JPH0435700B2 - - Google Patents

Info

Publication number
JPH0435700B2
JPH0435700B2 JP62072188A JP7218887A JPH0435700B2 JP H0435700 B2 JPH0435700 B2 JP H0435700B2 JP 62072188 A JP62072188 A JP 62072188A JP 7218887 A JP7218887 A JP 7218887A JP H0435700 B2 JPH0435700 B2 JP H0435700B2
Authority
JP
Japan
Prior art keywords
value
control
pressure
test object
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62072188A
Other languages
Japanese (ja)
Other versions
JPS63236939A (en
Inventor
Atsushi Tsucha
Akio Furuse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Instruments Co Ltd
Original Assignee
Cosmo Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Instruments Co Ltd filed Critical Cosmo Instruments Co Ltd
Priority to JP62072188A priority Critical patent/JPS63236939A/en
Publication of JPS63236939A publication Critical patent/JPS63236939A/en
Publication of JPH0435700B2 publication Critical patent/JPH0435700B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 この発明は例えばガス器具或いは流体の制御に
用いる開閉弁等の流量特性を測定する事に用いる
事ができる自動調圧装置に関する。 「発明の背景」 例えばガス器具或いは開閉弁などの流量特性を
測定する場合には、被試験体に既知の流体圧を与
え、各流体圧における流体の流量を測定して圧力
ー流量特性を求める。この測定を行うには広い範
囲に渡つて既知の圧力値を発生する事が出来る圧
力発生手段が要求される。 「従来の技術」 このため従来より気圧発生手段で発生させた気
体圧を制御弁を通じて取り出し、制御弁の開度を
被試験体に印加したい圧力値に応じて制御し、そ
の制御によつて被試験体に与える圧力を変化さ
せ、この圧力変化を被試験体に与えて圧力ー流量
特性等を測定している。 このように被試験体に既知の圧力変化を与える
装置を一般的にに自動調圧装置と呼んでいる。 第3図に従来の自動調圧装置を示す。図中1は
気圧発生手段をしめす、この気圧発生手段1は例
えばコンプレツサの加圧側又は吸引側の何れでも
良い。気圧発生手段1で発生した気体圧は配管2
と制御弁3を介して被試験体4与えられる。 尚、11は手動操作弁、12は圧力指示器を示
す。これら手動操作弁11及び圧力指示器12は
制御弁3の入口側に与える気体圧を予め一定の圧
力値となるよう設定することに用いる。 被試験体4に与える気体の圧力は測定手段5で
計測され、その計測を比較器6に与える。比較器
6では別に入力した目標値7と先の計測値とを比
較し、比較器6の出力側に目標値と計測値との偏
差値を持つ偏差信号を出力させる。この偏差信号
は制御手段8を構成するサーボ増幅器で増幅され
サーボモータ9を駆動して制御弁3を制御する。 このような構成によつて被試験体4に与えられ
る気体の圧力は測定手段5で計測され、その計測
値が目標値7と比較され偏差がゼロとなるように
サーボモータ9が制御弁3を制御し、被試験体4
に与えられる圧力値が常に外部から与えられる目
標値を維持するように制御される。 被試験体4に与える圧力を変化させるには目標
値7を変化させれば良い。つまり目標値7を変化
させることによつて制御弁3は測定手段5の計測
値が目標値7と等しくなるようにその開度を変化
させ、目標値7と計測値が常にバランスする状態
に制御される。 「発明が解決しようとする問題点」 従来の自動調圧装置において目標値7を変える
と被試験体4に与えられる圧力値は新しい目標値
とバランスする方向に変化する。この場合制御弁
3動きと実際に気体の圧力が変化するまでに遅れ
が存在するためハンチングが起き易い。 つまり制御弁3の応答速度を速くすると第3図
に曲線Aで示すようにハンチングを伴う過渡応答
特性となり、圧力が安定するまでに時間が掛かる
欠点がある。 このため制御弁3の応答速度を遅くする事が考
えられるが、制御弁3の応答速度を遅くすると今
度は第3図に曲線Bで示すように圧力が設定値に
たどりつくまでの時間Tが長くなり、結局圧力が
設定値に達するまでの時間Tは過渡応答特性の場
合と同じ程度の時間になる。 何れにしても被試験体4に与える圧力値を変更
する際に変更後の目標値に安定するまでの時間が
長く掛り、一つの被試験体の特性を試験するに必
要な時間が長くなつつてしまう欠点がある。 このため圧力の応答特性を例えば第3図に曲線
Aとして示すように過渡応答特性に設定し、この
過渡応答特性において圧力測定値が新しい目標値
に近づいた時点で制御弁3の制御を停止させ、圧
力の行き過ぎが可及的に小さくなるように制御す
る方法が実用されている。 然しながらこのように圧力値が目標値近づいた
時点で制御弁3の制御を停止させたとしても、圧
力の値を目標値で丁度停止させる事は難しい。つ
まり停止制御するタイミングをどこに設定するか
を決める事が難しい。 然も制御弁3の開度が小さい状態と、開度が大
きい状態とで圧力が変化する応答時間に差異があ
る。つまり新しい目標値に達するまでの時間Tは
制御弁3の開度が開いている領域の方が短く、制
御弁3の開度が絞られている領域の方が長くなる
傾向がある。 このため、どの開度においても圧力が目標値に
おいて丁度安定するように動作特性を設定する事
は難しい。 この発明の第一の目的は目標値の変更に対して
圧力の値を短時間に新しい目標値に安定させる事
ができ、これによつて被試験体の流量特性を短時
間に測定することができる自動調圧装置を提供す
るにある。 この発明の第二の目的は制御弁の開度がどの位
置にあつても最適応答特性を得る事が出来る自動
調圧装置を提供するにある。 「問題点を解決するための手段」 この発明においては被試験体に与える圧力値を
変更する際、新たに設定された目標値と現在の圧
力値との間に複数の仮設定値を設け、圧力測定値
がこの仮設定値に一致する毎に制御弁の制御を一
定時間停止させる。 現在の圧力値と仮設定値のまでの値は圧力測定
値が目標値に近づく程漸次小さい値となるように
設定する。このようにして仮設定値を徐々に目標
値に近づけ、短時間に圧力を目標値に合致させ
る。 この発明では更に制御弁の開度に応じて現在値
と仮設定値までの比率を異ならせ、制御弁の開度
に応じて最適な制御特性を得るように構成する。
つまり制御弁の開度に応じて仮設定値までの制御
量の比率を変化させ、制御弁が絞られている領域
では仮設定値までの制御量を小さく採つて小さい
制御量で徐々に目標値に近づけ、制御弁が開かれ
ている領域では仮設定値までの制御量を大きく採
るように構成する。 このように構成することによつて制御弁の開度
がどの位置にあつても常に最適な制御特性を得る
事が出来るため、被試験体の流量特性としては、
いかなる流量特性のものでも短時間にその流量特
性を計測する事ができ、よつて短時間に多くの数
の被試験体を試験する事ができる利点が得られ
る。 「実施例」 第1図にこの発明の一実施例をしめす。この図
にをいて第3図と対応する部分には同一符号を付
して示す。 この発明の特徴とする部分は比較手段6(これ
を以下では第一比較手段と称する)と制御手段8
の間に仮設定値発生手段13を設けた点にある。 仮設定値発生手段13は第一比較手段6から出
力される目標値7と現在の圧力測定値10との間
の偏差値が与えられたときその偏差値に応じた比
率の定数を出力する定数記憶手段14と、 この定数記憶手段14から読出した定数を第一
比較手段6から与えられる偏差値に乗算して仮設
定値21を出力する演算手段15と、 この演算手段15で算出した仮設定値21と圧
力測定値10との間の偏差を求める第二比較手段
17と、 第二比較手段17の比較結果がゼロになる毎に
演算手段15に演算指令信号を与え、次の仮設定
値を算出させる演算制御手段16と、 第二比較手段17の出力がゼロになるごとに制
御弁3の駆動を一時停止させる停止制御手段18
と、 この停止制御手段18の制御出力よつて転換制
御され制御手段8に停止制御信号を与える切替手
段19と、によつて構成する事ができる。 定数記憶手段14は例えばリードオンリーメモ
リによつて構成する事ができる。この定数記憶手
段14に第一比較手段6から目標値7と測定値1
0との間の偏差値を与える事によつてその偏差値
に対応した比率を持つ定数を読出す。 定数記憶手段14と演算手段15はデジタル回
路によつて構成する事が出来る。このため第一比
較手段6から出力される偏差信号はAD変換器2
2によつてデジタル信号に変換し、そのデジタル
変換出力を定数記憶手段14と演算手段15に与
える。 また演算手段15の出力側にはDA変換器23
を設け、演算して得られた仮設定値をアナログ信
号に変換して第二比較手段17に与える。 一方制御弁3に開度検出手段24を設け、この
開度検出手段24の検出出力を定数記憶手段14
に与え、制御弁3開度に応じて定数の読出領域を
選択する。尚開度検出手段24はその検出出力を
デジタル信号で出力する形式の検出器であるもの
とする。 一例として制御弁3の開度を全閉から全開の間
を10分割し、各分割した領域毎に偏差値に対応し
た定数を設定する。 その一例を以下に示す。
"Industrial Application Field" The present invention relates to an automatic pressure regulator that can be used to measure the flow characteristics of, for example, gas appliances or on-off valves used to control fluids. "Background of the Invention" For example, when measuring the flow characteristics of gas appliances or on-off valves, a known fluid pressure is applied to the test object, and the flow rate of the fluid at each fluid pressure is measured to determine the pressure-flow characteristics. . To carry out this measurement, a pressure generating means that can generate known pressure values over a wide range is required. ``Prior art'' For this reason, conventionally, gas pressure generated by an air pressure generating means is extracted through a control valve, and the opening degree of the control valve is controlled according to the pressure value to be applied to the test object. The pressure applied to the test object is changed, and the pressure-flow characteristics, etc. are measured by applying this pressure change to the test object. A device that applies a known pressure change to a test object in this way is generally called an automatic pressure regulator. FIG. 3 shows a conventional automatic pressure regulator. In the figure, numeral 1 indicates an air pressure generating means, and this air pressure generating means 1 may be, for example, either on the pressure side or the suction side of the compressor. The gas pressure generated by the pressure generating means 1 is transferred to the pipe 2.
is applied to the test object 4 via the control valve 3. Note that 11 is a manually operated valve, and 12 is a pressure indicator. These manually operated valve 11 and pressure indicator 12 are used to preset the gas pressure applied to the inlet side of the control valve 3 to a constant pressure value. The pressure of the gas applied to the test object 4 is measured by a measuring means 5, and the measured value is applied to a comparator 6. The comparator 6 compares the separately input target value 7 with the previously measured value, and outputs a deviation signal having the deviation value between the target value and the measured value to the output side of the comparator 6. This deviation signal is amplified by a servo amplifier constituting the control means 8 and drives the servo motor 9 to control the control valve 3. With this configuration, the gas pressure applied to the test object 4 is measured by the measuring means 5, and the measured value is compared with the target value 7, and the servo motor 9 controls the control valve 3 so that the deviation becomes zero. control, test object 4
is controlled so that the pressure value given to it is always maintained at the target value given from the outside. In order to change the pressure applied to the test object 4, it is sufficient to change the target value 7. In other words, by changing the target value 7, the control valve 3 changes its opening so that the measured value of the measuring means 5 becomes equal to the target value 7, and is controlled so that the target value 7 and the measured value are always in balance. be done. "Problems to be Solved by the Invention" When the target value 7 is changed in the conventional automatic pressure regulating device, the pressure value applied to the test object 4 changes in a direction that balances with the new target value. In this case, hunting is likely to occur because there is a delay between the movement of the control valve 3 and the actual change in gas pressure. In other words, if the response speed of the control valve 3 is increased, a transient response characteristic with hunting occurs as shown by curve A in FIG. 3, which has the disadvantage that it takes time for the pressure to stabilize. For this reason, it is possible to slow down the response speed of the control valve 3, but if the response speed of the control valve 3 is slowed down, the time T required for the pressure to reach the set value will become longer, as shown by curve B in Figure 3. Therefore, the time T required for the pressure to reach the set value is approximately the same as in the case of the transient response characteristic. In any case, when changing the pressure value applied to the test object 4, it takes a long time to stabilize to the changed target value, and the time required to test the characteristics of one test object becomes longer. There are drawbacks to this. For this reason, the pressure response characteristic is set to a transient response characteristic as shown by curve A in FIG. 3, and the control of the control valve 3 is stopped when the pressure measurement value approaches the new target value in this transient response characteristic. A method of controlling pressure to minimize excess pressure has been put into practice. However, even if control of the control valve 3 is stopped when the pressure value approaches the target value, it is difficult to stop the pressure value exactly at the target value. In other words, it is difficult to decide where to set the timing for stop control. However, there is a difference in the response time for pressure change between a state where the opening degree of the control valve 3 is small and a state where the opening degree is large. In other words, the time T required to reach the new target value tends to be shorter in the region where the opening degree of the control valve 3 is wide, and longer in the region where the opening degree of the control valve 3 is narrowed. For this reason, it is difficult to set the operating characteristics so that the pressure is exactly stable at the target value at any opening. The first purpose of this invention is to be able to stabilize the pressure value to a new target value in a short time when the target value is changed, and thereby to be able to measure the flow rate characteristics of the test object in a short time. Our goal is to provide an automatic pressure regulating device that can. A second object of the present invention is to provide an automatic pressure regulator that can obtain optimal response characteristics no matter where the opening degree of the control valve is. "Means for solving the problem" In the present invention, when changing the pressure value applied to the test object, a plurality of temporary setting values are provided between the newly set target value and the current pressure value, Control of the control valve is stopped for a certain period of time every time the pressure measurement value matches this provisional setting value. The values between the current pressure value and the temporary set value are set so that the values become gradually smaller as the measured pressure value approaches the target value. In this way, the temporary set value is gradually brought closer to the target value, and the pressure is made to match the target value in a short time. The present invention is further configured to vary the ratio between the current value and the temporary set value depending on the opening degree of the control valve, so as to obtain the optimum control characteristic depending on the opening degree of the control valve.
In other words, the ratio of the controlled amount up to the temporary set value is changed according to the opening degree of the control valve, and in the region where the control valve is throttled, the controlled amount up to the temporary set value is taken small, and the small controlled amount gradually reaches the target value. , and in a region where the control valve is open, the control amount up to the provisional set value is large. With this configuration, it is possible to always obtain the optimum control characteristics no matter what position the control valve is at, so the flow characteristics of the test object are as follows:
The flow rate characteristics of any flow rate characteristic can be measured in a short period of time, and therefore, there is an advantage that a large number of test objects can be tested in a short period of time. "Embodiment" FIG. 1 shows an embodiment of the present invention. In this figure, parts corresponding to those in FIG. 3 are designated by the same reference numerals. The features of this invention are the comparison means 6 (hereinafter referred to as the first comparison means) and the control means 8.
The point is that provisional set value generating means 13 is provided between the two. The temporary set value generating means 13 is a constant that outputs a constant of a ratio according to the deviation value when the deviation value between the target value 7 outputted from the first comparison means 6 and the current measured pressure value 10 is given. a storage means 14; a calculation means 15 for multiplying the constant read from the constant storage means 14 by the deviation value given from the first comparison means 6 and outputting a temporary setting value 21; and a temporary setting calculated by the calculation means 15. A second comparison means 17 calculates the deviation between the value 21 and the pressure measurement value 10. Every time the comparison result of the second comparison means 17 becomes zero, a calculation command signal is given to the calculation means 15 to determine the next provisional setting value. arithmetic control means 16 for calculating the value of
and a switching means 19 which is controlled by the control output of the stop control means 18 and provides a stop control signal to the control means 8. The constant storage means 14 can be constituted by, for example, a read-only memory. The constant storage means 14 stores the target value 7 and the measured value 1 from the first comparison means 6.
By giving a deviation value between 0 and 0, a constant having a ratio corresponding to the deviation value is read out. The constant storage means 14 and the calculation means 15 can be constructed by digital circuits. Therefore, the deviation signal output from the first comparing means 6 is transmitted to the AD converter 2.
2 into a digital signal, and the digital conversion output is applied to constant storage means 14 and calculation means 15. In addition, a DA converter 23 is connected to the output side of the calculation means 15.
is provided, and the tentative setting value obtained by calculation is converted into an analog signal and provided to the second comparing means 17. On the other hand, the control valve 3 is provided with an opening detection means 24, and the detected output of the opening detection means 24 is stored in the constant storage means 14.
is given, and a constant readout area is selected according to the opening degree of the control valve 3. It is assumed that the opening detection means 24 is a detector that outputs its detection output as a digital signal. As an example, the opening degree of the control valve 3 is divided into 10 areas between fully closed and fully open, and a constant corresponding to the deviation value is set for each divided area. An example is shown below.

【表】 このように制御弁3の開度に応じて偏差値Aの
読出領域を規定し、各開度の領域に於いて偏差値
を与える事により、その偏差値に対応した比率を
持つ定数を読出す事が出来る。 上記した例から明らかなように開度が小さい程
定数を小さく設定し、仮設定値の値と現在の値と
の間の偏差を小さく採つて1ステツプの制御量を
小さくし、応答の遅れに伴う行き過ぎ量を小さく
するようにしている。これに対し開度が大きい場
合は開度が小さい場合より応答が速いため定数を
大きく採つて1ステツプ制御量を大きくしてい
る。 定数記憶手段14から読出た定数は演算手段1
5に与えられ、演算手段15で第一比較手段6か
ら与えられる偏差値に定数を掛算し仮設定値を算
出する。仮設定値を第二比較手段17に与え、こ
の第二比較手段17おいて測定手段5から与えら
れる測定値10と仮設定値とを比較しその偏差値
を求める。 第二比較手段17から出力される偏差信号は切
替手段19を通じて制御手段8に与えられ、制御
手段8で増幅されてサーボモータ9を駆動し制御
弁3の開度を制御する。制御弁3の開度が制御さ
れる事によつて、測定手段5の計測値は第一の仮
設定値に近づき一致する。この一致した状態で第
二比較手段17の出力はゼロの状態となる。 停止制御手段18は第二比較手段17の出力が
ゼロの状態に達した事を検出すると切替手段19
を接地電位側に切り替え、制御手段8に接地電位
を与える。 この結果制御手段8はその後第二比較手段17
から圧力の応答遅れよつて行き過ぎが生じて偏差
が生じてもサーボモータ9の駆動を阻止し、制御
弁3の開度を一定の位置に維持し、ハンチングの
発生を阻止する。 停止制御手段18がサーボモータ9の駆動を阻
止している間に演算制御手段16は演算手段15
演算指令信号を与え、次の仮設定値を演算させ
る。 この状態では測定手段5の測定値は当初の値か
ら第一の仮設定値に達しているからら、その測定
値と目標値7との間の偏差値は先の値より小さく
なつている。従つてこの偏差値に応じて定数記憶
手段14から読出されている定数を第一比較手段
6から出力されている偏差値に乗算し第二の仮設
定値を算出する。 このようにして測定手段5の測定値10が仮設
定値に一致する毎にサーボモータ9を一定時間停
止させ、例えば数秒程度停止させ、仮設定値の値
を徐々に小さい値に変化させる事により、各仮設
定値において圧力の行き過ぎ量が徐々に小さくな
つて目標値に近づく。 「発明の効果」 以上説明したようにこの発明によれば目標値を
変更する場合に、その目標値と現在の圧力値との
間に複数の仮設定値を設け、この仮設定値の1ス
テツプの変化量を目標値までの偏差値に応じて
徐々に小さくなるように定数を決めたから、各仮
設定値において圧力の行き過ぎがつても、その行
き過ぎ量は徐々に小さくなり、目標値に近づいた
時は圧力値の行き過ぎ量は充分に小さくなる。 従つて初期値と第一仮設定値と間及び各仮設定
値の圧力の変化速度を過渡応答特性の変化速度に
採つて各仮設定値において行き過ぎが発生したと
しても、測定10が目標値に近づくに従つてその
行き過ぎ量は徐々に小さくなり目標値に一致する
時点では行き過ぎ量を充分小さくする事ができ
る。よつて短い時間で目的とする目標値に圧力の
値を合致させる事ができる。 更にこの発明では制御弁3の開度に応じて定数
を変化させ仮設定値を決める比率を変えるように
したから、制御弁3の開度がどの位置にあつても
最適な制御状態を維持する事が出来る。 よつてこの発明によれば短時間に目的とする圧
力値を持つ気体圧を被試験体4に次々と与える事
が出来、また制御弁の開度、つまり被試験体4を
通る気体の流量がどの流量域にあつても設定値の
変更に対して圧力の変化は短時間に設定値に追従
して変化するから、どのような流量を扱う被試験
体でも短時間にその流量特性を測定する事が出来
る実益が得られる。 尚、上述の実施例では仮設定値発生手段13を
その構成要素毎にブロツクで構成した場合を説明
したが、この部分をマイクロ・コンピユータに置
き換える事も出来る。 ま上述では初期位置から設定値までの間に仮設
定値を四つ設けた場合を説明したが、仮設定の数
に限定のない事は容易に理解出来よう。 また上述では被試験体4に与える気体の圧力を
測定し、その圧力測定値を基に目標値7との偏差
及び仮設定値との偏差を算出するように構成した
場合を説明したが、被試験体4に与える気体の流
量を測定し、この気体の流量を基に制御を行うよ
うに構成することが出来る。
[Table] By defining the readout area of the deviation value A according to the opening degree of the control valve 3 and giving the deviation value in each opening area, a constant with a ratio corresponding to the deviation value can be obtained. can be read out. As is clear from the above example, the smaller the opening, the smaller the constant is set, the smaller the deviation between the temporary setting value and the current value, and the smaller the control amount per step, which reduces the delay in response. We are trying to reduce the amount of excess that occurs. On the other hand, when the opening degree is large, the response is faster than when the opening degree is small, so a large constant is used to increase the one-step control amount. The constant read from the constant storage means 14 is stored in the calculation means 1.
5, and the calculation means 15 multiplies the deviation value given from the first comparison means 6 by a constant to calculate a provisional setting value. The provisional set value is given to the second comparing means 17, and the second comparing means 17 compares the measured value 10 given from the measuring means 5 with the provisional set value to obtain a deviation value. The deviation signal outputted from the second comparison means 17 is given to the control means 8 through the switching means 19, and is amplified by the control means 8 to drive the servo motor 9 and control the opening degree of the control valve 3. By controlling the opening degree of the control valve 3, the measured value of the measuring means 5 approaches and matches the first provisional set value. In this matched state, the output of the second comparing means 17 becomes zero. When the stop control means 18 detects that the output of the second comparison means 17 has reached the zero state, the stop control means 18 switches the switching means 19.
is switched to the ground potential side, and the ground potential is applied to the control means 8. As a result, the control means 8 then controls the second comparison means 17.
Even if a deviation occurs due to excessive pressure response delay, the servo motor 9 is prevented from driving, the opening degree of the control valve 3 is maintained at a constant position, and hunting is prevented from occurring. While the stop control means 18 prevents the servo motor 9 from being driven, the arithmetic control means 16 controls the arithmetic means 15.
Give a calculation command signal to calculate the next provisional setting value. In this state, since the measured value of the measuring means 5 has reached the first provisional setting value from the initial value, the deviation value between the measured value and the target value 7 is smaller than the previous value. Therefore, in accordance with this deviation value, the constant read out from the constant storage means 14 is multiplied by the deviation value outputted from the first comparison means 6 to calculate the second provisional setting value. In this way, each time the measured value 10 of the measuring means 5 matches the temporary set value, the servo motor 9 is stopped for a certain period of time, for example, for several seconds, and the temporary set value is gradually changed to a smaller value. , at each provisional setting value, the amount of excess pressure gradually decreases and approaches the target value. "Effects of the Invention" As explained above, according to the present invention, when changing a target value, a plurality of temporary set values are provided between the target value and the current pressure value, and one step of the temporary set value is changed. Since the constant was determined so that the amount of change in pressure gradually decreases according to the deviation value from the target value, even if there is an excess of pressure at each temporary setting value, the amount of excess will gradually decrease and approach the target value. At this time, the amount of excess pressure value becomes sufficiently small. Therefore, by taking the rate of change in pressure between the initial value and the first provisional setting value and at each provisional setting value as the rate of change of the transient response characteristic, even if an overshoot occurs at each provisional setting value, measurement 10 will reach the target value. The amount of overshoot gradually decreases as it approaches the target value, and when it matches the target value, the amount of overshoot can be made sufficiently small. Therefore, the pressure value can be made to match the desired target value in a short time. Furthermore, in this invention, the constant is changed according to the opening degree of the control valve 3, and the ratio for determining the provisional setting value is changed, so that the optimum control state can be maintained no matter where the opening degree of the control valve 3 is. I can do things. Therefore, according to the present invention, gas pressure having a target pressure value can be applied to the test object 4 one after another in a short time, and the opening degree of the control valve, that is, the flow rate of the gas passing through the test object 4 can be controlled. Regardless of the flow rate range, pressure changes will follow the set value in a short time when the set value is changed, so the flow characteristics of the test object that handles any flow rate can be measured in a short time. You can get real benefits by being able to do things. Incidentally, in the above-described embodiment, a case has been described in which the temporary set value generating means 13 is constructed of blocks for each component, but this portion can also be replaced with a microcomputer. In the above description, a case has been described in which four temporary setting values are provided between the initial position and the setting value, but it is easy to understand that there is no limit to the number of temporary settings. Furthermore, in the above description, a case has been described in which the pressure of the gas applied to the test object 4 is measured, and the deviation from the target value 7 and the deviation from the provisional setting value are calculated based on the measured pressure value. It can be configured to measure the flow rate of gas applied to the test object 4 and perform control based on this gas flow rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を説明するための
ブロツク図、第2図はこの発明の動作を説明する
ためのグラフ、第3図は従来の技術を説明するた
めのブロツク図、第4図は従来の欠点を説明する
ためのグラフである。 1:気圧発生手段、2:配管、3:制御弁、
4:被試験体、5:測定手段、6:第一比較手
段、7:目標値、8:制御手段、9:サーボモー
タ、10:測定値、11:手動弁、12:圧力指
示器、13:仮設定値発生手段、14:定数記憶
手段、15::演算手段、16:演算制御手段、
17:第二比較手段、18:停止制御手段、1
9:切替手段、21:仮設定値信号、22:AD
変換器、23:DA変換器。
FIG. 1 is a block diagram for explaining one embodiment of the present invention, FIG. 2 is a graph for explaining the operation of the present invention, FIG. 3 is a block diagram for explaining the conventional technique, and FIG. The figure is a graph for explaining the drawbacks of the conventional technology. 1: Air pressure generating means, 2: Piping, 3: Control valve,
4: Test object, 5: Measuring means, 6: First comparison means, 7: Target value, 8: Control means, 9: Servo motor, 10: Measured value, 11: Manual valve, 12: Pressure indicator, 13 : Temporary setting value generation means, 14: Constant storage means, 15: Calculation means, 16: Calculation control means,
17: Second comparison means, 18: Stop control means, 1
9: Switching means, 21: Temporary setting value signal, 22: AD
Converter, 23: DA converter.

Claims (1)

【特許請求の範囲】 1 A 気圧発生手段で発生する気圧が与えら
れ、その与えられた気体を通過させる被試験体
と、 B 上記気圧発生手段と被試験体との間に挿入さ
れ、被試験体を流れる気体の流量(又は被試験
体に与える気体の圧力)を制御する制御手段
と、 C この制御弁と上記被試験体との間に設けられ
被試験体に与えられる気体の流量又は圧力を計
測する測定手段と D この測定手段の測定値と目標値とを比較する
第一比較手段と、 E この第一比較手段の比較結果として得られる
偏差値に応じて予め決められた値を持つ定数を
出力する定数記憶手段と、 F この定数記憶手段から出力された定数を上記
第一比較手段から出力される偏差値に乗じて仮
設定値を算出する演算手段と、 G 上記測定手段の測定値と上記仮設定値との間
の偏差を求める第二比較手段と、 H この第二比較手段の比較出力がゼロに近づく
方向に上記制御弁の開度を制御する制御手段
と、 I この制御手段の制御によつて上記測定値が仮
設定値に一致する毎に上記演算手段において第
2、第3、……の仮設定値を順次算出させる演
算制御手段と、 J 上記制御手段の制御によつて上記測定値が仮
設定値に一致する毎に上記制御手段の制御を一
時停止させる停止制御手段と、 から成る自動調圧装置。
[Scope of Claims] 1. A test object to which air pressure generated by the air pressure generating means is applied and through which the given gas passes; B. A test object inserted between the air pressure generating means and the test object. a control means for controlling the flow rate of gas flowing through the body (or the pressure of gas applied to the test object); A measuring means for measuring D, a first comparing means for comparing the measured value of this measuring means with a target value, and E having a predetermined value according to the deviation value obtained as a comparison result of this first comparing means. a constant storage means for outputting a constant; F a calculation means for calculating a temporary setting value by multiplying the constant output from the constant storage means by the deviation value output from the first comparison means; G measurement of the measurement means. a second comparison means for determining the deviation between the value and the provisional setting value; H a control means for controlling the opening degree of the control valve in a direction in which the comparative output of the second comparison means approaches zero; I this control a calculation control means for causing the calculation means to sequentially calculate a second, third, . . . temporary setting value each time the measured value matches the temporary setting value by control of the means; Therefore, an automatic pressure regulating device comprising: stop control means for temporarily stopping the control of the control means every time the measured value matches a provisional setting value.
JP62072188A 1987-03-25 1987-03-25 Automatic pressure governing device Granted JPS63236939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62072188A JPS63236939A (en) 1987-03-25 1987-03-25 Automatic pressure governing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072188A JPS63236939A (en) 1987-03-25 1987-03-25 Automatic pressure governing device

Publications (2)

Publication Number Publication Date
JPS63236939A JPS63236939A (en) 1988-10-03
JPH0435700B2 true JPH0435700B2 (en) 1992-06-11

Family

ID=13481985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072188A Granted JPS63236939A (en) 1987-03-25 1987-03-25 Automatic pressure governing device

Country Status (1)

Country Link
JP (1) JPS63236939A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5314386B2 (en) * 2008-10-31 2013-10-16 アズビル株式会社 Leak detection system and leak detection method for sealed container
JP6006950B2 (en) * 2012-03-22 2016-10-12 カヤバ システム マシナリー株式会社 Flow test equipment
KR20230023029A (en) * 2020-08-31 2023-02-16 미츠비시 파워 가부시키가이샤 Diagnosis device, method and program for diagnosis of valve system

Also Published As

Publication number Publication date
JPS63236939A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
US4277832A (en) Fluid flow control system
US5424941A (en) Apparatus and method for positioning a pneumatic actuator
US4838483A (en) Vav valve control with transducer tolerance compensation
JPH07509048A (en) Control device for hydraulic drives or actuators
JPH05150839A (en) Valve controller and method of valve control
KR19980080866A (en) Fluid flow measurement and control device and method
JP3666107B2 (en) Flow control method
JPH01140038A (en) Measured value processing system
JP3417391B2 (en) Flow control method
JPH0435700B2 (en)
JP3404847B2 (en) Flow control method
JP4699948B2 (en) Valve control device
AU2001294045B2 (en) Method of and system for controlling the ratio of a variable lead parameter and an adjustable lag parameter for lag-lead process
AU2001294045A1 (en) Method of and system for controlling the ratio of a variable lead parameter and an adjustable lag parameter for lag-lead process
CN116203998A (en) Flow control device, flow control method, and recording medium
JPH09101826A (en) Pressure proportional control valve and method for controlling pressure of the control valve
JPH08335118A (en) Flow rate control method
JP7469089B2 (en) Mass flow controller and flow rate control method
JPH04151083A (en) Control circuit for poppet valve
US5537388A (en) Method and apparatus for characterizing and compensating for non-linear components
JPS5965319A (en) Control method for fluid pressure
US4597405A (en) Process and apparatus for controlling a controllable magnitude and use of the process
JP3547263B2 (en) Molding machine
KR100786010B1 (en) Dynamometer control system with P.I.DProportional Integral Derivative control algorithm
JPS60144804A (en) Flow rate controller