JPS5922102A - Pi controller - Google Patents

Pi controller

Info

Publication number
JPS5922102A
JPS5922102A JP13240282A JP13240282A JPS5922102A JP S5922102 A JPS5922102 A JP S5922102A JP 13240282 A JP13240282 A JP 13240282A JP 13240282 A JP13240282 A JP 13240282A JP S5922102 A JPS5922102 A JP S5922102A
Authority
JP
Japan
Prior art keywords
control
gain
proportional
time
parameters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13240282A
Other languages
Japanese (ja)
Other versions
JPS6339922B2 (en
Inventor
Akira Inoue
章 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP13240282A priority Critical patent/JPS5922102A/en
Publication of JPS5922102A publication Critical patent/JPS5922102A/en
Publication of JPS6339922B2 publication Critical patent/JPS6339922B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B5/00Anti-hunting arrangements
    • G05B5/01Anti-hunting arrangements electric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To improve the precision of a PI controller which varies a proportional gain and an integral time automatically and to facilitate its handling by converting parameters of adaptability into parameters relating to values on a time axis. CONSTITUTION:A PI control constant adjusting part 11 inputs the proportional gain K of a controlled system and calculates the proprotional gain KP and integral time T1 of PI control. Quickness parameters alpha and T are so set that the time when control response reaches 100.alpha(%) as a final value in response to stepwise variation in the command of the controlled system is T. Further, a stability parameter beta is so set that while beta>1.0, beta=1/omegaCTI. Therefore, the parameter beta as an index of stability is settable in addition to the parameters alpha and T as indexes of quickness, so the arithmetic expression of the proportional gain KP and integral time TI is derived from the results of the simulation of many controlled systems.

Description

【発明の詳細な説明】 〔発明の1支術分野〕 この発明は目標値と測定値との偏差およびその積分にス
ーしてあろ定数を乗じ、その和をもって操作風の出力と
するいわゆる比例・積分(pH制御装置に係り、特に制
鋼1対象の特性変化に追従してP■制御定数を自動的に
調整する機能を持つPII御装置に関する。
[Detailed Description of the Invention] [A branch of the invention] This invention is a so-called proportional method in which the deviation between a target value and a measured value and its integral are multiplied by a constant, and the sum is the output of the operating air. Integral (Relates to a pH control device, and particularly relates to a PII control device that has a function of automatically adjusting the P■ control constant in accordance with changes in the characteristics of the steel control 1 object.

〔従来技術〕[Prior art]

PI量制御装置用いて非線形な制御対象を制御するに際
して、PI量制御定数全固定して制御をおこなうと望ま
しい制御応答を常に得ることは不可能となる。
When controlling a nonlinear controlled object using a PI quantity control device, if control is performed with the PI quantity control constant completely fixed, it is impossible to always obtain a desired control response.

これを改善した制御装置として非線形な制御対象全微小
変化内で線形化し、比例系として定式化し、この比例系
のゲインを他のプロセス附より求め、その値の変動に対
して制御応答を一定に保つ様にPI量制御定数自動的に
調整する制御装置があるー 第1図は、このような制御装置の構成を示した図である
。第1図では制御系として弁開度制御による揚水ポンプ
吐出流量制御系を示した。第1図において、水は貯水槽
1から管路2、ボン゛ブ3、f&附制御弁5を通り受水
槽4に揚水される。ボン′プ3の吐出側には流量検出器
6と流量制御弁5の開度全検出する開度検出器7が設置
されている。
As an improved control device, we linearize the non-linear controlled object within all minute changes, formulate it as a proportional system, find the gain of this proportional system from other processes, and keep the control response constant against fluctuations in the value. There is a control device that automatically adjusts the PI quantity control constant so as to maintain the PI amount. FIG. 1 is a diagram showing the configuration of such a control device. FIG. 1 shows a pump discharge flow rate control system based on valve opening control as a control system. In FIG. 1, water is pumped from a water storage tank 1 to a water receiving tank 4 through a pipe 2, a bomb 3, and an f& control valve 5. A flow rate detector 6 and an opening degree detector 7 for detecting the entire opening degree of the flow rate control valve 5 are installed on the discharge side of the pump 3.

これらの検出器6.7により検出されたプロセス量は制
御装置8に入力される。そして制御装置6にあらかじめ
内蔵されている機能により演算が実施され、その結果制
御装置8から流量制御弁5に対し開度制御指令が出力さ
れる。
The process variables detected by these detectors 6 , 7 are input to the control device 8 . Then, calculation is performed using a function built in the control device 6 in advance, and as a result, an opening control command is outputted from the control device 8 to the flow rate control valve 5.

制御装置8は入出力インターフェース部9、比例系ゲイ
〉′算出部10.P量制御定数調整部11.PI制御部
12から構成されて卦り、入出力インターフェース部9
は流量検出器6および(411度検出器7からの信号を
入力して比例系ゲイン算出部10およびP I fli
ll病1部12へそれ全伝達するとともに、PI制御部
12からの開度制御指令を流量制御弁5に対して出力す
る機能を持っている。PI制御部12は目標流Iqsと
、流量検出器6で検出された測定流用、qから下記に示
す演算式で今回間)珍出力MVnを演算する機能を持つ
The control device 8 includes an input/output interface section 9, a proportional system gain calculation section 10. P amount control constant adjustment section 11. Consists of a PI control section 12 and an input/output interface section 9
inputs the signals from the flow rate detector 6 and (411 degree detector 7) and calculates the proportional system gain calculation unit 10 and P
It has the function of transmitting all the information to the PI control section 12 and outputting the opening control command from the PI control section 12 to the flow rate control valve 5. The PI control unit 12 has a function of calculating the current output MVn from the target flow Iqs, the measured flow rate detected by the flow rate detector 6, and q using the calculation formula shown below.

MVn=△MV −←MV n −1−(])△MV=
Kp((On−”−’) 4− ’ j’!n l  
   −(2)J en−qs−q           ・・・(3)へ
1Vn −1:前回開度出力 ΔM■:開度出力変分 KP:比例ゲイン T工:積分時間 en:今回偏差 en−+:前回偏差 τ:制御周期 比例系ゲイン算出部10は非線形な制御対象を微変化内
で線形化し、比例系として定式化した場の比例系ゲイン
Ki他のプロセス量より算出す機能な持ってい/−)、
−1 第1図に示した例では、制御対象を圧力平衡として下記
に示f第(4)式により表わし、第4式ある平衡点の近
傍で線形化し、比例系ゲイン■(pR(5)式で求める
MVn=△MV −←MV n −1−(])△MV=
Kp((On-"-') 4-'j'!n l
-(2) J en-qs-q ...to (3) 1Vn -1: Previous opening output ΔM■: Opening output variation KP: Proportional gain T: Integral time en: This time deviation en-+: Previous deviation τ: The control period proportional system gain calculation unit 10 has a function to linearize the nonlinear controlled object within a minute change and calculate the proportional system gain Ki of the field formulated as a proportional system from other process variables. ),
-1 In the example shown in Figure 1, the controlled object is assumed to be in pressure equilibrium, and is expressed by the fth equation (4) shown below. Equation 4 is linearized near a certain equilibrium point, and the proportional system gain Find it using the formula.

hl −ht = fv(u)Q”−fp(q)   
       −(hI:貯水槽の水位 り之:受水槽の水位 U:流量制御弁開度 q:管路を流れる流量 f気11):流量制御弁の損失係数 fp(q):ポンプの吐出圧 f’v(ul S f斌U)の微分 子’p(q) : fp(q)の微分 nニブラント固有の定数 小   PI制御定数1凋整部1】は、プロセス量げな
わち合   本例では流tWqおよび18F1rkl 
u )の変化に伴い変動る   する比例系ゲインKに
対して制御応答時間を一定に保つようKPI制御定数で
ある比fv11ゲインKp式   および積分時間Ti
″f、算出する機能を持つ−を    このようなIM
成の制御装置において、従来、円を   制御定数調整
部11で用いられていた演算アルゴリズム手順は第2図
のようになっている−4)    すなわち、−巡伝達
関数特性の交さ角周波数ωCを一定に設定し、制御対象
の比例系ゲイン算出部10から入力してPI量制御比例
ゲインに、と積分時間1°工とを、 Kp= − 3に T) = − ωC となるようIC決定−する。したがって、従来方法では
、制御応答特性を調整するためのパラメータ一交さ角周
波数ωCのみであり、ωCを設定すれば比例ゲインra
pと積分時間TIは一義的に決才る。
hl −ht = fv(u)Q”−fp(q)
- (hI: Water level in the water tank: Water level in the water tank U: Flow rate control valve opening q: Flow rate flowing through the pipe fq11): Loss coefficient fp(q) of the flow rate control valve: Pump discharge pressure f 'v(ul S f U)'s micromolecule 'p(q): Differential of fp(q) n Nibrant-specific constant small PI control constant 1 Decrease part 1] is the process quantity equation In this example, FlowtWq and 18F1rkl
The ratio fv11 gain Kp formula, which is a KPI control constant, and the integral time Ti
″f, which has the function of calculating − such an IM
Conventionally, in the control device of the configuration, the calculation algorithm procedure used in the control constant adjustment section 11 is as shown in Fig. The IC is determined so that Kp = − 3 and T) = − ωC by setting it to a constant value and inputting it from the proportional system gain calculation unit 10 of the controlled object to obtain the PI quantity control proportional gain, and the integration time of 1°. do. Therefore, in the conventional method, the only parameter for adjusting the control response characteristic is the intersection angular frequency ωC, and if ωC is set, the proportional gain ra
p and the integration time TI are uniquely determined.

〔従来技術の問題点〕[Problems with conventional technology]

しかし、一般には制御応答特性の指定は目標値のステッ
プ状変化に対する時間軸上の応答を問題に−することか
多いため、ωCをどのような値に指定すれば望ましい制
御応答になるかを判断することは容易ではない。
However, in general, specifying control response characteristics often concerns the response on the time axis to step changes in the target value, so it is necessary to determine what value ωC should be specified to obtain a desirable control response. It's not easy to do.

また交さ角周波数ωCは制御系の連応性に対する指標で
あり、制御系の安定性の指標とはなっていない5 し−4−って、従来の方法では安定性の指標となるパラ
メータVよアルゴリズム中に存在しないことてなる一 つまり、従来の制御装置では望ま17い制御応答を作り
出すことは難しいという欠点があった。
In addition, the intersection angular frequency ωC is an index for the coordination of the control system, and is not an index for the stability of the control system. One drawback of conventional control devices is that it is difficult to create a desired control response that does not exist in the algorithm.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、制御応答特性を指定するノくラメー
タを連応性および安定性のそれぞれについて設定でき、
かつ連応性のパラメータを時間軸上に関連したパラメー
タと−1−ることにより高精度でかつ朋り扱い易い制御
装置#を接供する(である。
The purpose of this invention is to be able to set parameters specifying control response characteristics for both coordination and stability.
Moreover, by subtracting the linked parameter from the parameter related on the time axis, a highly accurate and easy-to-handle control device # is provided.

〔発明の概要〕[Summary of the invention]

との発明では、制御装置内にあらかじめ設定する比例ゲ
インKpおよび積分時間TIを側倒対象のプロセス値に
応じて自動的に変更するPI制御装置において、前記プ
ロセス値を微小変化内で線形化し比例系ゲインKをj隻
出する比例系ゲイン算出部と、あらかじめ定めた一巡伝
達関数の交さ角周波数ωC1速1F、、性パラメータα
 (α(1,0)およびT、安定性パラメータβ (β
)1.0)  と前記比例系ゲインにとから前記ゲイン
Kpおよび積分時間TIを算出するPI量制定a高1整
部とをそなえ、前記連応性パラメータα4?よびTは前
記プロセスf直の制御目標値のステップ状変化に対する
制御応答が10(l・α(%)に達するまでの時間がT
となるように設定され、ntl記安定性パラメータβは
れ、前記比例ゲインKpおよび積分時間Tlはそれぞれ の関係式を満足するように設定されるよう構成すること
により、ト記目的を達成した。
In the invention, in a PI control device that automatically changes a proportional gain Kp and an integral time TI that are preset in the control device according to a process value to be side-turned, the process value is linearized within minute changes and proportional A proportional system gain calculation unit that outputs j system gains K and a predetermined round transfer function intersect with the angular frequency ωC1 speed 1F, and the gender parameter α
(α(1,0) and T, stability parameter β (β
)1.0) and the proportional system gain, and a PI quantity establishment a height 1 adjustment part that calculates the gain Kp and the integration time TI from the proportional system gain, and the coupling parameter α4? and T is the time required for the control response to a step change in the control target value of the process f to reach 10(l・α(%)).
The above objective was achieved by configuring the stability parameter β to be set as follows, the proportional gain Kp and the integration time Tl to be set so as to satisfy the respective relational expressions.

以下この発明を実施例により詳aに説明する。The present invention will be explained in detail with reference to Examples below.

〔発明の実施例〕[Embodiments of the invention]

第3図はこの発明の一実施例に用いられるPI制御定数
調整部11の演算アルゴリズムを示したものである。こ
の発明により、ば連応性パラメータαおよびTと、安定
性パラメータβとを設定する。
FIG. 3 shows the calculation algorithm of the PI control constant adjustment section 11 used in one embodiment of the present invention. According to this invention, the connectivity parameters α and T and the stability parameter β are set.

連応性パラメータα、Tおよび安定性パラメータβにつ
いては後産詳述する ついで、従来と同じように制御対象の比例系ゲインKを
比例系ゲイン算出部10かC)入力し、PI量制゛川用
比例ゲインKpと積分時間Tiとをそれぞれぞれ第6)
式机(7)式により演算1−る・・・(7) 連応性パラメータα、Ti、次のようにして定める。
After the coupling parameters α, T and stability parameter β are explained in detail, the proportional system gain K of the controlled object is input to the proportional system gain calculation unit 10 or C) as in the past, and the PI quantity control river is The proportional gain Kp and the integral time Ti are respectively 6)
Calculation 1-ru (7) Using equation (7), the connectivity parameters α and Ti are determined as follows.

制御対象の目標(1αのステップ状変化に対し制御応答
が最終値の1()0  α(%)に達する寸での時間を
Tとするのである。ただしαは、α<: 1.0である
。例えば目標値のステップ状変化に対−する制御応答が
最終値の95%に達するまでの時間全45秒に設計した
い時には、α=0.95、T = 45 (F14))
 と設定すればよい。αを固定とした場合、Tが小さい
ほど制御応答が目標1ji’jに速く追従する。
The time taken for the control response to reach the final value of 1()0α(%) for a step change of the target (1α) of the controlled object is defined as T. However, α is α<: 1.0. For example, if you want to design a total time of 45 seconds until the control response to a step change in the target value reaches 95% of the final value, α = 0.95, T = 45 (F14))
You can set it as . When α is fixed, the smaller T is, the faster the control response follows the target 1ji'j.

安定性パラメータβは次に示す第(8)式を満足するよ
うにβ〉1.0  の範囲で選定される、したがって、
βが大きいほど安定であることを意味−する。すなわち
βが大きいと、制御応答の立ちトがりがゆるやかになり
βが小さいと立ち上がりが急俊となる。
The stability parameter β is selected in the range β>1.0 so as to satisfy the following equation (8). Therefore,
It means that the larger β is, the more stable it is. That is, when β is large, the rise of the control response is gradual, and when β is small, the rise is rapid.

なお、第(6)式、第(7)において示した比、り11
ゲインKpと積分時間TIの演算式は数多くの制御対象
に対するシュミレーションの結果導き出されたものであ
る。また上述した実施例では揚水ポンプ吐出流用制御/
l!を対象にしてとV)弁明を説明したが、他の制御系
においても同様にこの発明が適用できることはいうまで
も7rい。
Note that the ratios shown in equations (6) and (7),
The calculation formulas for the gain Kp and the integral time TI were derived as a result of simulations for many controlled objects. In addition, in the above-mentioned embodiment, the pump discharge flow control/
l! Although V) Defense has been explained with reference to V), it goes without saying that the present invention can be similarly applied to other control systems.

〔発明の効果〕〔Effect of the invention〕

従来の制御装置4では制御応答特性を指定するためのパ
ラメータは連応性の指標である交さ角周波数(・)Cの
みであり、またωCは周波数軸上のパラメータであった
ためその設定が非常に雌かしかった。
In the conventional control device 4, the only parameter for specifying control response characteristics is the intersection angular frequency (·)C, which is an index of coordination, and since ωC is a parameter on the frequency axis, its setting is extremely difficult. It was feminine.

これに対し、この発明では設定するパラメータのうち4
応性パラメータ時間軸上の制御応答に関連したパラメー
タとしたため設定が容易であり、かつ連応性の指標とな
るパラメータに加えて安定性の指標となるパラメータも
設定するようにしたので高精度かつ嘔り扱いやすい制御
装置全提供することができるという利点がある。
In contrast, in this invention, four of the parameters to be set are
Responsiveness parameters The parameters are related to the control response on the time axis, so they can be easily set.In addition to the parameters that are indicators of responsiveness, parameters that are indicators of stability are also set, allowing for high accuracy and ease of use. It has the advantage of being able to provide a complete control system that is easy to handle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の対象となる制御装置の概略構成図、
第2図は従来の制御装置におけるPIII脚定数調整部
の演算アルゴリズム、第3図はこの5^明の実施例によ
る演算アルゴリズムをそれぞれ示したものである。 8・・・制御装置、1o・・・比例系ゲイン算出部、1
1・・・PI制御定数調整部、12・・・PIil+1
1(財)部。 出願人代理人   猪  股     清竿1図 帛2図
FIG. 1 is a schematic configuration diagram of a control device to which the present invention is applied;
FIG. 2 shows the calculation algorithm of the PIII leg constant adjustment section in the conventional control device, and FIG. 3 shows the calculation algorithm according to this fifth embodiment. 8...Control device, 1o...Proportional system gain calculation unit, 1
1... PI control constant adjustment section, 12... PIil+1
1 (Foundation) Department. Applicant's agent Kiyomata Inomata Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 制御装置内にあらかじめ設定する比例ゲインKpおよび
積分時間TIを制御対象のプロセス値に応じて自動的に
変更するPII御装置において、前記プロセス値を微小
変化内で線形化し、比例系ゲインKi算出す・る比例系
ゲイン算出部と、あらかじめ定めた一巡伝達関数の交さ
角周波数0)C1速応性パラメータ(X’(α<: 1
.0 >およびT、安定性〕くラメータβ−(βン1.
0)と前記比例系ゲインにと力・ら前記比例ゲインKp
しよび積分時間’r■2算出するPII御定数調整部と
をそなえ、[)II記連速応性くラメータαおよびTは
前記プロセス値の制御目標値のステップ状変化に対する
制(J11応答が100・α(@に達するまでの時間が
Tとなるように設定され2前’AC安定性パラメータβ
は β= □のI男係を満足するように ωCψ TI 設定され、前記比例ゲインKpおよび積分時間T7はそ
れぞれ、 一′F の関係式を満足するように設定されることを特徴とする
PII御装置。
[Scope of Claims] A PII control device that automatically changes a proportional gain Kp and an integration time TI preset in a control device according to a process value of a controlled object, linearizing the process value within minute changes, The proportional system gain calculation unit that calculates the proportional system gain Ki and the intersection angular frequency of the predetermined open-loop transfer function C1 quick response parameter (X' (α <: 1
.. 0 > and T, stability] parameter β-(β-n 1.
0) and the proportional gain Kp
and a PII control constant adjustment unit that calculates the control target value of the process value (J11 response is 100%).・The time to reach α(@ is set to T, and the AC stability parameter β
The PII control is characterized in that ωCψ TI is set so as to satisfy the I relationship of β = □, and the proportional gain Kp and the integral time T7 are each set so as to satisfy the relational expression 1'F. Device.
JP13240282A 1982-07-29 1982-07-29 Pi controller Granted JPS5922102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13240282A JPS5922102A (en) 1982-07-29 1982-07-29 Pi controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13240282A JPS5922102A (en) 1982-07-29 1982-07-29 Pi controller

Publications (2)

Publication Number Publication Date
JPS5922102A true JPS5922102A (en) 1984-02-04
JPS6339922B2 JPS6339922B2 (en) 1988-08-09

Family

ID=15080550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13240282A Granted JPS5922102A (en) 1982-07-29 1982-07-29 Pi controller

Country Status (1)

Country Link
JP (1) JPS5922102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231401A (en) * 1985-05-31 1987-02-10 コルモーゲン コーポレイション Adaptive control system
US7537080B2 (en) 2003-02-03 2009-05-26 Jtekt Corporation Electric power-steering apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487678U (en) * 1990-11-30 1992-07-30

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126482A (en) * 1977-04-13 1978-11-04 Toshiba Corp Control unit
JPS5465274A (en) * 1977-11-04 1979-05-25 Hideji Hayashibe Device of automatically adjusting pid value of regulator
JPS56159703A (en) * 1980-05-13 1981-12-09 Fuji Electric Co Ltd Arithmetic system for optimum value of pid control parameter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53126482A (en) * 1977-04-13 1978-11-04 Toshiba Corp Control unit
JPS5465274A (en) * 1977-11-04 1979-05-25 Hideji Hayashibe Device of automatically adjusting pid value of regulator
JPS56159703A (en) * 1980-05-13 1981-12-09 Fuji Electric Co Ltd Arithmetic system for optimum value of pid control parameter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6231401A (en) * 1985-05-31 1987-02-10 コルモーゲン コーポレイション Adaptive control system
US7537080B2 (en) 2003-02-03 2009-05-26 Jtekt Corporation Electric power-steering apparatus

Also Published As

Publication number Publication date
JPS6339922B2 (en) 1988-08-09

Similar Documents

Publication Publication Date Title
US6445980B1 (en) System and method for a variable gain proportional-integral (PI) controller
CN111812967B (en) PID control parameter setting method based on stability margin and dynamic response index
Teel et al. Input-output stability
KR940007129B1 (en) 2d of controller
US20180120864A1 (en) Nonlinear control of mass flow controller devices using sliding mode
JPS5922102A (en) Pi controller
US4103161A (en) Composite transducer
CN105867128A (en) Method and device for disequilibrium deviation control and automatic control system for thermal power plant
Anusha et al. Comparison of tuning methods of PID controller
Hu A separation property of the observer-based stabilizing controller for linear delay systems
Wei et al. Prescribed-time stabilization of uncertain heat equation via boundary time-varying feedback and disturbance estimator
CN107421543A (en) A kind of implicit function measurement model filtering method being augmented based on state
Osborne On Nordsieck's method for the numerical solution of ordinary differential equations
Olofsson et al. Temperature stabilization of the phase-reference line at the european spallation source
JPH0666041B2 (en) Two degree of freedom sampled value PID controller
JPS60263207A (en) Process control device
JPS6014302A (en) Automatic control method of pi control parameter
Bruch Second Virial Coefficient of a Gas from Sound-Velocity Measurements
CN105446134A (en) Method for converting non-integral cascade stage PID control system into integral cascade stage system and conversion system
JPS61198302A (en) Regulator
JPH0435700B2 (en)
US3483081A (en) Stability improvement for nuclear reactor automatic control system
JPS6426903A (en) Pid controller
JPH0578041B2 (en)
JPS581205A (en) Pid controller