JPS5922172B2 - Fragmentation method - Google Patents

Fragmentation method

Info

Publication number
JPS5922172B2
JPS5922172B2 JP14234875A JP14234875A JPS5922172B2 JP S5922172 B2 JPS5922172 B2 JP S5922172B2 JP 14234875 A JP14234875 A JP 14234875A JP 14234875 A JP14234875 A JP 14234875A JP S5922172 B2 JPS5922172 B2 JP S5922172B2
Authority
JP
Japan
Prior art keywords
pulse
sample
temperature rise
photoelectric
light pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14234875A
Other languages
Japanese (ja)
Other versions
JPS5267382A (en
Inventor
寛 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU RIKO KK
Original Assignee
SHINKU RIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU RIKO KK filed Critical SHINKU RIKO KK
Priority to JP14234875A priority Critical patent/JPS5922172B2/en
Publication of JPS5267382A publication Critical patent/JPS5267382A/en
Publication of JPS5922172B2 publication Critical patent/JPS5922172B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 本発明はクセノン光又はレーザパルス光その他の光パル
スを瞬間熱源としたフラッシュ法による熱拡散率の測定
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring thermal diffusivity using a flash method using xenon light, laser pulse light, or other light pulses as an instantaneous heat source.

元来この種装置の作動原理は、断熱的に保持された試料
(例えば直径8〜10n、厚さ1〜3田の円盤)を予定
温度に保ちつゝ、その前面に光パルスを瞬間的に照射し
て加熱させ、その裏面の温度上昇を該裏面に溶着又は接
着した熱電対を介して取出してブラウン管オツシロスコ
ープ或は電磁オツシログラフその他の測定器に記録させ
、適宜の温度上昇曲線を得る。
Originally, the operating principle of this type of device was to maintain an adiabatically held sample (for example, a disk with a diameter of 8 to 10 nm and a thickness of 1 to 3 mm) at a predetermined temperature, and then instantaneously apply a light pulse to the front surface of the sample. The material is irradiated and heated, and the temperature rise on the back surface is detected through a thermocouple welded or bonded to the back surface and recorded on a cathode ray tube oscilloscope, electromagnetic oscilloscope, or other measuring instrument to obtain an appropriate temperature rise curve.

一方、熱拡散率αは、予定の理想條件下においては、“
■1’370−0.139− π をl/2を1/2 で表わされる。
On the other hand, the thermal diffusivity α is “
■1'370-0.139-π is expressed as 1/2.

ここにLは試料の肉厚−)tV2は光パルスの照射開始
時点から試料の裏面温度が最高値のl/2に達するまで
の時間長である。かくて光パルスの照射開始時点即ちを
=0を正確に求めるを要するが、従来その手段としては
、瞬間熱源たる例えばフラッシュラップを作動すべきト
リガ電圧を電圧減衰器を介して前記したブラウン管オツ
シロスコープその他の測定器のトリガ入力に印加しこの
トリガと同時に前記した曲線が現われるようにするもの
で、これを換言すればトリガパルスの発振時がを=0と
なるが、これは必ずしも正確でない。即ちトリガパルス
の発振時点と、光パルスが試料表面に照射される時点と
は正確には一致せず、一般に数100マイクロ秒の時差
を伴う。
Here, L is the thickness of the sample -) tV2 is the length of time from the start of irradiation of the light pulse until the temperature on the back surface of the sample reaches the maximum value of 1/2. In this way, it is necessary to accurately determine the starting point of irradiation of a light pulse, that is, = 0. Conventionally, this has been accomplished by using a cathode ray tube switch, which controls the trigger voltage for activating an instantaneous heat source, such as a flash wrap, through a voltage attenuator. It is applied to the trigger input of a scope or other measuring instrument so that the above-mentioned curve appears at the same time as this trigger.In other words, when the trigger pulse is oscillated, =0, but this is not necessarily accurate. That is, the time point at which the trigger pulse is oscillated and the time point at which the light pulse is irradiated onto the sample surface do not exactly coincide, and there is generally a time difference of several hundred microseconds.

この時差はtl/2=36ミ、り秒の場合、14%の誤
差に相当し、熱拡散率αが更に大きい場合をl/2は更
に短かくなるのでその誤差は更に増大する。更に測定器
が電磁オツシログラフの場合、トリガ入力で記録を開始
する機構でないのでを=0の設定は一層困難である。本
発明はかゝる不都合を可及的減少する装置を得ることを
その目的としたもので、光パルスを発生する瞬間熱源と
、前面に該光パルスが照射されて加熱される試料の裏面
の温度を検出する熱電変換素子と、該熱電変換素子の出
力を温度上昇曲線として表現する測定器と、該光パルス
の一部を電気パルスに変換する光電素子を含む光電変換
回路とを備え、該電気パルスを該測定器の温度上昇曲線
のを=0の設定入力としたことを特徴とする。
This time difference corresponds to an error of 14% when tl/2=36 milliseconds, and when the thermal diffusivity α is even larger, l/2 becomes even shorter, so the error increases further. Furthermore, if the measuring instrument is an electromagnetic oscillograph, it is even more difficult to set =0 because it does not have a mechanism to start recording upon trigger input. The object of the present invention is to obtain a device that reduces such inconveniences as much as possible, and includes an instantaneous heat source that generates a light pulse, and a back surface of a sample that is heated by irradiating the light pulse onto the front surface. A photoelectric conversion circuit comprising a thermoelectric conversion element that detects temperature, a measuring device that expresses the output of the thermoelectric conversion element as a temperature rise curve, and a photoelectric conversion circuit that includes a photoelectric element that converts a part of the optical pulse into an electric pulse. It is characterized in that the electric pulse is set to 0 as the temperature rise curve of the measuring device.

本発明実施の1例を別紙図面に付説明する。図面で1は
ルビーロッドを使用するレーザパルス光の光源たる瞬間
熱源を示し、その前面にこれにより照射される試料2を
備え、その裏面の熱電対3から成る熱電対変換素子を増
幅器4を介してフ1ラウン管オツシロスコーブから成る
測定器5の入力端子6、6に接続する。図面でTは該測
定器5におけるトリガ入力端子を示す。以上は従来のも
のと特に異らないが、本発明によれば該熱源1から該試
料2の照射される光パルスの一部を利用するもので6該
光パルスの光路8内に石英ガラスその他から成る半透明
のミラ9を45度の傾斜角度に介入させると共にその側
方にシリコン光電池その他の光電素子10を備え6かく
て該光パルスの一部をこれに入射させるようにし6更に
該光電素子10をその出力側において光電変換回路11
を介して前記したトリガ入力端子7に接続する。
An example of implementing the present invention will be explained with reference to the attached drawings. In the drawing, reference numeral 1 indicates an instantaneous heat source which is a light source of laser pulse light using a ruby rod, and has a sample 2 to be irradiated by this on its front side, and a thermocouple conversion element consisting of a thermocouple 3 on its back side through an amplifier 4. and is connected to input terminals 6, 6 of a measuring instrument 5 consisting of a flow tube oscilloscope. In the drawing, T indicates a trigger input terminal in the measuring device 5. Although the above is not particularly different from the conventional one, according to the present invention, a part of the light pulse irradiated from the heat source 1 to the sample 2 is used. A translucent mirror 9 made of A photoelectric conversion circuit 11 is connected to the element 10 on its output side.
It is connected to the above-mentioned trigger input terminal 7 via.

該光電変換回路11は例えばIC増幅器12と6クリツ
パ回路13とワンシヨツトマルチパイプレータ回路14
と,ラインドライバ回路15とで構成され6かくて該光
電素子10の出力側に得られる電気信号は増幅され且整
形されてトリガ入力パルスとして測定器5に与えられて
これにt=Oが設定されるようにした。図面で16は該
測定器5に得られる温度上昇曲線である。その作動を説
明するに6光パルスの照射によればこれと同時にその一
部が光電素子10に入射されて電気信号に変換され6こ
れか光電変換回路11を介して測定器5のトリガ入力端
子7に印加され,かくてそれにt=0が設定されるもの
で、この場合の時差を考えると6光電素子10における
変換には約50マイクロ秒を要し次で光電変換回路11
では約1マイクロ秒以内であり、全体を通じてその時差
は約50マイクロ秒であり6前記した従来のものに比し
約1/10となる。このように本発明によるときは試料
に照射される光パルスの一部を利用して電気パルスを生
じさせ,これにより測定器におけるt=oを設定させる
もので、従来の前記したものに比し時差を著しく減少し
、測定精度を著しく同上させ得られる効果を有する。
The photoelectric conversion circuit 11 includes, for example, an IC amplifier 12, a 6-clipper circuit 13, and a one-shot multipipulator circuit 14.
and a line driver circuit 15.The electrical signal obtained at the output side of the photoelectric element 10 is amplified and shaped, and is applied as a trigger input pulse to the measuring instrument 5, where t=O is set. I made it so that it would be done. In the drawing, 16 is a temperature rise curve obtained by the measuring device 5. To explain its operation, when six optical pulses are irradiated, a part of the pulses simultaneously enters the photoelectric element 10 and is converted into an electrical signal, which is then passed through the photoelectric conversion circuit 11 to the trigger input terminal of the measuring instrument 5. 7, thus setting t=0 to it. Considering the time difference in this case, conversion in the 6 photoelectric elements 10 takes about 50 microseconds, and then the photoelectric conversion circuit 11
In this case, the time difference is within about 1 microsecond, and the time difference throughout is about 50 microseconds, which is about 1/10 of the conventional method described above. In this way, according to the present invention, a part of the light pulse irradiated to the sample is used to generate an electric pulse, and this sets t=o in the measuring instrument, compared to the conventional method described above. This has the effect of significantly reducing time differences and significantly improving measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明装置の1例の線図である。 1・・・・・・瞬間熱源.2・・・・・・試料610・
・・・・・光電素子、11・・・・・・光電変換回路。
The drawing is a diagram of an example of the device of the present invention. 1... Instantaneous heat source. 2...Sample 610.
...Photoelectric element, 11...Photoelectric conversion circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 光パルスを発生する瞬間熱源と、前面に該光パルス
が照射されて加熱される試料の裏面の温度を検出する熱
電変換素子と、該熱電変換素子の出力を温度上昇曲線と
して表現する測定器と、該光パルスの一部を電気パルス
に変換する光電素子を含む光電変換回路とを備え、該電
気パルスを該測定器の温度上昇曲線のt=0の設定入力
としたことを特徴とするフラッシュ法熱拡散率測定装置
1. An instantaneous heat source that generates a light pulse, a thermoelectric conversion element that detects the temperature of the back side of the sample that is heated by irradiating the light pulse on the front side, and a measuring device that expresses the output of the thermoelectric conversion element as a temperature rise curve. and a photoelectric conversion circuit including a photoelectric element that converts a part of the optical pulse into an electric pulse, and the electric pulse is used as a setting input at t=0 of the temperature rise curve of the measuring instrument. Flash method thermal diffusivity measuring device.
JP14234875A 1975-12-02 1975-12-02 Fragmentation method Expired JPS5922172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14234875A JPS5922172B2 (en) 1975-12-02 1975-12-02 Fragmentation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14234875A JPS5922172B2 (en) 1975-12-02 1975-12-02 Fragmentation method

Publications (2)

Publication Number Publication Date
JPS5267382A JPS5267382A (en) 1977-06-03
JPS5922172B2 true JPS5922172B2 (en) 1984-05-24

Family

ID=15313267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14234875A Expired JPS5922172B2 (en) 1975-12-02 1975-12-02 Fragmentation method

Country Status (1)

Country Link
JP (1) JPS5922172B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173382U (en) * 1984-10-22 1986-05-19
JPS6224875U (en) * 1985-07-25 1987-02-16

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE424024B (en) * 1980-10-10 1982-06-21 Douglas Mcqueen PHOTOTHERMIC METCELL FOR STUDYING THE LIGHT ABSORPTION OF A TEST SUBSTANCE
JPS5821151A (en) * 1981-07-30 1983-02-07 Shinku Riko Kk Measuring method for characteristic of heat transfer of plural layered tubular body
JPS61152958U (en) * 1985-03-14 1986-09-22

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173382U (en) * 1984-10-22 1986-05-19
JPS6224875U (en) * 1985-07-25 1987-02-16

Also Published As

Publication number Publication date
JPS5267382A (en) 1977-06-03

Similar Documents

Publication Publication Date Title
US3191441A (en) Weld quality monitoring device for welding machines
JPS5922172B2 (en) Fragmentation method
US3369389A (en) Thermal testing apparatus
JPH0512657B2 (en)
JP2009002688A (en) Temperature calibration method for infrared detector and specific heat capacity measuring method
JPS60247489A (en) Laser beam machining equipment
US2735067A (en) Peak power meter
JPS63159740A (en) Heat constant measuring instrument by laser flash method
JPS587529A (en) Optical temperature measuring method
JP2813772B2 (en) Temperature measurement system during induction or dielectric heating
JPS63206644A (en) Thermocouple laser calorimetry
JP2532450B2 (en) Semiconductor laser equipment
JPH0456479B2 (en)
SU757871A1 (en) Thermal transducer of discontinuous energy fluxes
ATE93430T1 (en) PROCESS FOR CONTROLLING THE TEMPERATURE PROCESS AT SOLDERING JOINTS DURING LASER SOLDERING.
JP3475830B2 (en) Measuring method of thermofluorescence dosimeter and its measuring device
JP2580011B2 (en) Droplet particle size measuring device
JPS61154192A (en) Temperature-characteristic measuring device of semiconductor laser
JPH02259434A (en) Temperature measuring apparatus
JP3253332B2 (en) Laser output measuring device
RU2189568C1 (en) Method of measurement of power characteristics of high-power optical radiation
SU767569A1 (en) Device for measuring radiation pulse energy
SU924512A1 (en) Multi-channel device for recording electric signals
JPS6336456B2 (en)
US3698819A (en) Scanning light detectors