JPS59220961A - Complementary mos semiconductor device - Google Patents

Complementary mos semiconductor device

Info

Publication number
JPS59220961A
JPS59220961A JP58096144A JP9614483A JPS59220961A JP S59220961 A JPS59220961 A JP S59220961A JP 58096144 A JP58096144 A JP 58096144A JP 9614483 A JP9614483 A JP 9614483A JP S59220961 A JPS59220961 A JP S59220961A
Authority
JP
Japan
Prior art keywords
type
island
layer
region
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58096144A
Other languages
Japanese (ja)
Inventor
Junichi Ono
淳一 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58096144A priority Critical patent/JPS59220961A/en
Publication of JPS59220961A publication Critical patent/JPS59220961A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thin Film Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To fix the potential of a semiconductor layer without increasing its area by a method wherein semiconductor island regions of different conductivity types are formed on an insulation substrate, which regions are then provided with the source and drain regions of the conductivity types different from that of the island regions, respectively, and a wiring is provided by covering the p-n junction exposed to the side surface of the island regions. CONSTITUTION:The p type and n type semiconductor layers 46 and 47 respectively of island form are provided on the insulation substrate 4 of sapphire, etc., and, with the center of the layer 46 unchanged, a p<+> type layer 51 is diffusion- formed on both sides thereof. Next, the n<+> type source region 521 and drain region 531 are provided thereon. Likewise, with the center of the other n type layer 47 unchanged, the p<+> type drain region 532 and source region 522 overlying an n<+> type layer 54 are provided on both sides thereof. Thereafter, gate electrodes 49 respectively via gate oxide films 501 and 502 are provided between the source and drain regions. After the whole is covered with an SiO2 film 55, windows, are opened, and Al electrodes 57 and 58 are adhered on the junction surface of the regions 51 and 52 with the regions 54 and 522. Besides, the region 531 is connected to the region 532 by means of the electrode 59.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は絶縁基板上に設けられた相補fiMO8半導体
装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION The present invention relates to improvements in complementary fiMO8 semiconductor devices provided on insulating substrates.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、絶縁基板上の相補型MO8半導体装置としては、
第1図及び第2図に左すCMO8/SO8構造のものが
知られている。即ち7図中の1はサファイア基板であり
、この基板1上にはp型の島状シリコン層2とn型の島
状シリコン層3とが互に隣接して設けられている。前記
p型の島状シリコン層2の表面には互に電気的に分離さ
れたn+型ンース、ドレイン領域41+51が設けられ
ており、かつこれら領域41151間のチャンネル領域
を含む半導体層2上にはダート酸化膜61を介してダー
ト電極7が設けられている。
Conventionally, complementary MO8 semiconductor devices on insulating substrates include:
A CMO8/SO8 structure shown in FIGS. 1 and 2 is known. That is, 1 in FIG. 7 is a sapphire substrate, and on this substrate 1, a p-type island-like silicon layer 2 and an n-type island-like silicon layer 3 are provided adjacent to each other. On the surface of the p-type island-like silicon layer 2, n+ type source and drain regions 41+51 which are electrically isolated from each other are provided, and on the semiconductor layer 2 including the channel region between these regions 41151, A dirt electrode 7 is provided with a dirt oxide film 61 interposed therebetween.

また、前記n型の島状シリコン層3の表面には互に電気
的に分離されたp+型のンース、ドレイン領域42.5
2が設けられており、かつこれら領域42.52間のチ
ャンネル領域を含む島状半導体層3上にはゲート酸化膜
62を介してダート電極7が設けられている。なお、ダ
ート軍、極7は第2図に示す如くコ字形状をなしnチャ
ンネル、pチャンネルMO8)ランジスタの共通電極と
なっている。更に全面に絶縁膜8が被覆されており、こ
の絶縁膜8上に前記層型ンース領域41sp+型ンース
領域42と夫々コンタクトホール9,9を介して接続し
たソース取出し配線10.11が設けられている。この
配線10はグランド(0■)に固定され、配線11はV
DD (+5 V )に固定されている。前記絶縁膜8
上には前記計型ドレイン領域51%P+型ドレイン領域
52とコンタクトホール9,9を介して共通接続したド
レイン取出し配線(Vout )12が設けられている
。また、前記絶縁膜8上には前記r−)電極7とコンタ
クトホール9を介して接続したダート取出し配線(vi
n)13が設けられている。
Further, on the surface of the n-type island-like silicon layer 3, p+ type source and drain regions 42.5 are electrically isolated from each other.
A dirt electrode 7 is provided on the island-shaped semiconductor layer 3 including the channel region between these regions 42 and 52 with a gate oxide film 62 interposed therebetween. Note that the dirt pole 7 has a U-shape as shown in FIG. 2, and serves as a common electrode for the n-channel and p-channel MO8) transistors. Further, the entire surface is covered with an insulating film 8, and on this insulating film 8, source lead-out interconnections 10 and 11 are provided which are connected to the layer type source region 41sp+ type source region 42 through contact holes 9, 9, respectively. There is. This wiring 10 is fixed to ground (0■), and wiring 11 is fixed to V
It is fixed at DD (+5 V). The insulating film 8
A drain lead-out wiring (Vout) 12 is provided above, which is commonly connected to the 51% P+ type drain region 52 through contact holes 9, 9. Further, on the insulating film 8, there is a dirt lead-out wiring (vi) connected to the r-) electrode 7 through a contact hole 9.
n) 13 are provided.

上述したCMO8/SO3において、Vinl 3にパ
H#レベルの信号(通常+5v程度)を入力すると、n
チャンネルMO8)ランノスタハ0 N。
In the above-mentioned CMO8/SO3, when inputting a PH# level signal (usually about +5V) to Vinl 3, n
Channel MO8) Rannostacha 0 N.

pチャンネルMO8)ランジスタはOFF l、、Vo
ut12は“’ L ’ レベル(oV付近)となる。
p channel MO8) transistor is OFF l,, Vo
ut12 is at "L" level (near oV).

一方、”in 13に“L#レベルの信号(ov程度)
が入力すると、nチャンネルMO8)ランジスタはOF
F、pチャンネルMO8)ランジスタはONして■。u
t13はVDDレベル、っまり゛H#レベル(+5v付
近)となる。
On the other hand, “in 13” has a “L# level signal (about OV)”
is input, the n-channel MO8) transistor is OF
F, p channel MO8) Turn on the transistor ■. u
At t13, the voltage becomes the VDD level, which is exactly the H# level (near +5V).

しかしながら、各MO8)ランノスタのチャンネル長(
第1図中のLeff n 、 Leff p )が小さ
くなってくると、各島状半導体層2,3はフローティン
グ状態であるため、トランジスタの静特性に変化が起こ
り、キンク電流と呼ばれる電流が流れる。これを第3図
を参照して説明する。
However, each MO8) Runnostar channel length (
When Leff n , Leff p in FIG. 1 becomes small, each of the island-shaped semiconductor layers 2 and 3 is in a floating state, so a change occurs in the static characteristics of the transistor, and a current called a kink current flows. This will be explained with reference to FIG.

但し、キンク電流はnチャンネル及びpチャンネルのい
ずれにも現れるが、特にnチャンネルにおいて顕著に現
れるので第3図ではnチャンネルのMOS )ランジス
タの場合を示した。第3図中の21はザファイア基板、
22はp型の島状シリコン層、23.24はi型のソー
ス、ドレイン領域、25はとftら領域33.24間を
含むシリコン層22上にダート酸化膜26を介して設け
られたダート電極である。27はソース配線で通常グラ
ンド(Ov)に固定されている。28はドレイン配線で
、ここにかかる電圧をVDとする。更に29はテート配
線で、ここにかかる電圧をVGとする。
However, although kink current appears in both n-channel and p-channel, it appears particularly prominently in n-channel, so FIG. 3 shows the case of an n-channel MOS transistor. 21 in Figure 3 is the Zaphire board;
22 is a p-type island silicon layer, 23 and 24 are i-type source and drain regions, and 25 is a dart provided on the silicon layer 22 including the area between the and ft regions 33 and 24 via a dirt oxide film 26. It is an electrode. Reference numeral 27 is a source wiring which is normally fixed to ground (Ov). 28 is a drain wiring, and the voltage applied thereto is VD. Further, 29 is a Tate wiring, and the voltage applied thereto is VG.

第3図図示のnチャンネルMO8)ランソスクにおいて
、ダート配線29に加えられるVGがしきい値電圧(V
T)以上になると、チャンネル領域30が形成され、ソ
ース領域23からの電子31はドレイン領域24に加え
られたvDの電界に引かれてチャンネル領域30.チャ
ンネルに沿うシリコン層領域32を移動し、ドレイン領
域24に達し、これによってドレイン電流として観鱗さ
れる。しかしながら、チャンネル長が短かくなると、移
動する電子31は前記シリコン層領域32で高電界によ
る衝突電離を誘発し易くなり、その結果電子−正孔対を
生成し易くなる。ここで発生した電子33はドレイン配
線28の電界に引かれてドレイン領域24へ流れ込むが
、正孔34はフローティング状態となっているシリコン
層22へ流れ込む。その結ンース領域23とp型シリコ
ン層22のpn接合の順方向電位障壁を越える正孔が蓄
積されると、ソース領域23とシリコンNlI22とド
レイン領域24とでnpn )ランジスタが形成され、
より大量の電流35が流れる。
In the n-channel MO8) shown in FIG. 3, the VG applied to the dirt wiring 29 is the threshold voltage (V
T), a channel region 30 is formed, and electrons 31 from the source region 23 are attracted by the electric field of vD applied to the drain region 24, and the channel region 30. It travels through the silicon layer region 32 along the channel and reaches the drain region 24, thereby being viewed as a drain current. However, as the channel length becomes shorter, the moving electrons 31 are more likely to induce impact ionization in the silicon layer region 32 due to the high electric field, and as a result, electron-hole pairs are more likely to be generated. The electrons 33 generated here are attracted by the electric field of the drain wiring 28 and flow into the drain region 24, but the holes 34 flow into the silicon layer 22 which is in a floating state. When holes exceeding the forward potential barrier of the pn junction between the source region 23 and the p-type silicon layer 22 are accumulated, an npn transistor is formed by the source region 23, silicon NlI 22, and drain region 24,
A larger amount of current 35 flows.

上述したキンク電流が表われた静特性を具体的に示すと
、第4図の如くなる。第4図中の横軸はドレイン電圧■
D1縦軸はドレイン電流IDであり、パラメータにはV
Gをとっである。
The static characteristics in which the above-mentioned kink current appears are specifically shown in FIG. 4. The horizontal axis in Figure 4 is the drain voltage■
The vertical axis of D1 is the drain current ID, and the parameters include V
I took G.

また、図中の実線は第1図の構造でLe f f n 
=1.0μmのMOS )ランジスタであり、点線は第
1図図示のp凰シリコン層2をグランド(OV)に接続
しその電位を固定した場合である。この第4図より、実
線の方が明らかにバイポーラ動作に類似した異常電流が
流れており、これがキンク電流である。
Moreover, the solid line in the figure is the structure of Figure 1, and Le f f n
The dotted line indicates the case where the p-oxide silicon layer 2 shown in FIG. 1 is connected to the ground (OV) and its potential is fixed. From FIG. 4, the solid line clearly shows an abnormal current flowing that is similar to bipolar operation, and this is a kink current.

また、実へのインバータ特性を第5図に示す。Further, the actual inverter characteristics are shown in FIG.

図中の実線は第1図に示した0MO8/SO8のインバ
ータ特性、点線は第1図図示の0MO8/SO8の島状
シリコン層2,3に夫々グランド、vDpを接続したと
きのインバータ特性である。この第5図より明らかな如
く、実線ではVin=0.5〜2v付近にかけて°1(
″レベルが充分に出す、インバータ特性がなだらかにな
る。これは、前述した第4図の特性図において、例えば
VG二1.Ov(インバータのVin=1.0V )の
とき(nチャンネル、pチャンネルのMOS )ランジ
スタのいずれもONしているので、そのインバータ出力
はnチャンネル、pチャンネルのMOS )ランジスタ
のコンダクタンス比で決まる)には、点線では僅かに約
10μAの電流が流れるにすぎないが、実線ではキンク
電流のために約95μAもの電流が流れることになり、
第5図での出力レベルが充分に″H’レベルにならない
ためである。更に、チャンネル長(Leffn)が短く
なれば、第4図に示したキンク電流は増大し、インバー
タ特性に変化をもたらし、ついにはVinが°′L#レ
ベルであっても■。utから”t Hsレベルの信号が
出力されなかったり或いは逆にVin75K ” H”
レベルであっても■。utから″L#レベルの信号が出
力されなかったりして、正常なインバータ特性を示さず
、半導体装置として動作しなくなる。
The solid line in the figure is the inverter characteristic of 0MO8/SO8 shown in FIG. 1, and the dotted line is the inverter characteristic when ground and vDp are connected to the island-like silicon layers 2 and 3 of 0MO8/SO8 shown in FIG. 1, respectively. . As is clear from Fig. 5, the solid line shows °1(
``The level is sufficiently high, and the inverter characteristics become gentle.This can be seen in the characteristics diagram of Fig. 4 mentioned above, for example, when VG21.Ov (inverter Vin=1.0V) (n channel, p channel Since all of the MOS () transistors are ON, the inverter output is determined by the conductance ratio of the n-channel and p-channel MOS () transistors, so a current of only about 10 μA flows as shown by the dotted line. In the solid line, a current of approximately 95 μA flows due to the kink current,
This is because the output level in Figure 5 does not reach a sufficiently high level.Furthermore, if the channel length (Leffn) becomes shorter, the kink current shown in Figure 4 increases, causing a change in the inverter characteristics. In the end, even if Vin is at °'L# level, the signal of "t Hs level" is not output from ■.ut, or conversely, Vin75K "H"
■Even at the level. Since the "L#" level signal is not outputted from ut, the inverter does not exhibit normal inverter characteristics and does not operate as a semiconductor device.

このようなことから、第6図及び第7図に示す如く、p
型の島状シリコン層2及びn型の島状シリコン層3の一
部を夫々チャンネル幅方向に延出させ、それら延出部2
a、3aに夫々コンタクトホール9,9を介して夫々グ
ランドに固定される配線14、VDDに固定される配線
15を接続した構造にすることによシ各島状シリコン層
2,3のフローティングを防止することが行なわれてい
る。しかしながら、かか1構造の0MO8/SO8にあ
っては第7図に示す如く各半導体層2,3の電位固定の
ために延出部2a。
For this reason, as shown in Figures 6 and 7, p
A part of the mold island-like silicon layer 2 and the n-type island-like silicon layer 3 are respectively extended in the channel width direction, and the extending portions 2
Floating of each island-like silicon layer 2, 3 is prevented by creating a structure in which a wiring 14 fixed to ground and a wiring 15 fixed to VDD are connected to a, 3a through contact holes 9, 9, respectively. Prevention is being done. However, in the case of OMO8/SO8 having a single structure, as shown in FIG. 7, an extension portion 2a is provided to fix the potential of each semiconductor layer 2, 3.

3&を形成した)、別個に配mi 41 J sを設け
る必要があるため、素子面積等が増大し、ひいては高集
積化の障害となる。
3&), it is necessary to separately provide the mi 41 J s, which increases the element area and becomes an impediment to high integration.

また、別の改良したCMO8/S O8として、第8図
及び第9図に示す如く、p型の島状シリコン層2及びn
型の島状シリコン層3に夫々P+型層16、層型層17
をソース領域4.,42と隣接して設け、かつグランド
に固定される配線10′をコンタクトホール9を介して
前記ンース佃域41及びP+型層16にまたがって接続
させると共に、VDDに固定される配線11′をコンタ
クトホール9を介して前記ソース領域42及びn型層1
7にまたがって接続させた構造のものが知られている。
In addition, as another improved CMO8/SO8, as shown in FIGS. 8 and 9, p-type island silicon layer 2 and n
A P+ type layer 16 and a layer type layer 17 are respectively formed on the island-like silicon layer 3 of the mold.
Source area 4. . The source region 42 and the n-type layer 1 are connected through the contact hole 9.
A structure in which the wires are connected across 7 is known.

しかしながら、かかる(JiOS/S O8にあっては
、各島状シリコン層3に夫々ソース。
However, in the case of such (JiOS/S O8), each island-like silicon layer 3 has a source.

ドレイン領域とは別のP+型層16及びn+型層17を
設けるために、各島状シリコン層2,3の面積が増大し
、ひいては高集積化の障害となる。
Since the P+ type layer 16 and the N+ type layer 17 are provided separately from the drain region, the area of each island-shaped silicon layer 2, 3 increases, which becomes an obstacle to high integration.

〔発明の目的〕[Purpose of the invention]

本発明は島状の半導体/?fの面積増大を招くことなく
各半導体層の電位を固定するだめの配線を接続して短チ
ャンネル化に伴なうキンク電流による素子特性の劣化を
防止した相補型MO8半導体装置を提供しようとするも
のである。
The present invention is an island-shaped semiconductor/? An attempt is made to provide a complementary MO8 semiconductor device in which deterioration of device characteristics due to kink current accompanying short channelization is prevented by connecting sufficient wiring to fix the potential of each semiconductor layer without causing an increase in the area of f. It is something.

〔発明の概要〕[Summary of the invention]

本発明は絶縁基板上の互に導電性の異なる島状の半導体
層に少なくともソース領域をその領域底面が絶縁基板表
面に対して所望距離はなれるように形成し、該半導体1
曽側面に表出したソース領域と同半導体層部分との両者
にまたがって接続した配線を設けることによって、半導
体層の面積増大を招くことなく、半立体層の電位を固定
できるようにしたことを骨子とする。
The present invention forms at least a source region in island-shaped semiconductor layers having mutually different conductivities on an insulating substrate so that the bottom surface of the region is separated from the surface of the insulating substrate by a desired distance, and
By providing a wiring that spans both the source region exposed on the top side and the semiconductor layer, it is possible to fix the potential of the semi-solid layer without increasing the area of the semiconductor layer. Make it the gist.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明の実施例を第10図(a)〜(e)及び第
11図に示す製造方法を併記して詳細に説明する。
Next, embodiments of the present invention will be described in detail with reference to the manufacturing method shown in FIGS. 10(a) to 11(e) and FIG.

(i)まず、厚さ500〜600μmのサファイア基板
41上にシランガス(SiH4)の熱分解によって厚さ
1μmの単結晶シリコン層42をエピタキシャル成長さ
せた。つづいて、シリコン層42を熱酸化処理して厚さ
900XのS i02膜43を成長させた後、全面にC
VD法により厚さ約4500XのS i 3N4膜44
を堆積した。ひきつづき、5i5N4膜の島状の半導体
層予定部(素子領域予定部)に写真蝕刻法によシレジス
トパター745.45を形成した(第1O図(a)図示
)。
(i) First, a single crystal silicon layer 42 with a thickness of 1 μm was epitaxially grown on a sapphire substrate 41 with a thickness of 500 to 600 μm by thermal decomposition of silane gas (SiH4). Subsequently, the silicon layer 42 is thermally oxidized to grow an Si02 film 43 with a thickness of 900×, and then carbon is applied to the entire surface.
Si 3N4 film 44 with a thickness of about 4500× by VD method
was deposited. Subsequently, a resist pattern 745.45 was formed by photolithography on the island-shaped semiconductor layer portion of the 5i5N4 film (the intended element region portion) (as shown in FIG. 1O(a)).

(ii )次いで、レノストパターン45.45をマス
クとしてRIE法によりSi3N4膜、 5i02膜を
選択的にエツチング除去し、更にパターニングされた5
i5N4膜、 5io2膜をマスクとしてシリコン層4
2 ヲKOH+インプロピルアルコールのエッチャント
で選択的にエツチングして側面カ゛約55°のテーパ角
を有する2つの島状シリコン層46.47を形成した。
(ii) Next, the Si3N4 film and the 5i02 film were selectively etched away by RIE using the Lennost pattern 45.45 as a mask, and the patterned 5i02 film was removed by selective etching.
Silicon layer 4 using i5N4 film and 5io2 film as masks
2) Two island-like silicon layers 46 and 47 having a taper angle of about 55° on the sides were formed by selectively etching with an etchant of KOH+inpropyl alcohol.

つづいて、レジストパターン、ノやターニングサレタ5
i5N4 膜、 5i02膜を順次除去した(第10図
(b)図示)。
Next, the resist pattern, Noya Turning Saleta 5
The i5N4 film and the 5i02 film were sequentially removed (as shown in FIG. 10(b)).

(iii ’)次いで、熱酸化処理して各島状y IJ
コン層の露出面に厚さ500Xの酸化膜4Bl、4B、
を夫々成長させた。つづいて、島状シリコン層46にゾ
ロンを加速電圧180 keV 、  ドーズ量2X 
1012/a♂の条件でイオン注入し、更にボロ7 ’
を加速Tt圧40 keV 、  l’ −ス量4.5
 X lO” /crn2の条件でイオン注入して島状
シリコン層46をp型に変換した。ひきつづき、島状シ
リコン層47にリンを加速電圧260 keV 、  
ドーズ鈑2×1O12/cn12の条件でイオン注入し
、更にリンを加速′電圧40keV、ドーズ量1.4 
X 1012/an2の条件でイオン注入して島状シリ
コン1−47をn型に変換した。その後、全面にリンを
高濃度含む多結晶シリコン層をCVD法により堆積し、
これをフォトエツチング技術により・母ターニングして
各島状シリコン層46.47の酸化膜481,482上
の一部に延出するコ字形のダート電極49を形成した(
第10図(C)図示)。
(iii') Next, thermal oxidation treatment is performed to form each island y IJ.
Oxide films 4Bl, 4B with a thickness of 500X on the exposed surface of the contact layer,
grew respectively. Next, zolon was applied to the island-like silicon layer 46 at an acceleration voltage of 180 keV and a dose of 2X.
Ion implantation was performed under the conditions of 1012/a♂, and further 7'
Accelerate Tt pressure 40 keV, l'-su amount 4.5
The island-like silicon layer 46 was converted to p-type by ion implantation under the conditions of
Ion implantation was performed under the conditions of a dose of 2×1 O12/cn12, and phosphorus was further accelerated at a voltage of 40 keV and a dose of 1.4.
Ion implantation was performed under the conditions of X 1012/an2 to convert the island-like silicon 1-47 to n-type. After that, a polycrystalline silicon layer containing a high concentration of phosphorus is deposited on the entire surface by CVD method,
This was turned by photoetching technology to form a U-shaped dart electrode 49 extending over a portion of the oxide films 481 and 482 of each island-like silicon layer 46 and 47.
(Illustrated in FIG. 10(C)).

(1v)次いで、ダート電極49をマスクとして酸化膜
481*48gを選択的にエツチング除去してダート酸
化膜501.50Qを夫々形成した。つづいて、n型の
島状シリコン層47を図示しないレジストパターンで覆
った後、該レジストノにターン及びダート電極49をマ
スクとしてp型の島状シリコン層46にボロンを加速電
圧180keV 、  ドーズ量5×1015/6n2
の条件でイオン注入してサファイア基板41の界面近傍
にピークをもつボロンイオン注入層を形成し、更に同様
なマスクを用いて同島状シリコン層46に砒素を加速電
圧40keV、  ドーズiAc 2 X 1 o15
/m2の条件でイオン注入してシリコン層46の表面近
傍にピークをもつリンイオン注入層を形成した。ひきつ
づき、し、シストパターンを除去し、イオン注入された
p型の島状シリコン層46をレジストパターン(図示せ
ず)で核った後、該レジストパターン及びダート電極4
9をマスクとしてn型の島状シリコンWi47にリンを
加速電圧26’0keV、ドーズ量5×1015/cI
n2の条件でイオン注入してサファイア基板41の界面
近傍にピークをもつリンイオン注入層を形成し、更に同
様なマスクを用いて同島状シリコン層47にボロンを加
速電圧40keVX ドーズ量2 X 1015/cm
2の条件でイオン注入してシリコン層47の表面近傍に
ピークをもつボロンイオン注入層を形成した。その後、
レジストパターンを除去し、熱処理を施した。この時、
・、p型の島状シリ2コン46のボロンイオン注入層。
(1v) Then, using the dirt electrode 49 as a mask, the oxide film 481*48g was selectively etched away to form dirt oxide films 501 and 50Q, respectively. Subsequently, after covering the n-type island-shaped silicon layer 47 with a resist pattern (not shown), turn the resist and use the dart electrode 49 as a mask to apply boron to the p-type island-shaped silicon layer 46 at an accelerating voltage of 180 keV and a dose of 5. ×1015/6n2
A boron ion implantation layer having a peak near the interface of the sapphire substrate 41 is formed by ion implantation under the following conditions, and arsenic is further implanted into the island-shaped silicon layer 46 using the same mask at an acceleration voltage of 40 keV and a dose of iAc 2 X 1 o15.
A phosphorus ion implantation layer having a peak near the surface of the silicon layer 46 was formed by ion implantation under the condition of /m2. Subsequently, the cyst pattern is removed and the ion-implanted p-type island-like silicon layer 46 is covered with a resist pattern (not shown).
Using 9 as a mask, phosphorus was applied to n-type island silicon Wi47 at a voltage of 26'0 keV and a dose of 5 x 1015/cI.
A phosphorus ion implantation layer having a peak near the interface of the sapphire substrate 41 is formed by ion implantation under n2 conditions, and boron is further implanted into the island-like silicon layer 47 using a similar mask at an acceleration voltage of 40 keVX and a dose of 2 x 1015/cm.
Ion implantation was performed under the conditions of 2 to form a boron ion implanted layer having a peak near the surface of the silicon layer 47. after that,
The resist pattern was removed and heat treatment was performed. At this time,
・Boron ion implantation layer of p-type silicon island 46.

砒素イオン注入層が活性化、拡散して互に電気的に分離
され、サファイア基板41表面と接するf型層51.5
1及びこれらp+十型fi51゜51上からシリコン層
46表面に亘る部分に位置し、互に電気的に分離された
n生型のターン。
The arsenic ion-implanted layer is activated and diffused to form an f-type layer 51.5 that is electrically isolated from each other and is in contact with the surface of the sapphire substrate 41.
1 and these p+ ten type fi51゜51 n type turns located in a portion extending from above 51 to the surface of the silicon layer 46 and electrically isolated from each other.

ドレイン領域5.21,581が夫々形成された。同時
に、n型の島状シリコン層47のリンイオン注入M +
 yl?ロンイオン注入層が活性化、拡散して互に電気
的に分離され、サファイア基板41表面と接するn+型
層54.54及びこれらn+型層54..54上からシ
リ゛コン層47表面に亘る部分に位置し、互に電気的に
分離されたp+型のソース、ドレイン領域522,53
2が夫々形成された(第1O図(d)図示)。
Drain regions 5.21 and 581 were formed, respectively. At the same time, phosphorus ions are implanted into the n-type island silicon layer 47 M +
yl? The ion-implanted layers are activated and diffused to be electrically isolated from each other, and the n+ type layers 54 and 54 are in contact with the surface of the sapphire substrate 41, and these n+ type layers 54. .. p+ type source and drain regions 522 and 53 located in a portion extending from the top of 54 to the surface of the silicon layer 47 and electrically isolated from each other.
2 were formed respectively (as shown in FIG. 1O(d)).

(V)次いで、全面にCVD −S i02膜55を堆
積した後、フォトエツチング技術によp CVD −8
102膜55にコンタクトホール561〜561Iを開
孔した。なお、コンタクトホール561はp型の島状シ
リコン層46のテーパ状側面に表出したp型層5ノとn
+型ンソー領域521の両方に亘る部分に対応するCV
D −5i02膜55の箇所に形成されている。コンタ
クトホール562はn ff2の島状シリコン層47の
テーパ状側面に表出したn生型層54どp+型ンソー領
域522の両方に亘る部分に例応するC■−3to2膜
55の箇所に形成されている。また、コンタクトホール
se3.se、ハrV/(7領域531+532に対応
するCVD −8102膜550箇所鉦、コンタクトホ
ール566はサファイア基板41上のダート電極49部
分に対応するCVD−8i02膜55の箇所に夫々形成
されている。つづいて、全面にAtI換を蒸着し、これ
をバターQングしてコンタクトホール561を介して前
記p+型層51及びn+型ソース領域521の両者に接
続し九At配線57、コンタクトホール562を介して
前記n+型層54及びp+型ンソー領域622の両者に
接続したAt配線58、コンタクトホール568..5
64を介して前記n+型、p+型のドレイン領域531
,532に共通接続したAt配線59、並びにコンタク
トホール561Iを介して前記ゲート電極49に接続し
たAt配線60を形成し、0MO8/SO8を製造した
(第10図(e)及び第11図図示)。なお、第11図
は第10図(、)の平面図である。
(V) Next, after depositing a CVD-S i02 film 55 on the entire surface, p CVD-8
Contact holes 561 to 561I were opened in the 102 film 55. Note that the contact hole 561 is formed between the p-type layer 5 and the n-type layer exposed on the tapered side surface of the p-type island-like silicon layer 46.
CV corresponding to the part extending over both of the +-type insertion regions 521
It is formed at the location of the D-5i02 film 55. The contact hole 562 is formed at a location in the C■-3to2 film 55 corresponding to a portion extending over both the n-type layer 54 and the p+ type source region 522 exposed on the tapered side surface of the nff2 island-like silicon layer 47. has been done. In addition, contact hole se3. contact holes 566 are formed in the CVD-8i02 film 55 corresponding to the dirt electrode 49 portion on the sapphire substrate 41. Subsequently, an AtI layer is vapor deposited on the entire surface, and it is butter-filled and connected to both the p+ type layer 51 and the n+ type source region 521 through the contact hole 561, and the AtI wiring 57 is connected to the n+ type source region 521 through the contact hole 562. The At wiring 58 and contact holes 568..5 connected to both the n+ type layer 54 and the p+ type region 622
64, the n+ type and p+ type drain regions 531
, 532, and an At wire 60 connected to the gate electrode 49 via a contact hole 561I, 0MO8/SO8 was manufactured (as shown in FIGS. 10(e) and 11). . Note that FIG. 11 is a plan view of FIG. 10 (,).

本発明の(JiO8/SO8は第10図(e)及び第1
1図に示す如くサファイア基板4ノ上に側面がチー・り
状をなす互に導電性の夕〜4るp型、n型の島状シリコ
ンwj46.47を隣接して設け、p型の島状シリコン
層46表面にn+型のソース。
(JiO8/SO8 of the present invention is shown in FIG. 10(e) and
As shown in Figure 1, on a sapphire substrate 4, mutually conductive silicon islands of p-type and n-type, each having a chi-shaped side surface, are provided adjacent to each other, and p-type islands are formed. An n+ type source is formed on the surface of the silicon layer 46.

ドレイン領域521,531を互に電気的に分離して設
けると共に、n型の島状シリコン層47表面にp+型の
ソース、ドレイン領域52□、532を互に電気的に分
離して設け、かつこれらソース。
Drain regions 521 and 531 are provided electrically isolated from each other, and p+ type source and drain regions 52□ and 532 are provided electrically isolated from each other on the surface of the n-type island silicon layer 47, and These sources.

ドレイン領域521 、531 + 52* + 53
2底面とサファイア基板41表面との間の各島状シリコ
ン層46.47部分に夫々p1型層51,51、n+型
層54.54を設け、前記ソース・、ドレイン領域52
1.531.522,532の間の各島状シリコン層4
6.47表面に夫々ダート酸化膜501゜50□を介し
てダート電極49を設け、更に全面にCVD−5to2
膜55を被覆し、該5i02膜55上にM配線57をp
型の島状シリコン層46のテーパ状側面のソース領域5
21及び該ソース領域521下のp+型層5ノの両者に
コンタクトホール561を介して接続すると共に、同5
102膜55上にAt配線58をn型の島状シリコン層
47のテーパ状側面のソース領域522及び該ソース領
域522下のn+型層54の両者にコンタクトホール5
62を介して接続した構造になっている。
Drain region 521, 531 + 52* + 53
P1 type layers 51, 51 and n+ type layers 54, 54 are provided in each island-shaped silicon layer 46, 47 between the bottom surface of 2 and the surface of the sapphire substrate 41, and the source/drain regions 52
Each island-shaped silicon layer 4 between 1.531.522 and 532
6.47 A dirt electrode 49 is provided on each surface through a dirt oxide film 501°50□, and further CVD-5to2 is applied to the entire surface.
The film 55 is covered, and the M wiring 57 is placed on the 5i02 film 55.
Source region 5 on the tapered side surface of the island-like silicon layer 46 of the mold
21 and the p+ type layer 5 under the source region 521 via a contact hole 561, and
A contact hole 5 is formed in both the source region 522 on the tapered side surface of the n-type island-like silicon layer 47 and the n+-type layer 54 below the source region 522.
The structure is connected through 62.

しかして、本発明によればp型の島状シリコン層46に
おいてはそのテーパ状の側面を利用してn+型ンソー領
域521とその下のp+型層51の両者にコンタクトホ
ール561を介してA7配線57を接続し、かつn型の
島状シリコン層47においてはそのテーパ状の側面を利
、用してp+型ンソー領域522とその下の層型層54
の両者にAt配線58をコンタクトホール562を介し
て接続することによって、p型の島状シリコン層46を
V88電位に、n型の島状シリコン層47をVDD電位
に、夫々固定できる。したがって、第7図或いは第9図
の従来の0MO8/SO8の如く素子領域の面積増大を
招くことなく、各島状シリコン)d 46 、47のフ
ローティングを防止でき、ひいてはチャンネル長(Le
ff)の短縮化によるキンク電流の発生を防止し、良好
なインバータ特性を有する高集積度の0MO8/SO8
を得ることができる。
According to the present invention, in the p-type island-like silicon layer 46, the tapered side surface is utilized to connect both the n+-type bottom region 521 and the p+-type layer 51 thereunder via the contact hole 561. The wiring 57 is connected, and the tapered side surface of the n-type island-like silicon layer 47 is used to connect the p + type region 522 and the underlying layer 54.
By connecting the At wiring 58 to both through the contact hole 562, the p-type island silicon layer 46 can be fixed at the V88 potential, and the n-type island silicon layer 47 can be fixed at the VDD potential. Therefore, floating of each silicon island (d 46 and 47) can be prevented without causing an increase in the area of the element region as in the conventional 0MO8/SO8 shown in FIG. 7 or 9, and the channel length (Le
Highly integrated 0MO8/SO8 that prevents the generation of kink current due to shortening of ff) and has good inverter characteristics.
can be obtained.

なお、上記実施例では第10図(、)に示す如く討型ソ
ース領域52!とp+型N51、及びp+型ソ二゛ス領
hJ1.522と層型層54のコンタクトホールの位置
を各島状シリコン層46.47のテーパ状側面の箇所に
設けたが、これに限定されない。
In addition, in the above embodiment, as shown in FIG. Although the contact holes for the p+ type N51, the p+ type sonic region hJ1.522, and the layered layer 54 are provided at the tapered side surfaces of each island-like silicon layer 46, 47, the present invention is not limited thereto. .

例えば、第12図に示す如くソース領域521が形成さ
れたp型の島状シリコン層46のテーパ状側面及び該側
面両側のソース領域521表面とサファイア基板41部
分に亘ってコンタクトホール561′を設け、n型の島
状シリコン層47の側についても同様なコンタクトホー
ル562’ヲ設けた構造にしてもよい。このような構成
にすれば、n+型ンソー領域521とp+型層51等に
対するAt配線57のコンタクト面積が増大でき、ひい
てはコンタクト抵抗の低減化、高速化を図るととができ
る。
For example, as shown in FIG. 12, a contact hole 561' is provided across the tapered side surface of the p-type island-like silicon layer 46 in which the source region 521 is formed, the surface of the source region 521 on both sides of the side surface, and the sapphire substrate 41 part. A similar contact hole 562' may also be provided on the side of the n-type island silicon layer 47. With such a configuration, the contact area of the At wiring 57 with the n+ type source region 521, the p+ type layer 51, etc. can be increased, and the contact resistance can be reduced and the speed increased.

上記実施例では各ソース領域下の島状シリコン層に該シ
リコン層と同導電型で高濃度の不純物層を設けたが、か
ならずしもそれら不純物層を設けなくともよい。但し、
各島状シリコン層とのコンタクト抵抗を低減させるには
、高濃度の不純物層を設けることが望ましい。
In the above embodiment, a highly concentrated impurity layer having the same conductivity type as the silicon layer is provided in the island-shaped silicon layer under each source region, but it is not necessary to provide such an impurity layer. however,
In order to reduce the contact resistance with each island-like silicon layer, it is desirable to provide a highly concentrated impurity layer.

上記実施例ではドレイン領域下にも高濃度不純物層を設
けたが、該不純物層、を設けなくともよい。
In the above embodiment, a high concentration impurity layer is also provided under the drain region, but this impurity layer may not be provided.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば絶縁基板上に設けら
れた島状の半導体層の面積堆犬を招くことなく各半導体
層の電位を固定するための配線を接続でき、ひbては短
チャンイ・ル化に伴なうキンク電流による素子特性の劣
化を防止した高性能、高集積度の相補型へ408半導体
装置を提供できる。
As described in detail above, according to the present invention, it is possible to connect wiring for fixing the potential of each semiconductor layer without causing area deterioration of the island-shaped semiconductor layer provided on an insulating substrate. It is possible to provide a complementary type 408 semiconductor device with high performance and high integration, which prevents deterioration of element characteristics due to kink current accompanying short channel length.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の0MO8/SO8を示す断面図、第2図
は第1図のCM’O8/S O8の平面図、第3図は従
来のCMO8/SOSの問題点を説明するためのnチャ
ンネルMoS/SO8のルを面図、第4図はMJS/S
O8のキンク電流の発生を説明するメとめの線4第5図
は0MO8/SO8のインバータ特性を示す線図、第6
図は従来の改良されたCMO3/SO8を示す断面図、
第7図は第6図の0MO8/SO3の平面図、第8図は
従来の別の・改良された0MO8/SO8を示す断面図
、第9図は第8図のCMO3/SO8の平面図、Izi
o図(a) 〜(e>は本発明のCMO3/SO8を得
るだめの製造工程を示す断面図、第11図す は第io図(、)のCMOs、’SO8の平面図、第1
2図は本発明の他の実施例を示す0MO8/SO8の断
面図である。 41・・・サファイア基板、46・・・p型の島状シリ
コン層、47・・・n型の島状シリコン層、49・・・
ダート電極、501,5θ2・・・ゲート酸化膜、51
・・・p生型層、521,522・・・ソース領域、5
31532・・・ト9レイン領域、54・・・n+型層
、55・・・cVI) −5ioz 膜、561〜56
5 、561’ 、 5 f’−’:17タクトホール
、57〜60・・・At配線。 出願人代理人  弁理士 鈴 江 武 彦第 1 図 第 2 図 箇 3rlJ 第6図 第 8 図 第9図
Fig. 1 is a cross-sectional view showing the conventional 0MO8/SO8, Fig. 2 is a plan view of the CM'O8/S O8 shown in Fig. 1, and Fig. 3 is a cross-sectional view showing the conventional 0MO8/SO8. Top view of channel MoS/SO8, Figure 4 is MJS/S
Figure 5 is a diagram showing the inverter characteristics of 0MO8/SO8.
The figure is a sectional view showing a conventional improved CMO3/SO8,
7 is a plan view of 0MO8/SO3 shown in FIG. 6, FIG. 8 is a sectional view showing another conventional and improved 0MO8/SO8, and FIG. 9 is a plan view of CMO3/SO8 shown in FIG. Izi
Fig. 11 is a cross-sectional view showing the manufacturing process for obtaining CMO3/SO8 of the present invention, Fig. 11 is a plan view of CMOs and SO8 in Fig.
FIG. 2 is a sectional view of 0MO8/SO8 showing another embodiment of the present invention. 41... Sapphire substrate, 46... P-type island silicon layer, 47... N-type island silicon layer, 49...
Dirt electrode, 501, 5θ2...gate oxide film, 51
... p-type layer, 521, 522 ... source region, 5
31532...Train region, 54...n+ type layer, 55...cVI) -5ioz film, 561-56
5, 561', 5 f'-': 17 tact hole, 57-60...At wiring. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3rlJ Figure 6 Figure 8 Figure 9

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁基板と、この基板上に隣接して設けられた側
面がテーパ状をなし、互に導電性の異なる少なくとも2
つの島状半導体層と、これら半導体層表面に夫夫互に電
気的に分離して設けられた半導体層に対して逆導電型の
ンース、ドレイン領域と、ンース、ドレイン領域間を少
なくとも含む島状半導体層上にケ゛−ト酸化膜を介して
設けられ参昔盲と、各島状半導体層を含む全面に被覆さ
れた絶縁膜と、この絶縁膜上に設けられ、前記各島状半
導体層のチーツク状側面のソース領域及び該ノース領域
下の半導体層部分と夫々コンタクトホールを介して少な
くとも接続した配線とを具備したことを特徴とする相補
型MO8半導体装置。
(1) An insulating substrate and at least two tapered side surfaces provided adjacent to the substrate and having mutually different conductivities.
two island-shaped semiconductor layers, source and drain regions of opposite conductivity type to the semiconductor layers provided electrically separated from each other on the surface of these semiconductor layers, and an island-shaped semiconductor layer that includes at least the region between the source and drain regions. An insulating film is provided on the semiconductor layer via a gate oxide film and covers the entire surface including each island-like semiconductor layer, and an insulating film is provided on the insulating film and covers each of the island-like semiconductor layers. 1. A complementary MO8 semiconductor device comprising at least wiring connected to a source region on a cheek-shaped side surface and a semiconductor layer portion under the north region through contact holes.
(2)各島状半導体層のノース領域下に、該半導体層と
同導電型で高濃度の不純物層を該半導体層の側面に表出
するように設けたことを特徴とする特許請求の範囲第1
項記載の相補1MO8半導体装置。
(2) A claim characterized in that a highly concentrated impurity layer of the same conductivity type as the semiconductor layer is provided under the north region of each island-shaped semiconductor layer so as to be exposed on the side surface of the semiconductor layer. 1st
Complementary 1MO8 semiconductor device as described in .
JP58096144A 1983-05-31 1983-05-31 Complementary mos semiconductor device Pending JPS59220961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58096144A JPS59220961A (en) 1983-05-31 1983-05-31 Complementary mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58096144A JPS59220961A (en) 1983-05-31 1983-05-31 Complementary mos semiconductor device

Publications (1)

Publication Number Publication Date
JPS59220961A true JPS59220961A (en) 1984-12-12

Family

ID=14157183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58096144A Pending JPS59220961A (en) 1983-05-31 1983-05-31 Complementary mos semiconductor device

Country Status (1)

Country Link
JP (1) JPS59220961A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231764A (en) * 1985-04-08 1986-10-16 Hitachi Ltd Semiconductor device
JPS63278273A (en) * 1987-04-23 1988-11-15 Agency Of Ind Science & Technol Semiconductor device
JPH02144969A (en) * 1988-11-25 1990-06-04 Mitsubishi Electric Corp Mos type field-effect transistor formed in semiconductor layer on insulator substrate
US5160989A (en) * 1989-06-13 1992-11-03 Texas Instruments Incorporated Extended body contact for semiconductor over insulator transistor
JPH08330440A (en) * 1995-05-31 1996-12-13 Nec Corp Silicon-on-insulator semiconductor device
US7138684B2 (en) 1993-12-03 2006-11-21 Renesas Technology Corp. Semiconductor memory device including an SOI substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231764A (en) * 1985-04-08 1986-10-16 Hitachi Ltd Semiconductor device
JPS63278273A (en) * 1987-04-23 1988-11-15 Agency Of Ind Science & Technol Semiconductor device
JPH02144969A (en) * 1988-11-25 1990-06-04 Mitsubishi Electric Corp Mos type field-effect transistor formed in semiconductor layer on insulator substrate
US5160989A (en) * 1989-06-13 1992-11-03 Texas Instruments Incorporated Extended body contact for semiconductor over insulator transistor
US7138684B2 (en) 1993-12-03 2006-11-21 Renesas Technology Corp. Semiconductor memory device including an SOI substrate
US7242060B2 (en) 1993-12-03 2007-07-10 Renesas Technology Corp. Semiconductor memory device including an SOI substrate
JPH08330440A (en) * 1995-05-31 1996-12-13 Nec Corp Silicon-on-insulator semiconductor device

Similar Documents

Publication Publication Date Title
US5656842A (en) Vertical mosfet including a back gate electrode
JP3589102B2 (en) SOI structure MOS field effect transistor and method of manufacturing the same
US5463238A (en) CMOS structure with parasitic channel prevention
JP4138158B2 (en) SOI structure MOS field effect transistor and method of manufacturing the same
JP2001168340A (en) Soi-structure mis field-effect transistor and its manufacturing method
US4377819A (en) Semiconductor device
JPH0832040A (en) Semiconductor device
JPH09115999A (en) Semiconductor integrated circuit device
US4893164A (en) Complementary semiconductor device having high switching speed and latchup-free capability
US4816880A (en) Junction field effect transistor
JPS59220961A (en) Complementary mos semiconductor device
US5430317A (en) Semiconductor device
JP2001007333A (en) Mos field-effect transistor of soi structure and manufacture thereof
JP2000260786A (en) Semiconductor device
JPH08330440A (en) Silicon-on-insulator semiconductor device
JPS58218158A (en) Complementary type metal oxide semiconductor device
JPH06132489A (en) Mos transistor, integrated circuit employing same, and manufacture of mos transistor
JPS63278273A (en) Semiconductor device
US4849805A (en) Radiation hardened integrated circuit and method of making the same
EP0281032B1 (en) Semiconductor device comprising a field effect transistor
JPS643065B2 (en)
JPH0235736A (en) Semiconductor device
JPH0812917B2 (en) Method of operating MIS transistor and MIS transistor
JPH02105566A (en) Complementary semiconductor device
JPS59200459A (en) Complementary type semiconductor device and manufacture thereof