JPS592230B2 - Color TV signal converter - Google Patents

Color TV signal converter

Info

Publication number
JPS592230B2
JPS592230B2 JP48099932A JP9993273A JPS592230B2 JP S592230 B2 JPS592230 B2 JP S592230B2 JP 48099932 A JP48099932 A JP 48099932A JP 9993273 A JP9993273 A JP 9993273A JP S592230 B2 JPS592230 B2 JP S592230B2
Authority
JP
Japan
Prior art keywords
signal
color
time
frequency
luminance signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP48099932A
Other languages
Japanese (ja)
Other versions
JPS5050815A (en
Inventor
一元 飯沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP48099932A priority Critical patent/JPS592230B2/en
Publication of JPS5050815A publication Critical patent/JPS5050815A/ja
Publication of JPS592230B2 publication Critical patent/JPS592230B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Color Television Systems (AREA)

Description

【発明の詳細な説明】 本発明はカラーテレビジョンの信号変換装置に関する。[Detailed description of the invention] The present invention relates to a color television signal conversion device.

放送テレビジョン信号として知られるNTSC、PAL
、SECAM等の信号はいずれも副搬送波fscを色信
号によつて変調し、輝度信号と周波数多重したものであ
る。このような周波数多重カラーテレビジョン信号(以
下、FDM信号と略記する。)を伝送するための伝送路
および伝送機器は広い周波数帯域にわたつて振幅特性お
よび位相特性が平坦になるように制御されていなければ
ならず、白黒テレビジョンの場合に比べて規格の厳密な
伝送路および伝送機器が必要である。これに対して、色
信号を時間圧縮して輝度信号と時分割多重した時分割多
重カラーテレビジョン信号(以下、TDM信号と略記す
る。)は、色信号も輝度信号も基底帯域信号であるため
、その性質は本質的に白黒テレビジョン信号と変るとこ
ろがなく、伝送路および伝送機器の規格も白黒テレビジ
ョン信号用のものでよいという利点がある。したがつて
、カラーテレビ信号を品質が白黒テレビジョン用の伝送
路で伝送する場合には、FDM信号をTDM信号に変換
して伝送する方法が有効である。しかしながら、従来の
TDM信号においては、色信号のみが時間圧縮され輝度
信号と時分割多重されているため、色信号の周波数帯域
幅が著しく狭く、結局、色信号の充分な再生ができない
という欠点があつた。本発明は上述の欠点のないTDM
信号を得るための信号変換装置を提供するものである。
すなわち、本発明においてはFDM信号を復調し、基底
帯域の輝度信号と色信号を得、輝度信号と色信号の両方
に対して時間圧縮を行ないこれらを同期信号と共に時分
割多重し輝度信号に対しても色信号に対しても再生周波
数帯域幅がFDM信号と同等のTDMカラーテレビジョ
ン信号を得るものである。以下、本発明を図面にもとづ
いて詳細に説明しよう。
NTSC, PAL known as broadcast television signals
, SECAM, etc. are all signals in which a subcarrier fsc is modulated by a color signal and frequency multiplexed with a luminance signal. The transmission lines and transmission equipment for transmitting such frequency-multiplexed color television signals (hereinafter abbreviated as FDM signals) are controlled so that the amplitude and phase characteristics are flat over a wide frequency band. This requires transmission paths and equipment with stricter standards than in the case of black-and-white television. On the other hand, in a time-division multiplexed color television signal (hereinafter abbreviated as TDM signal) in which the color signal is time-compressed and time-division multiplexed with the luminance signal, both the color signal and the luminance signal are baseband signals. , its properties are essentially the same as those of black-and-white television signals, and it has the advantage that the standards of the transmission path and transmission equipment may be the same as those for black-and-white television signals. Therefore, when transmitting a color television signal through a transmission line whose quality is for black and white television, it is effective to convert the FDM signal into a TDM signal and transmit the signal. However, in conventional TDM signals, only the color signal is time-compressed and time-division multiplexed with the luminance signal, so the frequency bandwidth of the color signal is extremely narrow, resulting in the disadvantage that the color signal cannot be reproduced sufficiently. It was hot. The present invention provides a TDM without the above-mentioned drawbacks.
A signal conversion device for obtaining a signal is provided.
That is, in the present invention, the FDM signal is demodulated to obtain a baseband luminance signal and a chrominance signal, time compression is performed on both the luminance signal and chrominance signal, and these are time-division multiplexed together with a synchronization signal to produce a baseband luminance signal and a chrominance signal. In this embodiment, a TDM color television signal having a reproduction frequency bandwidth equivalent to that of an FDM signal can be obtained even for color signals. Hereinafter, the present invention will be explained in detail based on the drawings.

第1図はNTSC信号、従来のTDM信号、および本発
明のTDM信号の1水平走査期間の信号波形を比較して
示すものである。NTSC信号(図の波形A)では1水
平走査期間THは同期期゜ 間Ts)バースト期間TB
、、FDM信号期間TYで構成される。従来のTDM信
号(図の波形B)は幅の狭い同期期間Ts′、色信号期
間Tcおよび輝度信号期間TYで構成され、TcはTY
の1/7〜1/8であり、この期間に時間圧縮された色
信、号が線順次に挿入される。本発明のTDM信号(図
の波形C)は同期期間Ts’、色信号期間Tc’、およ
び輝度信号期間TY’で構成され、Tc’>TOTY′
<TYである。今、Ts′=T85=ATs′Td=B
Tc,TV=CTYとすれば である。
FIG. 1 compares and shows signal waveforms of an NTSC signal, a conventional TDM signal, and a TDM signal of the present invention during one horizontal scanning period. In the NTSC signal (waveform A in the figure), one horizontal scanning period TH is the synchronization period Ts) burst period TB
, , FDM signal period TY. The conventional TDM signal (waveform B in the figure) consists of a narrow synchronization period Ts', a color signal period Tc, and a luminance signal period TY, where Tc is TY
During this period, time-compressed color signals are inserted line-sequentially. The TDM signal of the present invention (waveform C in the figure) is composed of a synchronization period Ts', a color signal period Tc', and a luminance signal period TY', and Tc'>TOTY'
<TY. Now, Ts'=T85=ATs'Td=B
If Tc, TV=CTY.

である。It is.

TY//Tc−8とした場合、C−0.9でb一1.8
、C=0.8でb=2.6となる。すなわち、輝度信号
を90%〜80%に時間圧縮すれば従来のTDM信号の
1.8〜2,6倍の色信号帯域を与えることができ、F
I)M信号の色信号と同等の帯域幅となる。色信号の時
間圧縮率は「Tc7TY=BTc/TYであるから、T
Y/Tc−8のときはb/8すなわち、C−0.9で0
.225、C−0.8で0.325となる。この場合、
輝度信号の再生帯域幅は白黒テレビの90〜80%とな
るか、FDM信号の再生輝度信号の周波数帯域幅は副搬
送波除去フイルタの挿入により実質的に白黒テレビジヨ
ンよりも狭くなつているので、輝度信号の品質を損なう
ことはない。第2図はC−0.9とした場合の、Tsl
,Td,TY″の具体的な数値例と、伝送路帯域を4M
Hzとした場合の再生信号帯域を示すものである。この
数値例において、色信号の時間圧縮率はTd/TY−(
Td/TV)XCであるから(10.6/4.72)×
0.9÷0.20である。同期信号の時間幅は従来のT
DM方式の場合、T8′=TH−TY−TCであるから
、TY/Tc−8のときはTs′=TH−1,125T
Y=63.5−1.125×47.2/0.9÷4.5
μ秒であつたが、この数値例では5.7μ秒に増やして
いる。これに対応して、C一0.9で前述の時間圧縮率
0.225よりも色信号の時間圧縮率を若干大きく設定
している。なお、色時間圧縮率を1/5にする具体的方
法については後述する。すなわち、色信号の再生帯域幅
は0.81MHzであり時間圧縮過程での損失を考慮し
てもNTSC信号の色信号帯域0.6MHzを充分再生
することができる。これに対して、従来のTDM信号に
おいては色信号の再生帯域幅は0.5MHzであり、時
間圧縮過程での損失を考慮すれば実効帯域幅は高々0.
4MHzであるから、本発明により、再生色信号帯域幅
が50%拡大される。第3図は本発明のカラーテレビ信
号変換装置のプロツク図である。
When TY//Tc-8, b-1.8 at C-0.9
, C=0.8 and b=2.6. In other words, if the luminance signal is time-compressed to 90% to 80%, it is possible to provide a color signal band that is 1.8 to 2.6 times that of the conventional TDM signal.
I) The bandwidth is equivalent to the color signal of the M signal. The time compression rate of the color signal is ``Tc7TY=BTc/TY, so T
When Y/Tc-8, b/8, that is, C-0.9 is 0
.. 225, C-0.8 becomes 0.325. in this case,
The reproduction bandwidth of the luminance signal is 90 to 80% of that of black-and-white television, or the frequency bandwidth of the reproduction luminance signal of the FDM signal is substantially narrower than that of black-and-white television due to the insertion of a subcarrier removal filter. The quality of the luminance signal is not compromised. Figure 2 shows Tsl when C-0.9.
, Td, TY'' and the transmission line bandwidth to 4M.
This shows the reproduced signal band in Hz. In this numerical example, the time compression rate of the color signal is Td/TY-(
Td/TV) Because it is XC (10.6/4.72)×
It is 0.9÷0.20. The time width of the synchronization signal is the same as the conventional T.
In the case of DM system, T8'=TH-TY-TC, so when TY/Tc-8, Ts'=TH-1,125T
Y=63.5-1.125×47.2/0.9÷4.5
The time was 1 μ seconds, but in this numerical example, it has been increased to 5.7 μ seconds. Correspondingly, the time compression rate of the color signal is set to be slightly larger than the above-mentioned time compression rate of 0.225 at C-0.9. Note that a specific method for reducing the color time compression rate to 1/5 will be described later. That is, the reproduction bandwidth of the color signal is 0.81 MHz, and even if losses in the time compression process are taken into account, the color signal band of 0.6 MHz of the NTSC signal can be sufficiently reproduced. On the other hand, in the conventional TDM signal, the reproduction bandwidth of the color signal is 0.5 MHz, and the effective bandwidth is at most 0.5 MHz, considering the loss in the time compression process.
Since the frequency is 4 MHz, the reproduced color signal bandwidth is expanded by 50% according to the present invention. FIG. 3 is a block diagram of a color television signal converter according to the present invention.

FDM信号1は復調回路2により、輝度信号Yと線順次
色信号C1/C2に復調される。輝度信号Y、色信号C
1およびC2の周波数帯域および振幅は復調回路2内で
規定の値に調整される。輝度信号および色信号は、それ
ぞれ時間圧縮装置3および4にて時間圧縮されマルチプ
レクサ7に入り時分割多重される。一方FDM信号の同
期信号は同期分離回路5によりとり出され、水平同期信
号9は時間圧縮装置3および4の制御信号として使われ
る。また複合同期信号10は色判別符号付加回路6によ
り、色判別符号が付加され、輝度信号および色信号と共
にマルチプレクサ7に入り、TDM信号8を合成する。
色判別符号は、TDMカラーテレビ信号であることを判
別すること、および線順次色信号の順序を判別するため
に使われるもので、例えば垂直ブランキング期間の一部
に挿入される。次に本発明の中心的役割を果す時間圧縮
装置について詳しく説明しよう。
The FDM signal 1 is demodulated by a demodulation circuit 2 into a luminance signal Y and line sequential color signals C1/C2. Luminance signal Y, color signal C
The frequency bands and amplitudes of C1 and C2 are adjusted to specified values within the demodulation circuit 2. The luminance signal and the color signal are time-compressed by time compressors 3 and 4, respectively, and then enter a multiplexer 7 where they are time-division multiplexed. On the other hand, the synchronization signal of the FDM signal is extracted by the synchronization separation circuit 5, and the horizontal synchronization signal 9 is used as a control signal for the time compression devices 3 and 4. A color discrimination code is added to the composite synchronization signal 10 by a color discrimination code adding circuit 6, and the signal is input to a multiplexer 7 together with a luminance signal and a color signal, and a TDM signal 8 is synthesized therein.
The color discrimination code is used to identify a TDM color television signal and to determine the order of line-sequential color signals, and is inserted, for example, in a part of the vertical blanking period. Next, the time compression device which plays a central role in the present invention will be explained in detail.

第4図は輝度信号の時間圧縮装置の一例を示すプロツク
図である。輝度信号11は、発振器171による周波数
f1の灼レスにより標本化回路12で標本化される。1
5および15′はアナログまたはデジタルの記憶回路で
、シフトレジスタまたは番地指定型のメモリが用いられ
る。
FIG. 4 is a block diagram showing an example of a luminance signal time compression device. The luminance signal 11 is sampled by the sampling circuit 12 by firing the frequency f1 by the oscillator 171. 1
5 and 15' are analog or digital storage circuits, and a shift register or addressable memory is used.

記憶回路がデジタル型の場合は、信号の標本値は記憶回
路に入る前に符号化回路13により2値符号の組合せに
変換され、記憶回路出力は復号化回路16によりアナロ
グ信号に変換される。記憶回路がアナログ型の場合は(
例えばコンデンサメモリ、電荷結合素子が用いられる)
符号化、復号化回路は不要である。信号の標本化はスイ
ツチ回路14により走査線毎に記憶回路15および15
′のいずれかに周波数f1のパルスで書き込まれる。F
2〉f1なる周波数の発振器172は記憶回路の内容を
読み出すために用いられる。すなわち、書き込み状態に
ない方の記憶回路は周波数F2のパルスにより読み出し
状態になるように記憶回路のクロツクパルスは切換スイ
ツチ18により走査線毎に切換制御が行なわれる。出力
側の切換スイツ千14′は読み出し状態にある記憶回路
を交互に切換えるためのものであり、出力19には、(
f1/F2)倍に時間圧縮された輝度信号が得られるこ
とがわかる。第4図において、発振器171にて得られ
る周波数f1の標本化パルスの位相を水平同期信号に同
期させることにより、標本化位置が走査線間でずれるこ
とによる画質劣化を防ぐことができる。そのための簡単
な方法は発振器171の代りに復調回路にて作られる副
搬送波F8Oを(m/n)倍に通倍する回路を用いる方
法である(M,nは整数)。例えば、FDM信号がNT
SO信号の場合、副搬送波周波数F8Cは約3.58M
Hzであり、これを2倍に逓倍して、7.16MHzを
標本化周波数f1として用いれば約3.5MHz帯域の
輝度信号が再生できしかも標本化パルスの位相が、水平
同期信号と同期しているため、標本化位置が走査線間で
ずれることなく良好な画質が得られる。周波数F2の読
み出しクロツクパルスに際しても、位相を水平同期信号
と同期させることにより位相ジツタの無い高品質なTD
M信号を得ることができる。f1=7.16MHzとし
た場合、輝度信号を90%に時間圧縮するためにはF2
は約8MHzとなる。水平同期信号に位相同期した周波
数F2のパルスを得る方法としては例えば第8図に示す
ように、F2のN倍の周波数発振器177の出力をカウ
ンタ200にN分の1に分周し、このカウンタを水平同
期信号9によつて走査毎にりセツトしてF2の位相誤差
をN分の1に減少させる方法がある。また、別の方法と
して、第9図に示すように、電圧制御発振器51の出力
を分周器200′にて分周し、位相比較器50にて水平
同期信号と位相を比較し、その出力を電圧制御発振器に
帰還することにより水平同期信号に位相同期した周波数
F2のパルスを得る方法がある。第5図は輝度信号用の
時間圧縮装置の他の実施例を示すプロツク図である。発
振器172は周波数1/Tのクロツクパルスを発生し2
、ゲート回路201および202により、それぞれパル
ス数か同一でパルス間隔が−・部異なる第6図に示すよ
うなパルスφ1およびφ2に交換される。すなわちφ1
は信号を標本化し、記憶回路に書き込むパルスで、輝度
信号期間TYの両端付近ではその間隔が2Tで中心付近
ではTとなるパルスである。φ2は記憶回路の内容を読
み出すクロツクパルスで間隔がTY′期間全域にわたつ
てTであるパルスである。90%の時間圧縮を行なう場
合はφ1はTYO)両端各10%の範囲で間隔2Tのパ
ルスとする。
If the storage circuit is of a digital type, the signal sample values are converted into a combination of binary codes by the encoding circuit 13 before entering the storage circuit, and the storage circuit output is converted into an analog signal by the decoding circuit 16. If the memory circuit is analog type (
For example, capacitor memory and charge-coupled devices are used)
Encoding and decoding circuits are not required. The signal is sampled by a switch circuit 14 for each scanning line by storage circuits 15 and 15.
' is written with a pulse of frequency f1. F
An oscillator 172 with a frequency of 2>f1 is used to read the contents of the memory circuit. That is, the clock pulses of the memory circuits are controlled for each scanning line by the changeover switch 18 so that the memory circuit that is not in the write state is brought into the read state by the pulse of frequency F2. The switching switch 14' on the output side is for alternately switching the memory circuit in the read state, and the output 19 has (
It can be seen that a luminance signal whose time is compressed by f1/F2) times is obtained. In FIG. 4, by synchronizing the phase of the sampling pulse of frequency f1 obtained by the oscillator 171 with the horizontal synchronization signal, it is possible to prevent image quality deterioration due to deviation of the sampling position between scanning lines. A simple method for this purpose is to use, in place of the oscillator 171, a circuit that multiplies the subcarrier F8O produced by the demodulation circuit by (m/n) times (M and n are integers). For example, if the FDM signal is NT
For SO signal, the subcarrier frequency F8C is about 3.58M
Hz, and if this is doubled and 7.16 MHz is used as the sampling frequency f1, a luminance signal in the approximately 3.5 MHz band can be reproduced.Moreover, the phase of the sampling pulse is synchronized with the horizontal synchronizing signal. Therefore, good image quality can be obtained without shifting the sampling position between scanning lines. By synchronizing the phase with the horizontal synchronization signal even when using a readout clock pulse of frequency F2, a high-quality TD with no phase jitter can be achieved.
M signal can be obtained. When f1=7.16MHz, F2 is required to time-compress the luminance signal to 90%.
is approximately 8 MHz. For example, as shown in FIG. 8, a method of obtaining a pulse of frequency F2 that is phase-synchronized with the horizontal synchronizing signal is to divide the output of the frequency oscillator 177, which is N times F2, into a counter 200 by a factor of N, There is a method of reducing the phase error of F2 to 1/N by resetting it for each scan using the horizontal synchronizing signal 9. Alternatively, as shown in FIG. 9, the output of the voltage controlled oscillator 51 is divided by a frequency divider 200', the phase is compared with the horizontal synchronizing signal by a phase comparator 50, and the output is There is a method of obtaining a pulse of frequency F2 that is phase-locked to the horizontal synchronizing signal by feeding it back to the voltage controlled oscillator. FIG. 5 is a block diagram showing another embodiment of the time compression device for luminance signals. Oscillator 172 generates clock pulses with a frequency of 1/T and 2
, gate circuits 201 and 202 respectively exchange the pulses φ1 and φ2 with pulses φ1 and φ2 as shown in FIG. 6 with the same number of pulses and different pulse intervals. That is, φ1
is a pulse that samples the signal and writes it into the memory circuit, and the interval is 2T near both ends of the luminance signal period TY, and is T near the center. φ2 is a clock pulse for reading out the contents of the memory circuit, and the interval is T over the entire period TY'. In the case of 90% time compression, φ1 is set as a pulse with an interval of 2T within a range of 10% at each end (TYO).

すなわち、この装置は輝度信号を不均一に時間圧縮する
もので、画面の周辺では1/2に時間圧縮され、中央付
近では時間圧縮が行なわれない。このよう.な時間圧縮
を行なうと、φ1とφ2の位相関係が一定であるので、
1個の番地指定型メモリ15により時間圧縮を行なうこ
とができるという利点がある。第5図で11,12,1
3,15,16,19は第4図と同じ機能で、メモリ1
5の番地は書き込み番地発生回路213、および読み出
し番地発生回路214の出力がスイツチ回路215にて
切換えられて印加され1個のメモリにより時間圧縮が行
なわれる。この場合にも前述と同様に、クロツクパルス
φ1,φ2は水平同期信号と位相を同期させることによ
りジツタによる両質劣化を防ぐことができる。第7図は
色信号の時間圧縮装置を示すプロツク図である。
That is, this device compresses the time of the luminance signal non-uniformly, so that the time is compressed to 1/2 at the periphery of the screen, and no time is compressed near the center. like this. When time compression is performed, the phase relationship between φ1 and φ2 is constant, so
There is an advantage that time compression can be achieved using one addressable memory 15. 11, 12, 1 in Figure 5
3, 15, 16, 19 have the same functions as in Figure 4, and memory 1
At address No. 5, the outputs of the write address generation circuit 213 and the read address generation circuit 214 are switched and applied by the switch circuit 215, and time compression is performed by one memory. In this case, as in the above case, by synchronizing the phases of the clock pulses φ1 and φ2 with the horizontal synchronizing signal, deterioration in quality due to jitter can be prevented. FIG. 7 is a block diagram showing a color signal time compression device.

構成は第4図とほぼ同じであり、同一機能のものは同一
番号を付けて示してある。Tc′〈(TH−TY)の場
合には記憶回路の書き込みと読み出しの時間を同一水平
期間内で分配することができるので記憶回路(シフトレ
ジスタまたは番地指定型メモリ)は図のように1個で構
成できる。発振器271にて発生した周波数FAのパル
スは信号の標本化と記憶回路の書き込み用クロツクパル
スとして用いられ、発振器272にて発生した周波数F
Bのパルス(FA<FB)は記憶回路の読み出し用クロ
ツクパルスに用いられる。また、図において、21は色
信号、25は同期パルスと定められた時間関係にある時
間圧縮色信号29を得るための遅延回路である。輝度信
号の時間圧縮装置において述べたと同様に色信号の時間
圧縮装置における発振器271および272の代りに、
復調回路で既に作られた副搬送波周波数Fscを(m/
n)倍に逓倍する回路を用いると装置が簡−
2単となる。
The configuration is almost the same as that in FIG. 4, and parts with the same functions are designated with the same numbers. In the case of Tc'〈(TH-TY), the writing and reading times of the memory circuit can be distributed within the same horizontal period, so only one memory circuit (shift register or addressable memory) is required as shown in the figure. It can be composed of The pulse of frequency FA generated by the oscillator 271 is used as a clock pulse for sampling the signal and writing to the memory circuit, and the pulse of frequency F generated by the oscillator 272
The pulse B (FA<FB) is used as a clock pulse for reading the memory circuit. Further, in the figure, numeral 21 is a color signal, and 25 is a delay circuit for obtaining a time-compressed color signal 29 having a predetermined time relationship with the synchronization pulse. Instead of the oscillators 271 and 272 in the chrominance signal time compression device as described in the luminance signal time compression device,
The subcarrier frequency Fsc already created by the demodulation circuit is (m/
n) The device can be simplified by using a circuit that multiplies by a factor of two.
It becomes 2 singles.

例えばFA=百Fsc,fB=2fscとする逓倍回路
を用いればFA,fBなる周波数のパルスは共に水平同
期信号と位相同期しており、色信号のジツタは生じない
。この場合色信号は1/5に時間圧縮され、Fsc=3
.58MHzの場合、約0.71VF−1z帯域の色信
号を再生できる。なお、輝度信号の時間圧縮装置におけ
る読み出しクロツク・パルスよりFA,fBを作り出す
こともできる。また、FA=Fsc/2,fB=2fs
cのような組合せを用いることができる。
For example, if a multiplier circuit with FA=100 Fsc and fB=2 fsc is used, pulses of frequencies FA and fB are both phase synchronized with the horizontal synchronizing signal, and no jitter occurs in the color signal. In this case, the color signal is time-compressed to 1/5, and Fsc=3
.. In the case of 58 MHz, color signals in the approximately 0.71 VF-1z band can be reproduced. Incidentally, FA and fB can also be generated from the readout clock pulse in a luminance signal time compression device. Also, FA=Fsc/2, fB=2fs
Combinations such as c can be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はNTSC信号、従来のTDM信号、および本発
明のTDM信号の波形を比較して示すものである。
FIG. 1 shows a comparison of waveforms of an NTSC signal, a conventional TDM signal, and a TDM signal of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 輝度信号と副搬送波を変調した色信号が周波数多重
されてなるカラーテレビジョン信号を基底帯域の輝度信
号と色信号に復調する手段と、復調された輝度信号を8
0〜90%、色信号を20〜33%にそれぞれ1水平走
査期間の単位で時間圧縮する手段と、時間圧縮された輝
度信号と色信号を時分割多重し、同期信号および色判別
符号を付加した時分割多重カラーテレビジョン信号を得
る手段とからなるカラーテレビジョン信号変換装置。
1. A means for demodulating a color television signal obtained by frequency multiplexing a luminance signal and a chrominance signal modulated with a subcarrier into a baseband luminance signal and a chrominance signal, and a means for demodulating the demodulated luminance signal into a baseband luminance signal and a color signal, and
Means for time-compressing 0 to 90% and color signal to 20 to 33% in units of one horizontal scanning period, time-division multiplexing of the time-compressed luminance signal and color signal, and adding a synchronization signal and color discrimination code. and means for obtaining a time-division multiplexed color television signal.
JP48099932A 1973-09-05 1973-09-05 Color TV signal converter Expired JPS592230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP48099932A JPS592230B2 (en) 1973-09-05 1973-09-05 Color TV signal converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP48099932A JPS592230B2 (en) 1973-09-05 1973-09-05 Color TV signal converter

Publications (2)

Publication Number Publication Date
JPS5050815A JPS5050815A (en) 1975-05-07
JPS592230B2 true JPS592230B2 (en) 1984-01-17

Family

ID=14260495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP48099932A Expired JPS592230B2 (en) 1973-09-05 1973-09-05 Color TV signal converter

Country Status (1)

Country Link
JP (1) JPS592230B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109006A1 (en) * 1981-03-10 1982-09-23 Robert Bosch Gmbh, 7000 Stuttgart METHOD AND CIRCUIT ARRANGEMENT FOR RECORDING AND / OR REPLAYING BROADBAND SIGNALS
JPS58111496A (en) * 1981-12-24 1983-07-02 Victor Co Of Japan Ltd Digital video signal transmitter
JPS58225786A (en) * 1982-06-25 1983-12-27 Nippon Hoso Kyokai <Nhk> High definition television transmission system
NL8301013A (en) * 1983-03-22 1984-10-16 Philips Nv COLOR TELEVISION TRANSMISSION -RESPECTIVE INFORMATION STORAGE SYSTEM WITH TIME MULTIPLEX ENCRYPTION AND SUITABLE INFORMATION AND RECEIVER.
US4516150A (en) * 1983-06-30 1985-05-07 Rca Corporation Worldwide compatible synchronizing signal for accurate time base correction in an analog component interface standard
US4575749A (en) * 1983-07-28 1986-03-11 Rca Corporation Component companding in a multiplexed component system

Also Published As

Publication number Publication date
JPS5050815A (en) 1975-05-07

Similar Documents

Publication Publication Date Title
JPS63164592A (en) Television signal recorder
US5070395A (en) Television signal system conversion apparatus
GB2139848A (en) Clock pulse generating circuit in a color video signal reproducing apparatus
JPS62501951A (en) Compatibility of widescreen and non-widescreen deviation transmissions
US4516150A (en) Worldwide compatible synchronizing signal for accurate time base correction in an analog component interface standard
GB2139847A (en) Color video signal recording and reproducing apparatus
GB2139453A (en) Colour video signal transmitting system
US4152719A (en) Video picture compression
JPS592230B2 (en) Color TV signal converter
EP0145376B1 (en) Carrier chrominance signal recording and/or reproducing apparatus
EP0138573B1 (en) Multiplexed color video signal recording and reproducing apparatus
US5557426A (en) Image information signal processing apparatus
JPS5923149B2 (en) High definition broadcast converter
EP0524618B1 (en) Image signal processing device
EP0140706B1 (en) Jitter-immune time expansion for time-compressed line-sequential video signals
US3048652A (en) Color television recording system and method
JPH0588039B2 (en)
JP2554373B2 (en) Frequency conversion circuit
US4692814A (en) Jitter-immune time expansion for time-compressed line-sequential video signals
JPS5831793B2 (en) Kotai Iki TV Jiyoung Shingoden Souhoshiki
JPS5923150B2 (en) High definition broadcast converter
JP3322057B2 (en) EDTV2 signal processing device
JPS5832835B2 (en) Carrier signal forming circuit with line offset
JP2624533B2 (en) Image signal transmission system with compatibility
JPH0214835B2 (en)