremely sensitive to melting of the insulation film and melting of the wire, not only at the beginning of use, but also after long-term thermal deterioration, when abnormal temperatures are reached due to burnout, etc. Moreover, it was found that almost no smoke was observed.

本発明のエナメル線の用途は如何なものでもよいが、特
にその特徴を発揮出来るのはテレビジヨン受信機、ステ
レオ、ラジオ等に用いる小型変圧器(変成器)或は、テ
ープレコーダー、ステレオ、計測機器等に用いられる小
型モーターに適用する場合である。これらの用途の場合
は電線のサイズは直径0.05〜0.41!l程度が最
も多い。本発明のエナメル線を得る場合には、本発明で
用いる絶縁塗料を導体上に直接或は他の絶縁物を介して
塗布焼付けてもよいし、又本発明で用いる絶縁塗料を導
体上に塗布焼付け、この上に他の絶縁物の層をかぶせて
もよい。ここにいう他の絶縁物としては例えば、ナイロ
ン6、ナイロン6,6、ナイロン6,10、ナイロン1
1、ナイロン12、共重合ナイロン、熱可塑性ポリエス
テル、ポリビニルホルマール等の熱可塑性の材料を用い
るのが好ましい。特に本発明で用いる絶縁塗料より得ら
れる絶縁層の融点より低い融点の他の絶縁層を上層に用
いる場合は、自己融着性エナメル線として用いる事も可
能である。本発明において熱可塑性直鎖状ポリウレタン
を主成分とする絶縁塗料とは、熱可塑性直鎖状ポリウレ
タンの重合体溶液そのもの或は特性を゛そこなわない範
囲で直鎖状ポリウレタンと溶剤の他に、他の熱可塑性、
或は熱硬化性の添加樹脂、フイラ一、顔料、染料、シリ
コーン系化合物、弗素系化合物等の1種又はそれ以上の
ものを加えてなるものをいう。
The enamelled wire of the present invention can be used in any way, but its characteristics can be particularly demonstrated in small transformers (transformers) used in television receivers, stereos, radios, etc., tape recorders, stereos, measurements, etc. This is a case where it is applied to small motors used in equipment, etc. For these uses, the wire size is 0.05 to 0.41 in diameter! The most common one is about l. In order to obtain the enameled wire of the present invention, the insulating paint used in the present invention may be coated and baked on the conductor directly or through another insulator, or the insulating paint used in the present invention may be coated on the conductor. After baking, another layer of insulation may be placed over this. Examples of other insulators mentioned here include nylon 6, nylon 6,6, nylon 6,10, and nylon 1.
1. It is preferable to use thermoplastic materials such as nylon 12, copolymerized nylon, thermoplastic polyester, and polyvinyl formal. In particular, when another insulating layer having a melting point lower than that of the insulating layer obtained from the insulating paint used in the present invention is used as an upper layer, it can also be used as a self-bonding enameled wire. In the present invention, an insulating coating mainly composed of thermoplastic linear polyurethane refers to the polymer solution of thermoplastic linear polyurethane itself, or in addition to linear polyurethane and a solvent within a range that does not impair its properties. other thermoplastics,
Alternatively, it refers to a product in which one or more of thermosetting additive resins, fillers, pigments, dyes, silicone compounds, fluorine compounds, etc. are added.

本発明の絶縁塗料を得るのに用いる熱可塑性直鎖状ポリ
ウレタンはジイソシアネート及びマスクされたジイソシ
アネートより成る群より選ばれた1種又はそれ以上のジ
イソシアネート類と、1種又はそれ以上のジオールとを
反応せしめて得られる直鎖状ポリウレタンである。
The thermoplastic linear polyurethane used to obtain the insulating coating of the present invention is obtained by reacting one or more diisocyanates selected from the group consisting of diisocyanates and masked diisocyanates with one or more diols. It is a linear polyurethane that can be obtained at least.

この直鎖状ポリウレタンの製造を実施するにあたつては
、反応を無溶剤下或は溶剤の存在下で行う事が出来るが
、反応は溶剤の存在下で行う事が反応のコントロールの
点で好ましい。この溶剤としては、この反応を実施する
反応条件下で各成分と反応しないか、或は結合のゆるい
付加化合物又は更に反応する化合物を形成するだけであ
る有機溶剤である事が好ましく、更には反応によつて生
成する重合体を溶解するものであることが好ましい。適
当な溶剤は、炭化水素、ハロゲン化炭化水素、フエノー
ル類、エステル類、ケトン類、エーテル類、置換された
アミド、スルホキサイド及びスルホン等があり、例えば
トルエン、キシレン,o−ジクロルベンゼン、フエノー
ル、クレゾール酸、o−クレゾールm−クレゾール、p
−クレゾール、各種のキシレノール、アセトフエノン、
ベンゾフエノン、エチレングリコールモノメチルエーテ
ルアセテート、N,N−ジメチルアセトアミド、N,N
−ジエチルアセトアミド、N,N−ジメチルホルムアミ
ド、N,N−ジエチルホルムアミド、N−メチル−2−
ピロリドン、N−アセチル−2−ピロリドン、N−メチ
ルーカプロラクタム、ジメチルスルホキサイド、ジメチ
ルスルホン、テトラメチレンスルホン、ヘキサメチルホ
スホルアミド、ホルムアミド、N−メチルホルムアミド
、γ−ブチロラクトン及びそれらの混合物等がある。好
ましいのは、フエノール類或は置換されたアミドを主成
分とする溶剤である。最も好ましいのは、置換されたア
ミドを主成分とする溶剤であり、中でもN,Nジメチル
アセトアミド、N−メチル−2−ピロリドンを主成分と
する溶剤である。本発明で用いる熱可塑性直鎖状ポリウ
レタンを製造する為の原料としては、最終的に得られる
工のジオール成分の存在下にジイソシアネート類を反応
させていく方法である。
In producing this linear polyurethane, the reaction can be carried out in the absence of a solvent or in the presence of a solvent, but in terms of reaction control it is best to carry out the reaction in the presence of a solvent. preferable. The solvent is preferably an organic solvent which does not react with the components under the reaction conditions under which the reaction is carried out, or which only forms loosely bound adducts or further reacting compounds; It is preferable to use one that dissolves the polymer produced by the process. Suitable solvents include hydrocarbons, halogenated hydrocarbons, phenols, esters, ketones, ethers, substituted amides, sulfoxides and sulfones, such as toluene, xylene, o-dichlorobenzene, phenols, Cresylic acid, o-cresol m-cresol, p
-Cresol, various xylenol, acetophenone,
Benzophenone, ethylene glycol monomethyl ether acetate, N,N-dimethylacetamide, N,N
-diethylacetamide, N,N-dimethylformamide, N,N-diethylformamide, N-methyl-2-
Pyrrolidone, N-acetyl-2-pyrrolidone, N-methyl-caprolactam, dimethyl sulfoxide, dimethyl sulfone, tetramethylene sulfone, hexamethylphosphoramide, formamide, N-methylformamide, γ-butyrolactone, and mixtures thereof. be. Preferred are solvents containing phenols or substituted amides as a main component. Most preferred are solvents based on substituted amides, especially those based on N,N dimethylacetamide and N-methyl-2-pyrrolidone. The raw material for producing the thermoplastic linear polyurethane used in the present invention is a method in which diisocyanates are reacted in the presence of the diol component of the final product.

本発明で用いる熱可塑性直鎖状ポリウレタンを製造する
反応は適当な触媒を用いる事により促進する事が出来る
The reaction for producing the thermoplastic linear polyurethane used in the present invention can be accelerated by using a suitable catalyst.

この例としては、イソシアネートの反応に通常用いられ
るもの、例えば弗化硼素、その付加物、鉱酸、カルボン
酸、塩化亜鉛があり又トリエチルアミン、N−アルキル
モルホリン、トリエチレンジアミン、1,8−ジアザー
ビシクロ(5.4.0)ウンデセンー7(この酸付加物
を含む)等の第3級アミンがあり、又トリアルキルホス
フインがあり、又酢酸カリウム、亜鉛オクトエート、ジ
ブチルスズジラウレート等のジアルキルスズジアジレー
ト、リノレイン酸リチウム、オレイン酸ナトリウム、ソ
ジウムメトキサイド、ポタシウムエトキサイドはどのア
ルカリ金属塩、或は酢酸コバルト、ナフテン酸コバルト
等の重金属塩などもある。更にはチタニウムイソプロポ
キシド、チタニウムテトラブトキシド、チタニウムテト
ラフェノラード等のチタニウムテトラアルコキシド或は
これらのキレート化合物、テトラアルキルチタニウムア
ンレート化合物、チタニウムビスキレート化合物等のチ
タニウム系の触媒がある。中でも好ましいのは、第3級
アミン、スズ系化合物、チタニウム系化合物であり、特
に好ましいのは、チタニウム系の触媒1,8−ジアザー
ビシクロ(5.4.0)ウンデセンー7(この酸付加物
を含む)である。以下の実施例、比較例に於て、エナメ
ル線は常法により導体上に絶縁塗料を塗布焼付けたもの
であり、溶断温度の測定は、胴径18111つば径40
m11L1胴長911のプラスチツク製のボビンにエナ
メル線を芯線径0.3mmの場合は150ターン巻きつ
けて中央部に直径0.3110)CA熱電対をはさみこ
の上に更にエナメル線を150ターン巻きつけてサンプ
ルを調整し、芯線径0.211の場合は、エナメル線を
200ターン巻き付けて、中央部に直径0.3111(
7)CA熱電対をはさみ、この上に更にエナメル線を1
50ターン巻きつけてサンプルを調整した。
Examples include those commonly used in the reaction of isocyanates, such as boron fluoride, its adducts, mineral acids, carboxylic acids, zinc chloride, and also triethylamine, N-alkylmorpholines, triethylenediamine, 1,8-diaza There are tertiary amines such as bicyclo(5.4.0) undecene-7 (including this acid adduct), trialkylphosphines, and dialkyltin diazines such as potassium acetate, zinc octoate, and dibutyltin dilaurate. Salt, lithium linoleate, sodium oleate, sodium methoxide, and potassium ethoxide are any alkali metal salts, or heavy metal salts such as cobalt acetate and cobalt naphthenate. Further, there are titanium-based catalysts such as titanium tetraalkoxides such as titanium isopropoxide, titanium tetrabutoxide, and titanium tetraphenolade, or their chelate compounds, tetraalkyl titanium anlate compounds, and titanium bischelate compounds. Among these, preferred are tertiary amines, tin-based compounds, and titanium-based compounds, and particularly preferred are titanium-based catalysts such as 1,8-diazabicyclo(5.4.0)undecene-7 (this acid adduct). ). In the following Examples and Comparative Examples, the enamelled wire was made by coating and baking an insulating paint on the conductor using a conventional method, and the fusing temperature was measured using a body diameter of 18111 and a brim diameter of 40.
m11L1 If the core wire diameter is 0.3 mm, wrap an enamelled wire around a plastic bobbin with a body length of 911 mm, 150 turns, sandwich a CA thermocouple with a diameter of 0.3110 mm in the center, and wrap an additional 150 turns of enameled wire on top of this. If the core wire diameter is 0.211, wind the enamelled wire 200 turns and make a wire with a diameter of 0.3111 (
7) Sandwich the CA thermocouple and add one more enameled wire on top of it.
The sample was prepared by winding it with 50 turns.

このサンプルに大電流を流して発熱させて、エナメル線
が発熱により溶断する温度を挿入してあるCA熱電対で
測定した。エナメル線の特性試験方法は、耐熱軟化性、
熱溶断温度以外はJISC3OO3によつた。又樹脂の
還元比粘度の測定は樹脂0.59をN,N−ジメチルア
セトアミド100w11中に溶解し30℃で行つた。実
施例 11,6−ヘキサンジオール、591.09(5
.0モル)とジフエニルメタン一4,4!−ジイソシア
ネート1251.39(5.0モル)とN−メチル−2
−2ピロリドン27609とを反応容器中にて撹拌する
と暫時後発熱し、約85℃迄反応熱により昇温し次第に
粘稠になつた。
A large current was applied to this sample to generate heat, and the temperature at which the enameled wire melted due to the heat generation was measured using an inserted CA thermocouple. The characteristics test method for enameled wire is heat softening resistance,
Other than the thermal melting temperature, JISC3OO3 was followed. The reduced specific viscosity of the resin was measured by dissolving 0.59 of the resin in 100w11 of N,N-dimethylacetamide at 30°C. Example 11,6-hexanediol, 591.09 (5
.. 0 mol) and diphenylmethane-4,4! -diisocyanate 1251.39 (5.0 mol) and N-methyl-2
-2 Pyrrolidone 27609 was stirred in a reaction vessel, and after a while it generated heat, and as the temperature rose to about 85°C due to the heat of reaction, it gradually became viscous.

次にオイルバスを加熱して反応系を1時間で120℃迄
昇温し、この温度で1.5時間反応させて反応を終了し
た。ここにN−メチル−2−ピロリドン23989、ソ
ルベントナフサ22109を加えて希釈し透明な重合体
溶液を得た。溶液粘度は2200Cps(30℃)であ
つた。重合体の還元比粘度は0.86であつた。この重
合体溶液を直径0.311!の銅線上に塗布焼付けてエ
ナメル線を得た。このエナメル線の特性を表1に示した
。実施例 2 実施例1で得られた重合体溶液N−メチル−2−ピロリ
ドンとソルベントナフサで溶液粘度を200cpsにし
て、これを直径0.2mmの銅線上に塗布焼付けてエナ
メル線を得た。
Next, the oil bath was heated to raise the temperature of the reaction system to 120° C. in 1 hour, and the reaction was completed at this temperature for 1.5 hours. N-methyl-2-pyrrolidone 23989 and solvent naphtha 22109 were added to dilute the solution to obtain a transparent polymer solution. The solution viscosity was 2200 Cps (30°C). The reduced specific viscosity of the polymer was 0.86. This polymer solution has a diameter of 0.311! An enamelled wire was obtained by coating and baking it on a copper wire. The characteristics of this enameled wire are shown in Table 1. Example 2 The polymer solution obtained in Example 1 was made to have a solution viscosity of 200 cps using N-methyl-2-pyrrolidone and solvent naphtha, and this was applied and baked on a copper wire having a diameter of 0.2 mm to obtain an enameled wire.

このエナメル線の特性を表1に示した。実施例 3 1,6−ヘキサンジオール236.49(2.0モル)
とジフエニルメタン一4,4′−ジイソシアネート49
0.59(1.96モル)とN−メチル−2ーピロリド
ン7909とキシレン3009とを反応容器中にて撹拌
すると暫時後発熱し、約95℃迄反応熱により昇温し、
次第に粘稠になつた。
The characteristics of this enameled wire are shown in Table 1. Example 3 1,6-hexanediol 236.49 (2.0 mol)
and diphenylmethane-4,4'-diisocyanate 49
When 0.59 (1.96 mol), N-methyl-2-pyrrolidone 7909, and xylene 3009 are stirred in a reaction vessel, heat is generated after a while, and the temperature is raised to about 95°C due to the heat of reaction.
It gradually became viscous.

次にオイルバスを加熱して反応系を1.5時間で120
℃迄昇温しこの温度で2時間反応させて反応を終了した
。ここにN−メチル−2−ピロリドン15109、キシ
レン3909を加えて希釈し透明な重合体溶液を得た。
溶液粘度は1700cps(30℃)であり、重合体の
還元比粘度は0.61であつた。この重合体溶液をN−
メチル−2−ピロリドンとソルベントナフサで200c
psに希釈して、これを直径0.2籠の銅線上に塗布焼
付けてエナメル線を得た。このエナメル線の特性を表1
に示した。実施例 416−ヘキサンジオール236.
49(2』8レ)とジフエニルメタン一4,4′−ジイ
ソシアネート475.59(1.9モル)とジメチルア
セトアミド10709とを反応容器中にて撹拌すると暫
時後発熱し、約85℃迄反応熱により昇温し、次第に粘
稠になつた。
Next, heat the oil bath to heat the reaction system to 120% in 1.5 hours.
The temperature was raised to .degree. C., and the reaction was completed at this temperature for 2 hours. N-methyl-2-pyrrolidone 15109 and xylene 3909 were added to dilute the solution to obtain a transparent polymer solution.
The solution viscosity was 1700 cps (30° C.), and the reduced specific viscosity of the polymer was 0.61. This polymer solution was
200c with methyl-2-pyrrolidone and solvent naphtha
The solution was diluted to PS and coated on a copper wire having a diameter of 0.2 and baked to obtain an enamelled wire. Table 1 shows the characteristics of this enameled wire.
It was shown to. Example 416-hexanediol 236.
When 475.59 (1.9 mol) of diphenylmethane-4,4'-diisocyanate and 10,709 dimethylacetamide were stirred in a reaction vessel, heat was generated after a while and the temperature rose to about 85°C due to the heat of reaction. The temperature rose and it gradually became viscous.

次にオイルバスを加熱して反応系を1時間で123℃迄
昇温し、この温度で2時間反応させて反応を終了した。
ここにN−メチル−2−ピロリドン1749、キシレン
5339を加えて希釈し透明な重合体溶液を得た。溶液
粘度は750cps(3『C)であつた。重合体の還元
比粘度は0.40であつた。この重合体溶液をN−メチ
ル−2−ピロリドンとキシレンで200cps(300
C)に希釈して、これを直径0.211の銅線上に塗布
焼付けてエナメル線を得た。このエナメル線の特性を表
1に示した。実施例 5 1,6−ヘキサンジオール236.49(2.0モル)
とジフエニルメタン一4,4′−ジイソシアネート47
0.59(1.88モル)とN−メチル−2−ピロリド
ン1060gとを反応容器中にて撹拌すると暫時後発熱
し、約80℃迄反応熱により昇))温し次第に粘稠にな
つた。
Next, the oil bath was heated to raise the temperature of the reaction system to 123° C. in 1 hour, and the reaction was completed at this temperature for 2 hours.
N-methyl-2-pyrrolidone 1749 and xylene 5339 were added to dilute the solution to obtain a transparent polymer solution. The solution viscosity was 750 cps (3'C). The reduced specific viscosity of the polymer was 0.40. This polymer solution was mixed with N-methyl-2-pyrrolidone and xylene at 200 cps (300 cps).
C) was diluted and coated on a copper wire having a diameter of 0.211 mm and baked to obtain an enameled wire. The characteristics of this enameled wire are shown in Table 1. Example 5 1,6-hexanediol 236.49 (2.0 mol)
and diphenylmethane-4,4'-diisocyanate 47
When 0.59 (1.88 mol) and 1060 g of N-methyl-2-pyrrolidone were stirred in a reaction vessel, heat was generated for a while and the temperature rose to about 80°C due to the heat of reaction)) The mixture gradually became viscous. .

次にオイルバスを加熱して反応系を1時間で120℃迄
昇温し、この温度で1.5時間反応させて、後、ここに
N−メチル−2−ピロリドン5909を加えて希釈した
透明な重合体溶液を得た。重合体の還元比粘度は0.3
6であつた。この重合体溶液をN−メチル−2−ピロリ
ドンで200cps(300C)に希釈して、これを直
径0.2m1の銅線上に塗布焼付けてエナメル線を得た
。このエナメル線の特性を表1に示した。実施例 61
,6−ヘキサンジオール236.49(2.0モル)と
ジフエニルメタン一4,4′−ジイソシアネート465
.59(1.86モル)とN−メチル−2−ピロリドン
10539とを反応容器中にて撹拌すると暫時後発熱し
、約80℃迄反応熱により昇温し次第に粘稠になつた。
Next, the oil bath was heated to raise the temperature of the reaction system to 120°C in 1 hour, and the reaction was allowed to proceed at this temperature for 1.5 hours. A polymer solution was obtained. The reduced specific viscosity of the polymer is 0.3
It was 6. This polymer solution was diluted to 200 cps (300 C) with N-methyl-2-pyrrolidone, and this was applied and baked onto a copper wire having a diameter of 0.2 ml to obtain an enameled wire. The characteristics of this enameled wire are shown in Table 1. Example 61
,6-hexanediol 236.49 (2.0 mol) and diphenylmethane-4,4'-diisocyanate 465
.. When 59 (1.86 mol) and N-methyl-2-pyrrolidone 10539 were stirred in a reaction vessel, heat was generated after a while, and as the temperature rose to about 80°C due to the heat of reaction, the mixture gradually became viscous.

次にオイルバスを加熱して反応系を1時間で120℃迄
昇温し、この温度で1.5時間反応させて、後、ここに
N−メチル−2−ピロリドン5909を加えて希釈した
透明な重合体溶液を得た。重合体の還元比粘度は0.3
4であつた。この重合体溶液をN−メチル−2−ピロリ
ドンとキシレンで200cps(30℃)に希釈して、
これを直径0.211の銅線上に塗布焼付けてエナメル
線を得た。このエナメル線の特性を表1に示した。実施
例 7 1,6−ヘキサンジオール425.59(3,6モル)
と1,4−ブタンジオール81.19(0.9モル)と
ジフエニルメタン一4,4′−ジイソシアネート110
3.69(4.41モル)とN−メチル2−ピロリドン
37351とを反応容器中にて撹拌すると暫時後発熱し
、約70℃迄反応熱により昇温し、次第に粘稠になつた
Next, the oil bath was heated to raise the temperature of the reaction system to 120°C in 1 hour, and the reaction was allowed to proceed at this temperature for 1.5 hours. A polymer solution was obtained. The reduced specific viscosity of the polymer is 0.3
It was 4. This polymer solution was diluted with N-methyl-2-pyrrolidone and xylene to 200 cps (30°C),
This was coated and baked on a copper wire with a diameter of 0.211 mm to obtain an enamelled wire. The characteristics of this enameled wire are shown in Table 1. Example 7 1,6-hexanediol 425.59 (3,6 mol)
and 1,4-butanediol 81.19 (0.9 mol) and diphenylmethane-4,4'-diisocyanate 110
When 3.69 (4.41 mol) and N-methyl 2-pyrrolidone 37351 were stirred in a reaction vessel, heat was generated after a while, the temperature rose to about 70°C due to the heat of reaction, and the mixture gradually became viscous.

次にオイルバスを加熱して反応系を1時間で120℃昇
温し、この温度で2時間反応させて、後、ここにキシレ
ン13659を加えて希釈し透明な重合体溶液を得た。
溶液粘度は1300cps(30体C)であつた。重合
体の還元比粘度は0.60であつた。この重合体溶液を
N−メチル−2−ピロリドンとキシレンで200cps
(3『C)に希釈して、これを直径0.2mmの銅線上
に塗布焼付けてエナメル線を得た。このエナメル線の特
性を表1に示した。実施例 8 1,6−ヘキサンジオール319.19(2.7モル)
と1,4−ブタンジオール162.29(1.8モル)
とジフエニルメタン一4,4′−ジイソシアネート11
03.69(4。
Next, the oil bath was heated to raise the temperature of the reaction system to 120° C. in 1 hour, and the reaction was allowed to proceed at this temperature for 2 hours. Thereafter, xylene 13659 was added to dilute the reaction system to obtain a transparent polymer solution.
The solution viscosity was 1300 cps (30 C). The reduced specific viscosity of the polymer was 0.60. This polymer solution was mixed with N-methyl-2-pyrrolidone and xylene at 200 cps.
(3'C) and applied and baked on a copper wire with a diameter of 0.2 mm to obtain an enameled wire. The characteristics of this enameled wire are shown in Table 1. Example 8 1,6-hexanediol 319.19 (2.7 mol)
and 1,4-butanediol 162.29 (1.8 mol)
and diphenylmethane-4,4'-diisocyanate 11
03.69 (4.

41モル)とN−メチル−2−ピロリドン23809と
を反応容器中にて撹拌すると暫時後発熱し、約85℃迄
反応熱により昇温し、次第に粘稠になつた。
When N-methyl-2-pyrrolidone (23809) and N-methyl-2-pyrrolidone (23809) were stirred in a reaction vessel, heat was generated after a while, the temperature rose to about 85° C. due to the heat of reaction, and the mixture gradually became viscous.

次にオイルバスを加熱して反応系を1時間で120℃昇
温し、この温度で1.5時間反応させて、後、ここにN
−メチル−2−ピロリドン5609、キシレン1260
9を加えて希釈し透明な重合体溶液を得た。溶液粘度は
2000cps(30体C)であり、重合体の還元比粘
度は0.53であつた。この重合体溶液をN−メチル−
2−ピロリドンとキシレンで200cps(302C)
に希釈して、これを直径0.211の銅線上に塗布焼付
けてエナメル線を得た。このエナメル線の特性を表1に
示した。実施例 9 1,6−ヘキサンジオール236.49(2.0モル)
とジフエニルメタン一4,4′−ジイソシアネート39
2.49(1.568モル)とトリレンジイソシアネー
ト(2,4−トリレンジイソシアネートと2,6−トリ
レンジイソシアネートの80:20の混合物)68.3
9(0.392モル)とN−メチル−2−ピロリドン1
0509とを反応容器中にて撹拌すると暫時後発熱し、
約75℃迄反応熱により昇温し、次第に粘稠になつた。
Next, the oil bath was heated to raise the temperature of the reaction system to 120°C in 1 hour, the reaction was continued at this temperature for 1.5 hours, and then N
-Methyl-2-pyrrolidone 5609, xylene 1260
9 was added to dilute the solution to obtain a transparent polymer solution. The solution viscosity was 2000 cps (30 body C), and the reduced specific viscosity of the polymer was 0.53. This polymer solution was mixed with N-methyl-
200cps (302C) with 2-pyrrolidone and xylene
The enameled wire was diluted to 100% and coated and baked on a copper wire with a diameter of 0.211 mm to obtain an enamelled wire. The characteristics of this enameled wire are shown in Table 1. Example 9 1,6-hexanediol 236.49 (2.0 mol)
and diphenylmethane-4,4'-diisocyanate 39
2.49 (1.568 mol) and tolylene diisocyanate (80:20 mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate) 68.3
9 (0.392 mol) and N-methyl-2-pyrrolidone 1
When 0509 is stirred in a reaction vessel, heat is generated after a while,
The temperature rose to about 75°C due to the heat of reaction and gradually became viscous.

次にオイルバスを加熱して反応系を1時間で120℃迄
昇し、この温度で2時間反応させて、後、ここにN−メ
チル−2−ピロリドン909、キシレン4909を加え
て希釈し透明な重合体溶液を得た。溶液粘度は1900
cps(300C)であつた。重合体の還元比粘度は0
.62であつた。この重合体溶液をN,N−ジメチルア
セトアミドとキシレンで200cps(30アC)に希
釈し、これを直径0.2m1の銅線上に塗布焼付けてエ
ナメル線を得た。このエナメル線の特性を表1に示した
。実施例 10 1,6−ヘキサンジオール236.49(2.0モル)
とジフエニルメタン一4,4′−ジイソシアネート34
3.39(1.372モル)とトリレンジイソシアネー
ト(2,4−トリレンジイソシアネートと2,6−トリ
レンジイソシアネートの80:20の混合物)102.
49(0.588モル)とN一メチル一2−ピロリドン
10209とを反応容器中にて撹拌すると暫時後発熱し
、約88℃迄反応熱により昇温し、次第に粘稠になつた
Next, heat the oil bath to raise the reaction system to 120℃ in 1 hour, react at this temperature for 2 hours, and then add N-methyl-2-pyrrolidone 909 and xylene 4909 to dilute it and make it transparent. A polymer solution was obtained. Solution viscosity is 1900
cps (300C). The reduced specific viscosity of the polymer is 0
.. It was 62. This polymer solution was diluted to 200 cps (30 AC) with N,N-dimethylacetamide and xylene, and this was applied and baked on a copper wire with a diameter of 0.2 ml to obtain an enameled wire. The characteristics of this enameled wire are shown in Table 1. Example 10 1,6-hexanediol 236.49 (2.0 mol)
and diphenylmethane-4,4'-diisocyanate 34
3.39 (1.372 mol) and tolylene diisocyanate (80:20 mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate) 102.
When 49 (0.588 mol) and N-methyl-2-pyrrolidone 10209 were stirred in a reaction vessel, heat was generated after a while, the temperature rose to about 88° C. due to the heat of reaction, and the mixture gradually became viscous.

次にオイルバスを加熱して反応を1.5時間で120℃
迄昇温し、この温度で1.5時間反応させて、後、ここ
にN−メチル−2−ピロリドン4129、キシレン61
4gを加えて希釈し透明な重合体溶液を得た。重合体の
還元比粘度は0.55であつた。この重合体溶液をN,
N−ジメチルアセトアミドで200cps(30NC)
に希釈して、これを直径0.211の銅線上に塗布焼付
けてエナメル線を得た。このエナメル線の特性を表1に
示した。実施例 11 1,6−ヘキサンジオール236.49(2.0モル)
とジフエニルメタン一4,1−ジイソシアネート392
.49(1.568モル)とN−メチル−2−ピロリド
ン10409とを反応容器中にて撹拌すると暫時後発熱
し、約80℃迄昇温した。
Next, heat the oil bath and carry out the reaction at 120°C for 1.5 hours.
The temperature was raised to 1.5 hours, and the reaction was carried out at this temperature for 1.5 hours.
4 g was added and diluted to obtain a transparent polymer solution. The reduced specific viscosity of the polymer was 0.55. This polymer solution was mixed with N,
200cps (30NC) with N-dimethylacetamide
The enameled wire was diluted to 100% and coated and baked on a copper wire with a diameter of 0.211 mm to obtain an enamelled wire. The characteristics of this enameled wire are shown in Table 1. Example 11 1,6-hexanediol 236.49 (2.0 mol)
and diphenylmethane-4,1-diisocyanate 392
.. When N-methyl-2-pyrrolidone 10409 and N-methyl-2-pyrrolidone 10409 were stirred in a reaction vessel, heat was generated after a while and the temperature was raised to about 80°C.

次にここにヘキサメチレンジイソシアネート65.9f
!(0.392モノ(ハ)とジブチルスズジラウレート
0.2f!を加えてオイルバスを加熱して反応系を1時
間で120℃迄昇温し、この温度で2時間反応させて後
、ここにN−メチル−2−ピロリドン90f!とキシレ
ン4909を加えて希釈し、透明な重合体溶液を得た。
重合体の還元比粘度は0.59で、溶液粘度は1700
cpsであつた。この重合体溶液をN−メチル−2−ピ
ロリドンで200cps(30℃)に希釈して、これを
直径0.2m1の銅線上に塗布焼付けてエナメル線を得
た。このエナメル線の特性を表1に示した。実施例 1
2 1,6−ヘキサンジオール118.29(1.0モル)
とジフエニルエーテル一4,4′−ジイソシアネート2
47.29(0.98モル)とN,N−ジメチルアセト
アミド5979とキシレン256gとを反応容器中にて
撹拌すると暫時後発熱し、約80℃迄反応熱により昇温
し、次第に粘稠になつた。
Next, here is hexamethylene diisocyanate 65.9f
! (Add 0.392 mono(c) and 0.2f! of dibutyltin dilaurate!, heat the oil bath, raise the temperature of the reaction system to 120℃ in 1 hour, react at this temperature for 2 hours, and add N -Methyl-2-pyrrolidone 90f! and xylene 4909 were added to dilute to obtain a transparent polymer solution.
The reduced specific viscosity of the polymer is 0.59, and the solution viscosity is 1700.
It was cps. This polymer solution was diluted to 200 cps (30 DEG C.) with N-methyl-2-pyrrolidone, and this was coated and baked on a copper wire with a diameter of 0.2 ml to obtain an enameled wire. The characteristics of this enameled wire are shown in Table 1. Example 1
2 1,6-hexanediol 118.29 (1.0 mol)
and diphenyl ether-4,4'-diisocyanate 2
When 47.29 (0.98 mol), N,N-dimethylacetamide 5979, and xylene 256 g are stirred in a reaction vessel, heat is generated after a while, the temperature rises to about 80°C due to the heat of reaction, and it gradually becomes viscous. Ta.

次にオイルバスを加熱して反応系を1.5時間で120
℃迄昇温しこの温度で2時間反応させて、後、ここにN
,N−ジメチルアセトアミド2989、キシレン128
9を加えて希釈し透明な重合体溶液を得た。重合体の還
元比粘度は0.55であつた。この重合体溶液を直径0
.311の銅線上に塗布焼付けてエナメル線を得た。こ
のエナメル線の特性を表1に示した。実施例 13 実施例12で得られた重合体溶液をN,N−ジメチルア
セトアミドで200cps(30℃)に希釈して、これ
を直径0.2mmの銅線上に塗布焼付けてエナメル線を
得た。
Next, heat the oil bath to heat the reaction system to 120% in 1.5 hours.
The temperature was raised to ℃ and reacted at this temperature for 2 hours, after which N was added.
, N-dimethylacetamide 2989, xylene 128
9 was added to dilute the solution to obtain a transparent polymer solution. The reduced specific viscosity of the polymer was 0.55. This polymer solution has a diameter of 0
.. The enameled wire was coated and baked on a No. 311 copper wire to obtain an enamelled wire. The characteristics of this enameled wire are shown in Table 1. Example 13 The polymer solution obtained in Example 12 was diluted to 200 cps (30° C.) with N,N-dimethylacetamide, and this was applied and baked on a copper wire with a diameter of 0.2 mm to obtain an enameled wire.

このエナメル線の特性を表1に示した。実施例 14 1,4−ブタンジオール180.29(2.0七レ)と
ジフエニルメタン一4,4′−ジイソシアネート500
.59(2.0モル)とN−メチル−2−ピロリドン1
0219とを反応容器中にて撹拌すると暫時後発熱し、
約88℃迄反応熱により昇温し、次第に粘稠になつた。
The characteristics of this enameled wire are shown in Table 1. Example 14 1,4-butanediol 180.29 (2.07 L) and diphenylmethane-4,4'-diisocyanate 500
.. 59 (2.0 mol) and N-methyl-2-pyrrolidone 1
When 0219 is stirred in a reaction vessel, heat is generated after a while,
The temperature rose to about 88°C due to the heat of reaction and gradually became viscous.

次にオイルバスを加熱して反応系を1.5時間で120
℃昇温し、この温度で1時間反応させて、後、ここにN
−メチル−2−ピロリドン1021gを加えて希釈し透
明な重合体溶液を得た。重合体の還元比粘度は0.96
であつた。この重合体溶液をN−メチル−2−ピロリド
ンとキシレンで200cps(30℃)に希釈して、こ
れを直径0.211の銅線上に塗布焼付けてエナメル線
を得た。このエナメル線の特性を表1に示した。尚実施
例1〜14の各エナメル線はすべて熱溶断試験に於て、
熱溶断時に極く微量の煙が出たのみであつた。
Next, heat the oil bath to heat the reaction system to 120% in 1.5 hours.
℃, react at this temperature for 1 hour, and then add N.
-1021 g of methyl-2-pyrrolidone was added to dilute the solution to obtain a transparent polymer solution. The reduced specific viscosity of the polymer is 0.96
It was hot. This polymer solution was diluted with N-methyl-2-pyrrolidone and xylene to 200 cps (30° C.), and this was applied and baked on a copper wire having a diameter of 0.211 mm to obtain an enameled wire. The characteristics of this enameled wire are shown in Table 1. In addition, each enamelled wire of Examples 1 to 14 all had the following properties in the thermal melting test:
Only a very small amount of smoke was emitted during thermal melting.

又熱溶断後の電線皮膜は全然変色していなかつた。比較
例 1 6,10−ナイロン(東レ製CM2OOl)、6−ナイ
ロン(東レ製CMlOOl)、6,6一ナイロン(東レ
製CM3OOl)、フエノキシ(米国ユニオンカーバイ
ド社製PKHH85OO)を各々クレゾールに溶解して
絶縁塗料を得た。
Furthermore, the wire coating after thermal cutting was not discolored at all. Comparative Example 1 6,10-nylon (CM2OOl manufactured by Toray), 6-nylon (CMlOOl manufactured by Toray), 6,6-nylon (CM3OOl manufactured by Toray), and phenoxy (PKHH85OO manufactured by Union Carbide, USA) were each dissolved in cresol. Obtained insulation paint.

Claims (1)

【特許請求の範囲】[Claims] 1 ジフエニルメタン−4,4′−ジイソシアネート、
ジフエニルエーテル−4,4′−ジイソシアネート、2
,4−トリレンジイソシアネート、2,6−トリレンジ
イソシアネートの群から選ばれる芳香族ジイソシアネー
トを主体とするジイソシアネート類と1,4−ブタンジ
オールそして/又は1,6−ヘキサンジオールとを該ジ
オールに対する該ジイソシアネート類のモル比を0.9
〜1.1として反応させて得られる熱可塑性直鎖状ポリ
ウレタンを主成分とする絶縁塗料を導体上に直接もしく
は他の絶縁物を介して塗布・焼付けて得られる事を特徴
とするヒューズ機能を有するエナメル線。
1 diphenylmethane-4,4'-diisocyanate,
Diphenyl ether-4,4'-diisocyanate, 2
, 4-tolylene diisocyanate, and 2,6-tolylene diisocyanate, and 1,4-butanediol and/or 1,6-hexanediol. The molar ratio of diisocyanates is 0.9
~1.1 A fuse function characterized by being obtained by applying and baking an insulating paint mainly composed of thermoplastic linear polyurethane obtained by reacting as described in 1.1 onto a conductor, either directly or through another insulator. Enamelled wire.
JP49006873A 1974-01-12 1974-01-12 insulation paint Expired JPS5922322B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP49006873A JPS5922322B2 (en) 1974-01-12 1974-01-12 insulation paint
CA217,519A CA1055794A (en) 1974-01-12 1975-01-07 Enameled wires
GB87075A GB1472391A (en) 1974-01-12 1975-01-09 Polyurethane enamelled wire
US06/514,851 US4511624A (en) 1974-01-12 1983-07-18 Enameled wires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49006873A JPS5922322B2 (en) 1974-01-12 1974-01-12 insulation paint

Publications (2)

Publication Number Publication Date
JPS50101428A JPS50101428A (en) 1975-08-12
JPS5922322B2 true JPS5922322B2 (en) 1984-05-25

Family

ID=11650333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49006873A Expired JPS5922322B2 (en) 1974-01-12 1974-01-12 insulation paint

Country Status (1)

Country Link
JP (1) JPS5922322B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042467A (en) * 1983-08-19 1985-03-06 Toutoku Toryo Kk Organic/inorganic composite electrical insulating paint and insulated wire
JPH0554721A (en) * 1991-08-23 1993-03-05 Optec Dai Ichi Denko Co Ltd Insulated wire

Also Published As

Publication number Publication date
JPS50101428A (en) 1975-08-12

Similar Documents

Publication Publication Date Title
US4431758A (en) Heat resistant resin composition comprising reaction product of polyamideimide resin, alcohol and acid component.
US4000362A (en) Insulated wire with a silicone releasing layer
CN102268217B (en) Method for preparing polyurethane enamelled wire paint allowing for direct welding without weld slag
US5854334A (en) Wire coating composition and process for producing the same
US4511624A (en) Enameled wires
US3174950A (en) Polyurethanes from tris(beta-hydroxyethyl)isocyanurate and diphenylmethane diisocyanate
JPS5922322B2 (en) insulation paint
US5514747A (en) Polyamide-imide-modified polyurethane insulation enamel composition
KR960002488B1 (en) Process for continuous coating of wires and use of the wires obtained therefrom
EP0823120B1 (en) Wire enamel formulation with internal lubricant
CA1318431C (en) High temperature resistant fast soldering wire enamel
US4324837A (en) Self-bonding magnet wire
JPH04212206A (en) Insulating paint, solderable insulated wire, manufacture of the insulated wire, and flyback transformer using the insulated wire
US3988283A (en) Wire enamel with low soldering temperature
JPH0587924B2 (en)
US4997891A (en) High temperature resistant fast soldering wire enamel
JPS5848304A (en) Self-adhesive insulated wire
JPH08507561A (en) Tin-platable wire coating agent and continuous wire coating method
JPS5953309B2 (en) Insulated wire for safety coil formation
JPH028627B2 (en)
Sollner et al. Review of solderable magnet wire insulation
JP3504858B2 (en) Solder peelable insulated wire
JP2002008452A (en) Self-welding insulating wire
JPH0973816A (en) Insulated wire
JPH0410303A (en) Self short-circuiting insulated wire