JPS59221870A - Floating slider - Google Patents

Floating slider

Info

Publication number
JPS59221870A
JPS59221870A JP9624283A JP9624283A JPS59221870A JP S59221870 A JPS59221870 A JP S59221870A JP 9624283 A JP9624283 A JP 9624283A JP 9624283 A JP9624283 A JP 9624283A JP S59221870 A JPS59221870 A JP S59221870A
Authority
JP
Japan
Prior art keywords
floating
slider
floating slider
air
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9624283A
Other languages
Japanese (ja)
Inventor
Shigehisa Suzuki
栄久 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9624283A priority Critical patent/JPS59221870A/en
Publication of JPS59221870A publication Critical patent/JPS59221870A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B21/00Head arrangements not specific to the method of recording or reproducing
    • G11B21/16Supporting the heads; Supporting the sockets for plug-in heads
    • G11B21/20Supporting the heads; Supporting the sockets for plug-in heads while the head is in operative position but stationary or permitting minor movements to follow irregularities in surface of record carrier
    • G11B21/21Supporting the heads; Supporting the sockets for plug-in heads while the head is in operative position but stationary or permitting minor movements to follow irregularities in surface of record carrier with provision for maintaining desired spacing of head from record carrier, e.g. fluid-dynamic spacing, slider

Landscapes

  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Abstract

PURPOSE:To obtain minute floating distance stably by providing a groove whose air flowing-in end is opened along the longitudinal direction of a floating face and flowing-out end is closed. CONSTITUTION:A groove 14 that is opened in an air flowing-in end tapered face 13 and is closed in the opposite side which is an air flowing-out end 15 along the longitudinal direction of a floating face 12 of a floating slider. Accordingly, the pressure distribution on the floating face 12 becomes a curve Y, that is, high at the flowing-in end B, relatively low at the flowing-out end C, and at the intermediate part pressure is reduced. Therefore, the air film rigidity in the direction of pitching becomes high, and the danger of contact etc. is reduced remarkably, and the stable floating is obtained. The total of pressure generated as a whole is reduced without marring stability and the floating distance can be reduced than before.

Description

【発明の詳細な説明】 本発明は磁気ヘッドを保持する浮動スライダ、特に浮動
面の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a floating slider that holds a magnetic head, and particularly to the structure of the floating surface.

磁気記憶装置では記録媒体の走行によって住する空気流
の流体力を利用して記録媒体から微小な間隙で浮上する
浮動スライダが用いられている。
2. Description of the Related Art Magnetic storage devices use a floating slider that floats above a recording medium through a small gap by using the fluid force of the airflow created by the traveling of the recording medium.

第1図は従来の上記浮動スライダにおける平面図、第2
図は第1図に示した浮動スライダの側面図である。各図
において、(1)は浮動スライダであり、その両側に記
録媒体の移動方向に延長する浮動面(2)が形成される
。浮動面(2)の空気流入端にはテーパ面(3)が形成
される。(4)は浮動スライダ(1)の空気流入端、(
5)は浮動スライダ(1)の空気流出端、(6)は負荷
ばねである。上記浮動面(2)は浮動スライダ(1)の
記録媒体に対向する面に形成されるもので、記録媒体の
運動によって生ずる空気流により正圧を発生させる。上
記空気流の流体力は負荷ばね(6)によって弾性的に加
えられている荷重とつり合うことに7なる。磁気記憶装
置において高密度大容量の記録を達成し、データ処理の
信頼度を高めるためには、磁気ヘッドと記録媒体との分
離距離すなわち浮上距離をできるだけ微小にしかも安定
に保って、磁気ヘッドの電磁変換性能を向上させること
が重要である。
Figure 1 is a plan view of the conventional floating slider, and Figure 2 is a plan view of the conventional floating slider.
The figure is a side view of the floating slider shown in FIG. 1. In each figure, (1) is a floating slider, and floating surfaces (2) extending in the direction of movement of the recording medium are formed on both sides of the slider. A tapered surface (3) is formed at the air inflow end of the floating surface (2). (4) is the air inflow end of the floating slider (1), (
5) is the air outflow end of the floating slider (1), and (6) is the load spring. The floating surface (2) is formed on the surface of the floating slider (1) facing the recording medium, and generates positive pressure by airflow generated by the movement of the recording medium. The hydrodynamic force of the air flow will balance 7 the load being applied elastically by the load spring (6). In order to achieve high-density, large-capacity recording in magnetic storage devices and increase the reliability of data processing, the separation distance between the magnetic head and the recording medium, or the flying distance, must be kept as small and stable as possible, and the magnetic head It is important to improve electromagnetic conversion performance.

このような浮動スライダ(1)において、浮上距離を微
小にするには、負荷ばね(6)のばね力を大きくするか
、正圧を発生する浮動面(2)の幅Wを小さくして空気
流による流体力を減少させるなどの方法がある。しかし
ながら負荷ばね(6)のばね力を大きくすることは物理
的には可能であるが、浮動面(2)における単位面積当
たりの圧力が大きくなる。このためコンタクトスタート
ストップ方式で用いられる浮動スライダの場合には、浮
動面(2)と記録媒体面との接触時の面圧が大きくなり
、記録媒体の起動、停止時にヘッドクラッシュを起こす
確率が大きくなってしまう。一方浮動面(2)の面積を
小さくする場合も同様の結果を引き起こし、特に浮動面
の幅Wを小さくすることは横桟係数を減少させることに
なり、空気膜の剛性が低くなり、スライダの浮動の安定
性を悪化させてしまう。このように従来の浮動スライダ
においては微小な浮上距離を安定に得ることは困難であ
った。
In such a floating slider (1), in order to minimize the flying distance, the spring force of the load spring (6) can be increased, or the width W of the floating surface (2) that generates positive pressure can be decreased to reduce the air flow. There are methods such as reducing the fluid force caused by the flow. However, although it is physically possible to increase the spring force of the load spring (6), the pressure per unit area on the floating surface (2) increases. For this reason, in the case of a floating slider used in the contact start/stop method, the contact pressure between the floating surface (2) and the recording medium surface increases, increasing the probability of head crash when starting or stopping the recording medium. turn into. On the other hand, when the area of the floating surface (2) is made smaller, similar results occur; in particular, reducing the width W of the floating surface reduces the horizontal beam coefficient, which lowers the rigidity of the air film and increases the slider's This will worsen the stability of floating. As described above, in the conventional floating slider, it is difficult to stably obtain a small flying distance.

本発明は上記のような従来のものの欠点を除去するため
になされたもので、浮動面に、延長方向に沿って空気流
入端側が開口した溝を形成することにより、微小な浮上
距離を安定に得るとともに、空気流入方向に対して浮動
スライダの向きがある傾き(以下ヨー角と呼ぶ)を少な
くしても、浮上距離の減少量が少ない浮動スライダを提
供することを目的としている。以下、本発明の一実施例
を図について説明する。
The present invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by forming a groove in the floating surface with the air inflow end side open along the extension direction, a minute floating distance can be stabilized. In addition, it is an object of the present invention to provide a floating slider whose flying distance is reduced by a small amount even if the tilt (hereinafter referred to as yaw angle) of the floating slider's orientation with respect to the air inflow direction is reduced. Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第3図は本発明による浮動スライダの一実施例を示す平
面図、第4図は第3図のA−A断面図である。第3図、
第4図において、(11)は浮動スライダ、(12)は
浮動スライダ(11)の両側で、かつ記録媒体の移動方
向に延長する浮動面であり、記録媒体に対向している。
FIG. 3 is a plan view showing an embodiment of the floating slider according to the present invention, and FIG. 4 is a sectional view taken along line AA in FIG. 3. Figure 3,
In FIG. 4, (11) is a floating slider, and (12) is a floating surface extending on both sides of the floating slider (11) in the moving direction of the recording medium, and facing the recording medium.

(13)は浮動面(12)の空気流入端に設けられたテ
ーパ面、(14)は浮動面(12)に設けた溝であり、
浮動面(12)の長手方向に延長する。上記溝(14)
は空気流入端テーバ面(13)において開口し、反対側
が閉じられて空気流出端終点(15)となっている。な
お、底面(16)は浮動面(12)と平行となっている
(13) is a tapered surface provided at the air inflow end of the floating surface (12), (14) is a groove provided in the floating surface (12),
It extends in the longitudinal direction of the floating surface (12). The above groove (14)
is open at the air inflow end on the Taber surface (13), and the opposite side is closed to form the air outflow end terminal point (15). Note that the bottom surface (16) is parallel to the floating surface (12).

ここで、記録媒体の運動により第3図の矢印Sに示すよ
うな方向の空気流が生ずると、空気流入端テーバ面(1
3)から溝(14)に空気が流れ込み、その空気は溝(
14)の3方が浮動面く12)によって閉じられている
ため逃げ場を失って、溝(14)の空気流出端側終点(
15)において、急激に上昇する正圧の流体力を発生さ
せる。このため、この空気流出端側終点(15)を、浮
動スライダ(11)の空気流出端(5)方向に近づけて
設げれば、空気流出端における正圧は非常に高くなり、
空気膜剛性が高くなって安定な浮上を可能にする。一方
、空気流入端テーバ面(13)においても、テーパ面の
傾きやテーパ面の面積などを最適に設定することにより
空気流入側における正圧の流体力を従来例よりさらに増
大させることができる。これらの様子を第5図に示しで
ある。同図は各浮動スライダ(1)、  (11)の浮
動面において発生する流体力の圧力分布を示したもので
、曲線Xが従来例の浮動スライダ(1)における圧力分
布、曲線Yが本発明による浮動スライダ(11)におけ
る圧力分布である。同図かられかるように、本発明によ
る浮動スライダ(11)では空気流入端B点と空気流出
端C点とで、正圧力が急激に上昇するピーク点Yl、Y
2を設けている。一方、B点と0点の間は浮動面(12
)が溝(14)により二分され面積が減少していると同
時に、二分された浮動面の幅が細くなっているため横桟
係数が減少し、B、C点間で発生する圧力は曲線Xで示
した従来例の圧力よりは大幅に減少する。このように本
発明では、浮動面(12)の中央部における流体力によ
る圧力をより減少させて、その減少させた分を空気流入
端。
Here, when the movement of the recording medium generates an air flow in the direction shown by arrow S in FIG.
Air flows into the groove (14) from 3), and the air flows into the groove (14).
Since three sides of the groove (14) are closed by the floating surface 12), there is no escape, and the air outlet end of the groove (14) (
In step 15), a rapidly rising positive pressure fluid force is generated. Therefore, if this air outflow end side terminal point (15) is provided closer to the air outflow end (5) of the floating slider (11), the positive pressure at the air outflow end will become very high.
The stiffness of the air film increases, allowing for stable levitation. On the other hand, also in the air inflow end tapered surface (13), by optimally setting the inclination of the tapered surface, the area of the tapered surface, etc., it is possible to further increase the positive pressure fluid force on the air inflow side compared to the conventional example. These conditions are shown in FIG. The figure shows the pressure distribution of the fluid force generated on the floating surface of each floating slider (1) and (11), where curve X is the pressure distribution in the conventional floating slider (1), and curve Y is the pressure distribution in the floating slider (1) of the conventional example. This is the pressure distribution on the floating slider (11) due to As can be seen from the figure, in the floating slider (11) according to the present invention, the positive pressure rapidly increases at the peak points Yl and Y at the air inflow end point B and the air outflow end point C.
2 are provided. On the other hand, between point B and point 0 is a floating surface (12
) is divided into two by the groove (14) and the area decreases, and at the same time, the width of the divided floating surface becomes narrower, so the horizontal beam coefficient decreases, and the pressure generated between points B and C is equal to the curve X. This is significantly lower than the pressure of the conventional example shown in . In this way, in the present invention, the pressure due to the fluid force at the center of the floating surface (12) is further reduced, and the reduced pressure is applied to the air inflow end.

流出端の両端に集中させたものである。浮動スライダ全
体から見れば発生する流体力を4隅に集中させたことに
なり、これは浮動スライダ(11)を安定に浮動させる
ための理想的な状態であって、特に従来例の浮動スライ
ダ(1)に比べれば、ピッチング方向の剛性が大幅に高
くなる。
It is concentrated at both ends of the outflow end. Viewed from the entire floating slider, the generated fluid force is concentrated at the four corners, which is an ideal condition for stably floating the floating slider (11), and is especially true for the conventional floating slider (11). Compared to 1), the rigidity in the pitching direction is significantly higher.

この種の浮動スライダ(11)では、通常記録媒体に対
して若干1頂いて浮上しており、空気流入端側で浮上距
離が最も大きく、空気流出端で最も小さくなっている。
This type of floating slider (11) usually floats slightly above the recording medium, and the flying distance is the largest at the air inlet end and the smallest at the air outlet end.

磁気ヘッドは浮上距離の小さい空気流出端に装着されて
いるのが通常である。
The magnetic head is normally mounted at the air outflow end where the flying distance is small.

ところで浮上距離が例えば0.5 m以下というような
微小距離の場合には、浮上距離が微小であるだけに、記
録媒体表面の凹凸や外部からの振動などによるほんの僅
かな外乱によって浮動スライダの空気流出端と記録媒体
表面と接触し、最悪の場合にはヘンドクラソシュに至る
確率が増大する。しかし、本発明によればピッチング方
向の剛性が高くなり、同時に接触事故を引き起こしやす
い空気流出端近傍において特に空気膜剛性が高くなって
いるから、事故の危険性は大幅に減少し、安定な浮動を
得ることができる。また、両端のB点、0点において増
加させた圧力をB点と0点との間において減少させてい
るから、浮動スライダ(11)の全体に生ずる圧力の合
計は、従来例における圧力の合計より大きくなることは
なく、逆に安定性を損なうことなく全体の正圧の流体力
を減少することができるから、浮上距離を従来より、よ
り微小に設番ノることか可能となる。
By the way, when the flying distance is very small, such as 0.5 m or less, the air on the floating slider may be affected by a slight disturbance such as unevenness on the surface of the recording medium or external vibration. The outflow end will come into contact with the surface of the recording medium, and in the worst case, there is an increased probability that this will lead to hendokrasoch. However, according to the present invention, the rigidity in the pitching direction is increased, and at the same time, the air film rigidity is particularly high near the air outlet end where contact accidents are likely to occur, so the risk of accidents is greatly reduced and stable floating is achieved. can be obtained. In addition, since the pressure increased at point B and point 0 at both ends is decreased between point B and point 0, the total pressure generated in the entire floating slider (11) is the total pressure in the conventional example. Since the overall positive pressure fluid force can be reduced without compromising stability, the flying distance can be set smaller than before.

さらに、本発明によれば、ヨー角特性も向上させること
ができる。その様子を第6図を用いて説明する。第6図
において浮動スライダ中心線の方向と、空気流入方向と
の方向θすなわちヨー角がゼロの場合は、浮動スライダ
(11)の浮動面(2)において発生する流体力Fは近
似式(1)で算出される。
Furthermore, according to the present invention, yaw angle characteristics can also be improved. The situation will be explained using FIG. 6. In FIG. 6, when the direction θ between the center line of the floating slider and the air inflow direction, that is, the yaw angle, is zero, the fluid force F generated on the floating surface (2) of the floating slider (11) is calculated using the approximate formula (1) ) is calculated.

ここで、αpは横桟係数、μは空気の粘性係数、Uは空
気流の速度、Wは浮動面幅、LOは浮動面長さ、hは浮
上距離である。一方、ヨー角θが有限値をもった場合に
は、図に示したように実効的な浮動面長さはLlとなり
、これを近似式(1)に代入して流体力(または浮上刃
)F+を求めると、流体力F1に対して浮動面長さLl
は2乗で作用するから、Flはθ−〇の場合に対して大
幅に減することになる。浮上刃F1が小さくなるという
ことは、浮動スライダの浮上距離りがθ−0の場合に比
べて大幅に小さくなることを意味する。磁気ヘッドを必
要なトラ・ツクまでアクセスする方式として、ロークリ
アクチュエータ方式を採用した場合には、ヨー角は常に
変化しており、そのたびに浮上距離は変化することにな
る。その浮上距離の変化量はヨー角ゼロの場合に比べて
30〜40%にも達する場合があり、特に最近のような
全体的に浮上距離が0.5μm以下という微小な領域に
設定される浮動スライダでは、ヨー角の変化量こよる浮
上距離の変化量はより増大する傾向にある。
Here, αp is the horizontal beam coefficient, μ is the viscosity coefficient of air, U is the velocity of the air flow, W is the floating surface width, LO is the floating surface length, and h is the flying distance. On the other hand, when the yaw angle θ has a finite value, the effective floating surface length is Ll as shown in the figure, and by substituting this into approximate equation (1), the fluid force (or floating blade) is When calculating F+, the floating surface length Ll is calculated for the fluid force F1.
acts as a square, so Fl will be significantly reduced compared to the case of θ-〇. The fact that the flying blade F1 becomes smaller means that the flying distance of the floating slider becomes significantly smaller than when the flying distance is θ-0. When a low reactuator method is adopted as a method for accessing the magnetic head to the required track, the yaw angle is constantly changing, and the flying distance changes each time. The amount of change in the flying distance can reach 30 to 40% compared to when the yaw angle is zero, especially in recent years when flying distance is set in a minute area where the overall flying distance is less than 0.5 μm. With a slider, the amount of change in flying distance due to the amount of change in yaw angle tends to increase.

浮動スライダの設計値は下限の浮上距離で決定されるか
ら、全体の浮上距離を微小にするためには、ヨー角の変
化による浮上距離の変化量をできるだけ小さくするのが
好ましい。従来例では単なる平面で形成された浮動面(
2)を採用しているため流体力Fは浮動面の長さLo、
L+によって直接かつ大幅に影響を受けるが、本発明の
ような溝(14)に発生する流体力は、空気流入端テー
ノ々面(13)から流入してくる空気の量によって決ま
り、この流入する空気の量はヨー角が有限値をもった場
合でもそれほど大きく変化しなし1カ1ら、浮上距離の
変化量は従来例に比べれば僅かで済みヨー角特性の優れ
た浮動スライダとなる。
Since the design value of the floating slider is determined by the lower limit of the flying distance, in order to minimize the overall flying distance, it is preferable to minimize the amount of change in the flying distance due to changes in the yaw angle. In the conventional example, a floating surface (
2), the fluid force F is the length of the floating surface Lo,
The fluid force generated in the groove (14) of the present invention, which is directly and significantly influenced by The amount of air does not change significantly even when the yaw angle has a finite value, and the amount of change in flying distance is small compared to the conventional example, resulting in a floating slider with excellent yaw angle characteristics.

なお、第7図は本発明による浮動スライダの他の実施例
を示すもので、同図は第3図Gこ示したA−A断面図に
相当する。この場合、浮動面(12)に形成した溝(1
4)は底面が空気流入端(l[11で深く、空気流出端
側では浅くなるような傾斜面となっている。このように
底面に傾斜を与えても、第3図、第4図で説明した実施
例の場合と同様な効果を発揮できる。また、本発明に椙
)て番ま第8図に示すように溝(14)の終点(15)
側を湾1犬に成形しても、或いは第9TyUに示すよ痕
こ溝(14)の幅を空気流出端方向に次第Gこ細くする
ようにしても、或いは第10図に示すようGこ1(−の
浮動面(12)に複数本の溝(14)を設しすても、或
いは溝(14)の断面形状を第11図番こ示すように逆
台形状としても上記実施例と同様な効果を奏することは
もちろんである。
Note that FIG. 7 shows another embodiment of the floating slider according to the present invention, and this figure corresponds to the sectional view taken along line AA shown in FIG. 3G. In this case, the groove (1) formed in the floating surface (12)
4) has an inclined surface where the bottom surface is deep at the air inflow end (l[11) and shallow at the air outflow end. The same effect as in the embodiment described above can be obtained.Furthermore, the present invention is also applicable to the end point (15) of the groove (14) as shown in FIG.
Even if the side is formed into a bay dog, or the width of the groove (14) shown in No. 9 TyU is made gradually narrower toward the air outlet end, or the width of the groove (14) shown in FIG. Even if a plurality of grooves (14) are provided on the floating surface (12) of 1 (-), or the cross-sectional shape of the groove (14) is made into an inverted trapezoidal shape as shown in Figure 11, the above embodiment can be achieved. Of course, similar effects can be achieved.

以上の説明ψごら明らかなように本発明によれ番よ、浮
上距離をより微小に設定でき、しかも安定な浮動が可能
で、ヨー角特性にも優れた浮動スライダを提供すること
が可能となる。
As is clear from the above explanation, the present invention makes it possible to provide a floating slider that can set the flying distance more minutely, can float stably, and has excellent yaw angle characteristics. Become.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の浮動スライダの一例を示す平面図、第2
図は第1図で示した従来の浮動スライダの側面図、第3
図は本発明の一実施例による浮動スライダを示す平面図
、第4図は第3図に示した本発明による浮動スライダの
断面側面図、第5図は浮動スライダの浮動面に沿って発
生する圧力分布を示した図、第6図は浮動スライダの中
心線と空気流の方向とがなすヨー角θを説明した図、第
7図は本発明による他の一実施例を示した浮動スライダ
の断面側面図、第8図ないし第11図は本発明による他
の実施例を示した浮動スライダの平面図及び断面図であ
る。 (1)、  (11)  ・・・浮動スライダ、(2)
。 (12)・・・浮動面、(4)・・・空気流入端、(7
)、  (14)  ・・・溝。 各図中の同一符号は同一または相当部分を示す。
Figure 1 is a plan view showing an example of a conventional floating slider;
The figures are a side view of the conventional floating slider shown in Fig. 1, and a side view of the conventional floating slider shown in Fig. 3.
4 is a cross-sectional side view of the floating slider according to the present invention shown in FIG. 3; and FIG. 5 is a plan view showing a floating slider according to an embodiment of the present invention; FIG. FIG. 6 is a diagram showing the pressure distribution, FIG. 6 is a diagram explaining the yaw angle θ between the center line of the floating slider and the direction of air flow, and FIG. 7 is a diagram showing another embodiment of the floating slider according to the present invention. 8 to 11 are a plan view and a cross-sectional view of a floating slider showing another embodiment of the present invention. (1), (11) ...Floating slider, (2)
. (12)...Floating surface, (4)...Air inflow end, (7
), (14) ...groove. The same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)記録媒体に対向しかつ記録媒体の移動方向に沿っ
て延長する複数の浮動面を有する浮動スライダにおいて
、上記浮動面に、空気流入端側か開口し、空気流出端側
が閉塞された溝を浮動面の長手方向に沿って設けたこと
を特徴とする浮動スライダ。
(1) In a floating slider having a plurality of floating surfaces facing the recording medium and extending along the moving direction of the recording medium, the floating surface has a groove that is open at the air inflow end and closed at the air outflow end. A floating slider characterized in that it is provided along the longitudinal direction of a floating surface.
(2)上記溝は、閉塞端が浮動スライダの空気流出端に
近接する位置まで延長することを特徴とする特許請求の
範囲第1項記載の浮動スライダ。
(2) The floating slider according to claim 1, wherein the groove extends to a position where the closed end is close to the air outflow end of the floating slider.
JP9624283A 1983-05-31 1983-05-31 Floating slider Pending JPS59221870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9624283A JPS59221870A (en) 1983-05-31 1983-05-31 Floating slider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9624283A JPS59221870A (en) 1983-05-31 1983-05-31 Floating slider

Publications (1)

Publication Number Publication Date
JPS59221870A true JPS59221870A (en) 1984-12-13

Family

ID=14159756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9624283A Pending JPS59221870A (en) 1983-05-31 1983-05-31 Floating slider

Country Status (1)

Country Link
JP (1) JPS59221870A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187478A (en) * 1987-01-30 1988-08-03 Hitachi Ltd Head slider

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187478A (en) * 1987-01-30 1988-08-03 Hitachi Ltd Head slider

Similar Documents

Publication Publication Date Title
JP2781467B2 (en) Disk head slider with air support
US5097370A (en) Subambient pressure air bearing slider for disk drive
US5404256A (en) Transverse and negative pressure contour gas bearing slider
JP2689373B2 (en) Slider for magnetic head
US5508862A (en) Slider with an improved profile
JPS60101781A (en) Slider for magnetic head
JPH0721717A (en) Air-bearing-slider having no speed and skew dependency
JP2004310955A (en) Magnetic head device and magnetic disk unit using the same
JPS63220488A (en) Floating head slider
KR100681752B1 (en) Magnetic head slider
JPS6321271B2 (en)
US6057983A (en) Flying head slider in which adhesion of a liquid dust is suppressed
US20070047143A1 (en) Magnetic head slider having contacted portion at air outflow end side
US5377063A (en) Floating head slider and magnetic head for magnetic recording and reproducing
US5128821A (en) Flying head slider and magnetic disk unit employing same
JPS59221870A (en) Floating slider
JP2803659B2 (en) Magnetic head slider
JPS6319951B2 (en)
JPS61148685A (en) Floating head slider using negative pressure
JPS641872B2 (en)
JPS629574A (en) Negative pressure type floating head slider
JPH04159671A (en) Magnetic head slider and magnetic disk device
JPS61962A (en) Slider of floating magnetic head
US5251083A (en) Flying head slider and method of producing the same
JPH04325975A (en) Slider for magnetic disk