JPS59222291A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPS59222291A
JPS59222291A JP9382283A JP9382283A JPS59222291A JP S59222291 A JPS59222291 A JP S59222291A JP 9382283 A JP9382283 A JP 9382283A JP 9382283 A JP9382283 A JP 9382283A JP S59222291 A JPS59222291 A JP S59222291A
Authority
JP
Japan
Prior art keywords
boron
resin bed
selective adsorption
stage
passed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9382283A
Other languages
Japanese (ja)
Other versions
JPH0368755B2 (en
Inventor
Fujio Koide
富士夫 小出
Hiroaki Terayama
寺山 弘晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Original Assignee
Nippon Rensui Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co filed Critical Nippon Rensui Co
Priority to JP9382283A priority Critical patent/JPS59222291A/en
Publication of JPS59222291A publication Critical patent/JPS59222291A/en
Publication of JPH0368755B2 publication Critical patent/JPH0368755B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To simplify operation for regenerating adsorbing resins and to shorten the time for regeneration by passing waste water contg. boron and COD component through a salt type resin bed for selective adsorption for salt type boron in the fore stage and a resin bed for selective adsorption of free boron in series. CONSTITUTION:Waste water 1 of stack gas desulphurization is in the first stage through a fore stage ion exchange tower 6 packed with resin 2 for selecive adsorption for salt type boron. In this stage, there is no necessity for the waste water 1 to adjust its pH; the waste water is passed as it is used. Only the COD component in the waste water 1 is removed by exchanging ions by the resin 2 for selective adsorption for salt type boron in the ion exchange tower 6. Further, discharged water 3 is passed through a succeeding ion exchange tower 7 packed with the resin 4 for selective adsorption for free boron without performing adjustment of pH. Boron is removed by the ion exchange with the resin 4 in the ion exchange tower 7.

Description

【発明の詳細な説明】 本発明は排煙脱硫工程から排出されるホウ素とOOD成
分を含む廃水の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating wastewater containing boron and OOD components discharged from a flue gas desulfurization process.

石炭、石油を燃焼させた際に発生する燃焼ガスは大気汚
染防止のため排煙脱硫装置に導き、処理したのち放出し
ている。この排煙脱硫装置では燃焼ガスを吸収液や吸収
剤と接触させて大気汚染の要因となる汚染物を除去して
いるが、その際ホウ素とOOD成分を含む廃水(以下排
煙脱硫廃水という)が排出される。この排煙脱硫廃水中
のホウ素は主としてホウ酸、ホウ7ツ化物等であり、ま
たOOD成分は主としてイオウ酸化物であるが、これら
は凝集、f過、活性炭生物処理、オゾン酸化等の処理を
行なってもなお数十から数百ppm含まれており、その
まま河川等に放流することは公害防止上好ましいことで
はない。
To prevent air pollution, the combustion gases generated when coal and oil are burned are led to a flue gas desulfurization system, treated, and then released. This flue gas desulfurization equipment brings combustion gas into contact with an absorbent or absorbent to remove pollutants that cause air pollution, but in this process wastewater containing boron and OOD components (hereinafter referred to as flue gas desulfurization wastewater) is discharged. The boron in this flue gas desulfurization wastewater is mainly boric acid, boron heptadide, etc., and the OOD components are mainly sulfur oxides, but these cannot be treated by coagulation, f-filtration, activated carbon biological treatment, ozone oxidation, etc. Even if this is done, it still contains tens to hundreds of ppm, and it is not desirable from the viewpoint of pollution prevention to discharge it directly into rivers or the like.

そこで、このような排煙脱硫廃水の処理方法のひとつに
弱塩基性アニオン交換樹脂を使用する処理方法が提案さ
れている。
Therefore, as one method for treating such flue gas desulfurization wastewater, a treatment method using a weakly basic anion exchange resin has been proposed.

すなわち、この処理方法においては、通液工程は排煙脱
硫廃水にアルカリを飽加しpHを9次いでその流出液の
pHを7以上に調整し、続いて塩形(S04形)弱塩基
性アニオン交換樹脂床に通液してCOD成分を交換吸着
し除去している。一方、通液工程により機能の低下した
弱塩基性アニオン交換樹脂床の再生工程はホウ素を交換
吸着した遊離形弱塩基件アニオン交換樹脂床には鉱酸な
、COD成分を交換吸着した地形弱塩基性アニオン交換
樹脂床にはアルカリをそれぞれ通薬し、さらに新規の酸
あるいは遊離形弱塩基性アニオン交換樹脂床から排出さ
れる廃液を塩形弱塩基性アニオン交換樹脂床に、一方新
規のアルカリするいは塩形弱塩基性アニオン交換樹脂床
からV[出される廃液を遊離形弱塩基性アニオン交換樹
脂床にそれぞれ通薬して再生を行なっていた。
That is, in this treatment method, the liquid passing step saturates the flue gas desulfurization wastewater with alkali to bring the pH to 9, then adjusts the pH of the effluent to 7 or more, and then injects salt form (S04 form) weakly basic anions. The liquid is passed through an exchange resin bed to exchange adsorb and remove COD components. On the other hand, in the regeneration process of the weakly basic anion exchange resin bed whose function has deteriorated due to the liquid passage process, the anion exchange resin bed is a free form weak base that has exchanged and adsorbed boron. An alkali is passed through each of the acid anion exchange resin beds, and a new acid or waste liquid discharged from the free weak base anion exchange resin bed is passed through the salt weak base anion exchange resin bed, and a new alkali is passed through the bed. Alternatively, the waste liquid discharged from the salt-form weakly basic anion-exchange resin bed was passed through the free-form weakly basic anion-exchange resin bed for regeneration.

このように従来の弱塩基性アニオン交換樹脂による処理
方法においては、通液工程では酸とアルカリを使用して
排煙脱硫廃水のpHを調整する操作が必要であり、かつ
再生工程では酸あるいはアルカリを通薬し、ホウ素ある
いはOOD成分を脱離後さらにアルカリあるいは酸を通
薬し、弱塩基性アニオン交換樹脂を遊離形あるいは塩形
にする必要があり、通液工程及び再生工程が甚だ煩雑で
あった。
As described above, in the conventional treatment method using a weakly basic anion exchange resin, it is necessary to adjust the pH of flue gas desulfurization wastewater using an acid and an alkali in the liquid passage step, and an operation in which an acid or alkali is used in the regeneration step. After passing through the resin to remove boron or OOD components, it is necessary to pass through the resin with an alkali or acid to convert the weakly basic anion exchange resin into a free form or a salt form, and the process of passing through the resin and regenerating it is extremely complicated. there were.

そこで、本発明者等は弱塩基性アニオン交換樹脂による
処理方法におけるかかる欠点を解決することを目的とし
排煙脱硫廃水のイオン交換樹脂による処理方法について
鋭意検討した結果、ホウ素選択吸着樹脂がホウ素除去能
力のみならずすぐれたOOD成分除去能力をも有してい
ることを発見し本発明に到達した。
Therefore, the present inventors conducted intensive studies on a treatment method using an ion exchange resin for flue gas desulfurization wastewater with the aim of solving the drawbacks of the treatment method using a weakly basic anion exchange resin. The present invention was achieved by discovering that it not only has excellent OOD component removal ability but also has excellent OOD component removal ability.

すなわち、本発明はホウ素とCOD成分を含む廃水を前
段の地形ホウ素選択吸着樹脂床、後段の遊離形ホウ素選
択吸着樹脂床に直列に通液 3− することを特徴とする廃水の処理方法及び該廃水の通液
により機能が低下したホウ素選択吸着樹脂床を再生する
にあたり、前段の塩形ホウ素選択吸着樹脂床にはアルカ
リ溶液を通薬して遊離形ホウ素選択吸着樹脂床に再生し
、後段の遊離形ホウ素選択吸Mw脂床にけ鉱酸溶液を通
薬して塩形ホウ素選択吸着樹脂床に再生し、次回の通液
は前記再生後の塩形ホウ素選択吸着樹脂床を前段に、遊
離形ホウ素選択吸着樹脂床を後段にして行うことを特徴
とする廃水の処理方法を要旨とするものである。
That is, the present invention provides a wastewater treatment method characterized by passing wastewater containing boron and COD components in series through a topographical boron selective adsorption resin bed in the first stage and a free boron selective adsorption resin bed in the second stage. To regenerate a boron selective adsorption resin bed whose function has deteriorated due to passing wastewater, an alkaline solution is passed through the salt form boron selective adsorption resin bed in the previous stage to regenerate it into a free boron selective adsorption resin bed, and then to regenerate it into a free boron selective adsorption resin bed. Free form boron is selectively adsorbed by passing the mineral acid solution through the Mw oil bed to regenerate the salt form boron selectively adsorbing resin bed, and the next time the liquid is passed, the salt form boron selectively adsorbing resin bed after the regeneration is placed in the front stage, and the free form boron is selectively adsorbed. The gist of the present invention is a method for treating wastewater, which is characterized in that the process is carried out using a resin bed that selectively adsorbs boron.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

排煙脱硫廃水は多量の懸濁物、金属塩、有機物等を含有
しており、そのpHは2〜A程度であり、イオン交換塔
に通液する前にあらかじめ凝集、e過、活性炭、生物処
理、オゾン酸化等の通常の処理手段により除去可能な汚
濁、汚染物を除去する。このような前処理を行なった排
煙脱硫廃水は以下のようにしてイオン交換塔に通液工程
を行う。図−7は本発明の実施態様の 4− 一例を示す説明図である。排煙脱硫廃水/けまず前段の
塩形のホウ素選択吸着樹脂−が充填されたイオン交換塔
乙に通液する。その際排煙脱硫廃水/はあえてpH調整
する必要はなくそのまま通液する。イオン交換塔6では
塩形のホウ素選択吸着樹脂λによシ排煙脱硫廃水中のO
OD成分のみがイオン交換され除去される。
Flue gas desulfurization wastewater contains a large amount of suspended solids, metal salts, organic substances, etc., and its pH is about 2 to A. Before passing it through the ion exchange tower, it is pre-coagulated, e-filtered, activated carbon, and biological. Remove contaminants and contaminants that can be removed by conventional treatment methods such as treatment, ozone oxidation, etc. The flue gas desulfurization wastewater subjected to such pretreatment is passed through an ion exchange tower as follows. FIG. 7 is an explanatory diagram showing an example of the embodiment of the present invention. Flue gas desulfurization wastewater/skeletons are first passed through the ion exchange tower B filled with salt-type boron selective adsorption resin. At this time, there is no need to adjust the pH of the flue gas desulfurization wastewater and it is passed through as is. In the ion exchange tower 6, O in the flue gas desulfurization wastewater is removed by the salt-type boron selective adsorption resin λ.
Only the OD component is ion-exchanged and removed.

すなわち、排煙脱硫廃水中のCOD成分が塩形のホウ素
選択吸着樹脂に対し、イオン交換性を示す要因は不明で
あるが、塩形のホウ素選択吸着樹脂のOOD成分及びホ
ウ素に対する選択性はOOD成分の方がはるかに大きい
ために00D成分のみがイオン交換され、ホウ素は流出
水3と共に流出する。また流出水3中にはイオン交換し
たSO,、Ol等の酸成分が含捷れるので通常pHll
−!r程度である。
In other words, the reason why the COD component in the flue gas desulfurization wastewater exhibits ion exchange properties with respect to the salt-form boron selective adsorption resin is unknown, but the OOD component and boron selectivity of the salt-form boron selective adsorption resin are OOD Since the components are much larger, only the 00D component is ion-exchanged, and the boron flows out together with the effluent water 3. In addition, the effluent water 3 contains acid components such as ion-exchanged SO, OL, etc., so the pH is usually
-! It is about r.

次いで、流出水3はpHR整することなく後段の遊離形
のホウ素選択吸着樹脂ダが充填されたイオン交換塔7に
通液する。イオン交換塔7では遊離形のホウ素選択吸着
樹脂ダによシホウ素がイオン交換され除去される。すな
わち、遊離形のホウ素選択吸着樹脂りはホウ素に対して
強い選択吸着能を持っているが、流出水3のpHの低い
方がさらにその選択性は増大するが前述したように流出
水3のpH1d低いのでホウ素は効率良くイオン交換さ
れ除去される。その際、イオン交換したOH−によp 
so、−、B−’等の酸成分も中和されるので、処理水
Sははぼ中性付近となりそのまま河川に放流できる。通
液工程における排煙脱硫廃水/の通水速度はイオン交換
塔乙及び7ともSV左〜25 hr−’程度で良い。
Next, the effluent water 3 is passed through the ion exchange column 7 filled with a free boron selective adsorption resin at the subsequent stage without adjusting the pH value. In the ion exchange tower 7, boron is ion-exchanged and removed by the free boron selective adsorption resin. In other words, the free boron selective adsorption resin has a strong selective adsorption ability for boron, but the lower the pH of the effluent water 3, the more its selectivity increases; Since the pH is 1 d lower, boron is efficiently ion-exchanged and removed. At that time, p
Since acid components such as so, -, and B-' are also neutralized, the treated water S becomes nearly neutral and can be discharged into the river as it is. The flow rate of the flue gas desulfurization waste water in the liquid flow step may be approximately 25 hr-' from the left of the SV for both ion exchange towers B and 7.

上述のような通液工程においてイオン交換塔乙の地形の
ホウ素選択樹脂コがCOD成分で飽和しイオン交換能力
が低下し、処理水左にCOD成分の漏出が検知されると
通液を停止し以下のようにして再生工程を行う。まず再
生剤の通薬着樹脂を逆洗し沈静する。次いで再生剤を通
薬する。塩形のホウ素選択吸着樹脂−が充填され00D
成分をイオン交換したイオン交換塔乙には再生剤として
アルカリ溶液を通薬してイオン交換したCOD成分を脱
離させ遊離形即ちOH形にする。杓生剤のアルカリ溶液
は水酸化カリウム、水酸化ナトリウム等のアルカリをそ
の濃度7〜g重量係とし、再生レベルi、to〜/AO
I−アルカ+)/It−樹脂 でSV、2〜6hr’程
度で通薬する。
In the above-mentioned liquid passage process, the boron selective resin in the topography of ion exchange tower B becomes saturated with COD components and the ion exchange capacity decreases, and when leakage of COD components into the treated water is detected, the liquid passage is stopped. The regeneration process is performed as follows. First, the regenerant-adherent resin is backwashed and allowed to settle. Then, a regenerant is passed through it. Filled with salt-form boron selective adsorption resin 00D
An alkaline solution is passed through the ion exchange tower B as a regenerating agent to remove the ion-exchanged COD components and convert them into free form, that is, OH form. The alkaline solution of the rejuvenating agent contains an alkali such as potassium hydroxide or sodium hydroxide at a concentration of 7 to 7 g, and the regeneration level is i, to ~/AO.
I-alka+)/It-resin is administered at SV for about 2 to 6 hr'.

遊離形のホウ未選択樹脂グが充填されホウ素をイオン交
換したイオン交換塔7には再生剤として鉱酸溶液を通薬
し7てイオン交換したホウ素を脱離させ塩形即ちSO,
型、Ol型等にする。
A mineral acid solution is passed through the ion exchange column 7 filled with unselected free boron resin and boron is ion-exchanged as a regenerating agent to remove the ion-exchanged boron and convert it into salt form, i.e., SO,
Make it into a type, Ol type, etc.

再生剤の鉱酸溶液は塩酸、硫酸等の鉱酸なその濃度を0
.!−,2左重tt ’Zとし、再生レベル10〜!i
′OOg−鉱酸/l−樹脂でS V 2〜A hr−’
程度で通薬する。
The mineral acid solution used as a regenerant is a mineral acid such as hydrochloric acid or sulfuric acid whose concentration is 0.
.. ! -, 2 left heavy tt 'Z, playback level 10~! i
'OOg-mineral acid/l-resin S V 2~A hr-'
Administer the medicine in moderation.

再生剤の通薬後は、各イオン交換塔に上水、工業用水等
を流通し再生剤を押出し洗浄を行う。
After passing the regenerant, clean water, industrial water, etc. is passed through each ion exchange tower to extrude and wash the regenerant.

このような再生工程後はイオン交換塔乙のホウ未選択吸
着樹脂ユは塩形から遊離形となり、イーツー オン交換塔7のホウ素選択樹脂yは遊離形から塩形とな
っているので、次回の通水工程はイオン交換塔7を前段
にイオン交換塔6を後段にして再び通水工程を行う。そ
して機能が低下したらイオン交換塔7にアルカリ溶液、
イオン交換塔6に鉱酸溶液を通薬して再生工程を行い、
以降同様にして通液工程、再生工程を行う。
After such a regeneration process, the boron-unselected adsorption resin y in the ion exchange tower B changes from the salt form to the free form, and the boron selection resin y in the ion exchange tower 7 changes from the free form to the salt form. In the water process, the water passing process is performed again with the ion exchange tower 7 in the first stage and the ion exchange tower 6 in the latter stage. When the function deteriorates, an alkaline solution is added to the ion exchange tower 7.
A regeneration process is performed by passing a mineral acid solution through the ion exchange tower 6,
Thereafter, the liquid passing step and regeneration step are performed in the same manner.

前記再生工程で排出される再生廃液はホウ素、00D成
分を多量に含んでいるので蒸発濃縮、湿式燃焼等により
処理する。
Since the regenerated waste liquid discharged in the regeneration step contains a large amount of boron and 00D components, it is treated by evaporation concentration, wet combustion, etc.

以上説明したように本発明は塩形のホウ素選択吸着樹脂
床を前段に、遊離形のホウ素選択吸着樹脂床を後段にし
て排煙脱硫廃水のpHを調整することなく、通液工程を
行い、かつ再生工程では前段の塩形のホウ素選択吸着樹
脂床は遊離形に、後段の遊離形ホウ素選択吸着樹脂床は
塩形に再生されるため、次回の通液工程では前回の通液
工程における後段を前段に、前段を後段に用いるように
して上記通液工程と再生工程とを交互にくりかえすもの
であシ、従来の弱塩 8− 基性アニオン交換樹脂による処理の場合に必要としてい
た通液工程における排煙脱硫廃水のpHを調整するため
のpH調整工程を省くことができ、さらに再生工程にお
ける遊離形の弱塩基性アニオン交換樹脂を塩形にするた
めの鉱酸溶液の通薬工程あるいけ塩形の弱塩基性アニオ
ン交換樹脂を遊離形にするためのアルカリ溶液の通薬工
程を省くことができるので、再生操作が簡略化でき、か
つ再生時間の短縮化と共に再生剤の使用量を大巾に低下
させることができる。
As explained above, the present invention uses a salt-type boron selective adsorption resin bed in the first stage and a free-type boron selective adsorption resin bed in the latter stage, and performs a flow process without adjusting the pH of flue gas desulfurization wastewater. In addition, in the regeneration process, the salt-form boron selective adsorption resin bed in the first stage is regenerated into the free form, and the subsequent free-form boron selective adsorption resin bed is regenerated into the salt form. The above-mentioned liquid passing step and regeneration step are alternately repeated by using the first stage as the first stage and the first stage as the second stage. The pH adjustment step for adjusting the pH of flue gas desulfurization wastewater in the process can be omitted, and there is also a step of passing a mineral acid solution in the regeneration step to convert the free weakly basic anion exchange resin into a salt form. Since the step of passing an alkaline solution through which the salt-type weakly basic anion exchange resin is made into a free form can be omitted, the regeneration operation can be simplified, the regeneration time can be shortened, and the amount of regenerant used can be reduced. It can be lowered to a large width.

本発明に使用するホウ素選択吸着樹脂はスチレンとジビ
ニルベンゼンとの共重合物をクロルメチル化シて、これ
にメチルソルビチールアミンを反応させた高分子化合物
であって交換基としてN−メチルグルカミンを有する。
The boron selective adsorption resin used in the present invention is a polymer compound obtained by chloromethylating a copolymer of styrene and divinylbenzene and reacting it with methylsorbitylamine, and N-methylglucamine is used as an exchange group. have

アンバーライト(登録商標)工RA−7?J、ダイヤイ
オン(三菱化成工業株式会社、登録商標)ORB−0,
2等あるいはこれらと同等のものを使用することができ
る。
Amberlight (registered trademark) RA-7? J, Diaion (Mitsubishi Chemical Industries, Ltd., registered trademark) ORB-0,
2 or equivalents can be used.

以下に本発明な実施例及び比較例により説明する。The present invention will be explained below using Examples and Comparative Examples.

実施例 内径/コ龍、高さ1000Hのガラス製カラムA、Bに
ホウ素選択吸着樹脂ダイヤイオン(三菱化成工業株式会
社、登録商標)ORBo、2 gomlを各々に充填し
、カラムAには10%硫酸SOθmlをS V iAr
 hr−で通薬し、塩形(S04形)ホウ素選択吸着樹
脂床にした。
Example Glass columns A and B with an inner diameter of 1000H and a height of 1000H were each filled with 2 goml of the boron selective adsorption resin Diaion (Mitsubishi Chemical Corporation, registered trademark) ORBo, and column A was filled with 10% S V iAr of sulfuric acid SOθml
hr-, and a salt form (S04 form) boron selective adsorption resin bed was prepared.

一方力ラムBには、g係水酸化ナトリウム500m1を
8 V 、2j hr−’で通薬し、遊離形(OR形)
ホウ素選択吸着樹脂床にした。各カラムに水道水を流通
して薬剤の押出、洗浄後衣−/に示す組成を有する排煙
脱硫廃水をS V / 0’″゛でカラムAからカラム
Bの順に通液した。カラムBから流出する処理水のOO
D成分、ホウ素の漏出濃度曲線は図−コのようであった
On the other hand, 500 ml of g-modified sodium hydroxide was passed through the force ram B at 8 V and 2j hr-' to form a free form (OR type).
A selective boron adsorption resin bed was used. Tap water was passed through each column to extrude the drug, and after washing, the flue gas desulfurization wastewater having the composition shown in SV/0''' was passed in order from column A to column B. From column B. Outflow treated water OO
The leakage concentration curve of component D, boron, was as shown in Figure 1.

カラムBからの処理水のCOD濃度が!i ppmをこ
えたとき通液を停止し再生を行なった。通液停止後水道
水を流通してカラムA及びBを逆洗した後沈静した。
COD concentration of treated water from column B! When it exceeded i ppm, the flow of liquid was stopped and regeneration was performed. After the liquid flow was stopped, tap water was passed through the column to backwash columns A and B, and then the column was allowed to settle.

次いでカラムAにはざ俤水酸化ナトリウム75m1 ’
ff S V 、2J hr ’で通薬し、COD成分
を脱離させ遊離形に再生した。
Next, add 75ml of sodium hydroxide to column A.
ff S V , 2 J hr' to remove the COD component and regenerate it into a free form.

一方、カラムBには10qlr硫酸ざOmlをSVコ、
j hr−’で通薬し、ホウ素を脱離させ塩形に再生し
た。
On the other hand, in column B, add 10qlr sulfuric acid,
The solution was passed through the solution at Jhr-' to eliminate boron and regenerate it into a salt form.

通薬後裔カラムに水道水を流通して薬剤の押出・洗浄後
再び排煙脱硫廃水の通水に供した。そこで今回は表−/
の排煙脱硫廃水をカラムBからカラムAの順に通液した
。その時のカラムAから流出する処理水のCOD成分、
ホウ素の漏出濃度曲線は前回とほぼ同じであった。
Tap water was passed through the drug-passing descendant column to extrude and wash the drug, and then the flue gas desulfurization wastewater was passed through again. So this time, the table -/
Flue gas desulfurization wastewater was passed from column B to column A in this order. COD components of the treated water flowing out from column A at that time,
The boron leakage concentration curve was almost the same as the previous time.

図−一において、縦軸は漏出濃度(ppm )、横軸は
処理水蓋(ml )を示し、図中コ/はCOD成分、コ
コはホウ素の漏出濃度曲線を示す。
In Figure 1, the vertical axis shows the leakage concentration (ppm), the horizontal axis shows the treated water cap (ml), and in the figure, / shows the COD component, and here shows the leakage concentration curve of boron.

11− 表−/ 比較例 実施例で用いたカラムを使用して、従来法の弱塩基性ア
ニオン交換樹脂による場合の遊離形樹脂床から塩形樹脂
床の順に通液し実施例と比較した。実施例と同一条件、
同一操作により、カラムAを塩形(S04形)ホウ素選
択吸着樹脂床、カラムBを遊離形(OH形)ホウ素選択
吸着樹脂床にした。各カラムには水道水を流通して薬剤
の押出洗浄後、表−/に示す組成を有する排煙脱硫廃水
を実施例と同一条件でカラムBからカラムAの順に通液
した。
11 - Table - Comparative Example Using the column used in the example, liquid was passed from the free resin bed to the salt resin bed in order of the conventional method using a weakly basic anion exchange resin and compared with the example. Same conditions as the example,
By the same operation, column A was made into a salt-form (S04 form) boron selective adsorption resin bed, and column B was made into a free-form (OH form) boron selective adsorption resin bed. Tap water was passed through each column to extrude and wash the chemicals, and then flue gas desulfurization wastewater having the composition shown in Table 1 was passed in order from column B to column A under the same conditions as in the example.

カラムAから流出する処理水のCOD成分及び12− ホウ素の漏出濃度曲線は図−3のようであった。COD components of treated water flowing out from column A and 12- The leaked boron concentration curve was as shown in Figure 3.

図中37はOOD成分、32はホウ素の陶出濃度曲線を
示すが、カラムBからの流出水のOH−によりカラムA
の塩形ホウ素選択吸着樹脂床が一部遊離形ホウ素選択吸
着樹脂床に変化するためOOD成分の漏出濃度が著しく
増大した。
In the figure, 37 shows the OOD component, and 32 shows the concentration curve of boron.
Because the salt-form boron selective adsorption resin bed in the sample was partially converted into a free-form boron selective adsorption resin bed, the leakage concentration of OOD components increased significantly.

【図面の簡単な説明】[Brief explanation of the drawing]

図−/は本発明の実施態様の一例のフローを示す説明図
であシ、図中 / ・・・排煙脱硫廃水、  コ・・・ホウ素選択吸着
樹脂3・・・流出水、  グ・・・ホウ素辿択吸着樹脂
j・・・処理水、  6・・・イオン交換塔り・・・イ
オン交換塔 を示す。 図−一は本発明法により排煙脱硫廃水を処理した際のC
OD成分及びホウ素の漏出濃度曲線であり、図中 1:ll・・−00D成分、 −一・・−ホウ素を示す
。 図−3は従来法の通液順序によシ排煙脱硫廃水を処理し
た際のOOD成分及びホウ素の漏出濃度曲線であり、図
中 3 / −−−00D成分、 3 u @−ホウ素を示
す。 出 願 人 日本錬水株式会社 代 理 人  弁理士 長谷用  − ほか7名 図−1
Figure - / is an explanatory diagram showing the flow of an example of the embodiment of the present invention. - Boron selective adsorption resin j... Treated water, 6... Ion exchange tower... Indicates an ion exchange tower. Figure 1 shows C when flue gas desulfurization wastewater is treated using the method of the present invention.
It is a leakage concentration curve of OD component and boron, and in the figure, 1:ll...-00D component, -1...-boron are shown. Figure 3 shows leakage concentration curves of OOD components and boron when flue gas desulfurization wastewater is treated according to the conventional liquid flow order. . Applicant: Nippon Rensui Co., Ltd. Agent: Patent attorney Mr. Hase - 7 others Figure-1

Claims (2)

【特許請求の範囲】[Claims] (1)  ホウ素とCOD成分を含む廃水を前段の塩形
ホウ素選択吸着樹脂床、後段の遊離形ホウ素選択吸着樹
脂床に直列に通液することを特徴とする廃水の処理方法
(1) A method for treating wastewater, which comprises passing wastewater containing boron and COD components in series through a resin bed for selective adsorption of salt boron in the first stage and a resin bed for selective adsorption of free boron in the latter stage.
(2)  ホウ素とOOD成分を含む廃水を前段の塩形
ホウ素選択吸着樹脂床、後段の遊離形ホウ素選択吸着樹
脂床に直列に通液し、該廃水の通液により機能が低下し
たホウ素選択吸着樹脂床を再生するにあたり、前段の塩
形ホウ素選択吸着樹脂床にはアルカリ溶液を通薬して遊
離形ホウ素選択吸着樹脂床に書生し、後段の遊離形ホウ
素選択吸着樹脂床には鉱酸浴液を通薬して塩形ホウ素選
択吸着樹脂床に再生し、次回の通液は前記再生後の地形
ホウ素選択吸着樹脂床を前段に、遊離形ホウ素選択吸着
樹脂床を後段にして行うことを特徴とする廃水の処理方
法。
(2) Wastewater containing boron and OOD components is passed in series through a salt-form boron selective adsorption resin bed in the first stage and a free-form boron selective adsorption resin bed in the latter stage, and selective adsorption of boron whose function has decreased due to the passage of the wastewater. To regenerate the resin bed, an alkaline solution is passed through the resin bed that selectively adsorbs salt-form boron in the first stage to transfer it to the resin bed that selectively adsorbs free boron, and a mineral acid bath is applied to the resin bed that selectively adsorbs free boron in the latter stage. The solution is passed through to regenerate the salt form boron selective adsorption resin bed, and the next time the liquid is passed, the topographical boron selective adsorption resin bed after the regeneration is placed in the first stage and the free form boron selective adsorption resin bed is placed in the second stage. Characteristic wastewater treatment method.
JP9382283A 1983-05-27 1983-05-27 Treatment of waste water Granted JPS59222291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9382283A JPS59222291A (en) 1983-05-27 1983-05-27 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9382283A JPS59222291A (en) 1983-05-27 1983-05-27 Treatment of waste water

Publications (2)

Publication Number Publication Date
JPS59222291A true JPS59222291A (en) 1984-12-13
JPH0368755B2 JPH0368755B2 (en) 1991-10-29

Family

ID=14093088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9382283A Granted JPS59222291A (en) 1983-05-27 1983-05-27 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPS59222291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115806372A (en) * 2023-02-03 2023-03-17 北京华夏大禹环保有限公司 Method for deeply removing high-concentration nitrate nitrogen in wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115806372A (en) * 2023-02-03 2023-03-17 北京华夏大禹环保有限公司 Method for deeply removing high-concentration nitrate nitrogen in wastewater

Also Published As

Publication number Publication date
JPH0368755B2 (en) 1991-10-29

Similar Documents

Publication Publication Date Title
US4479877A (en) Removal of nitrate from water supplies using a tributyl amine strong base anion exchange resin
US20110155669A1 (en) Method for trace phosphate removal from water using composite resin
Boening et al. Activated carbon versus resin adsorption of humic substances
Zhao et al. Selective removal and recovery of phosphate in a novel fixed-bed process
Calmon Recent developments in water treatment by ion exchange
JP6437874B2 (en) Method and apparatus for regenerating ion exchange resin
JP4292366B2 (en) Anion exchanger regeneration method and anion exchanger regeneration agent
JPS59222291A (en) Treatment of waste water
US2373632A (en) Removal of fluorine from water
JP3963100B2 (en) Method and apparatus for treating vanadium-containing water
JP3963101B2 (en) Vanadium-containing water ion exchange method and apparatus
JP2891790B2 (en) Regeneration method of anion exchange resin
JPH0371199B2 (en)
JPH0140678B2 (en)
RU2328333C2 (en) Polyfunctional filtrating composition
US7727405B2 (en) Method for demineralizing condensate
JPH045516B2 (en)
JPH0735242B2 (en) Crude hydrochloric acid purification method
JP2941121B2 (en) Ultrapure water production equipment
JP5093292B2 (en) Method for treating vanadium-containing water
JP3951456B2 (en) Pure water production equipment
JPS621307B2 (en)
JP2742975B2 (en) Regeneration method of ion exchange device
JP3963599B2 (en) Acid component removal method
JP2941988B2 (en) Removal method of nitrate ion in raw water