JPS59220087A - Set control leading angle controlling method for commutatorless motor - Google Patents

Set control leading angle controlling method for commutatorless motor

Info

Publication number
JPS59220087A
JPS59220087A JP58090781A JP9078183A JPS59220087A JP S59220087 A JPS59220087 A JP S59220087A JP 58090781 A JP58090781 A JP 58090781A JP 9078183 A JP9078183 A JP 9078183A JP S59220087 A JPS59220087 A JP S59220087A
Authority
JP
Japan
Prior art keywords
angle
speed
phase
control
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58090781A
Other languages
Japanese (ja)
Other versions
JPH0444516B2 (en
Inventor
Katsuhiro Nabeshima
鍋島 克弘
Akinobu Matsumoto
松本 顕信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Denki Seizo KK
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Denki Seizo KK
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Denki Seizo KK, Toyo Electric Manufacturing Ltd filed Critical Toyo Denki Seizo KK
Priority to JP58090781A priority Critical patent/JPS59220087A/en
Publication of JPS59220087A publication Critical patent/JPS59220087A/en
Publication of JPH0444516B2 publication Critical patent/JPH0444516B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/024Synchronous motors controlled by supply frequency

Abstract

PURPOSE:To enable to reduce the induced voltage without weakening a motor field by varying a set control leading angle when a power source side phase angle reaches the prescribed value. CONSTITUTION:A speed controller 6 outputs a phase control angle command signal in response to a deviation between a speed command signal by a speed setter 5 and a speed returning signal of a speed detector 4, and a phase controller 7 outputs a gate command signal to a gate controller 8 in response to a phase control angle command signal. A set control leading angle controller 10 inputs a detection signal which shows the fact that a signal which indicates the power drive state and the regenerative state from a power drive regenerative discriminator 9 and a phase control angle command signal from a phase angle detector 12 reach the set value, and when the detection signal is inputted in a regenerative region, the maximum set control leading angle is outputted and when the detection signal is inputted, the set control leading angle of small value reduced effectively is outputted to the controller 8.

Description

【発明の詳細な説明】 本発明は無整流子電動機の制御方法、特に高回生トルク
制御を実現し得る無整流子電動機の設定制御進み角制御
方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling a non-commutator motor, and more particularly to an improvement in a setting control and advance angle control method for a non-commutator motor that can realize high regenerative torque control.

一般に複数個のスイッチング素子からなる電力変換器に
よる同期電動機の駆動、すなわち無整流子電動機駆動に
おいては、過電流を防止するうえで原理的に高速領域に
おける設定制御進み角を180’付近まで進めることが
できない。これは、電動機の回転エネルギーを電源側に
回生ずる際、電源側の電圧が電動機の誘起電圧に対応し
た電圧まで上昇せず、結果的に過電流が誘発されるのを
防止するのがその理由である。このため、電動機の回転
速度を検知して速度領域に応じて設定制御進み角を変化
させる方法が通常採られている。そして、例えば高速領
域においてi20’ 、低速領域においては180’程
度に設定制御進み角が設定されるものとなり、電動機の
電力変換器側からみた等側進起電力が高速領域において
も過大に上昇するのを避けていた。
In general, when driving a synchronous motor using a power converter consisting of a plurality of switching elements, that is, when driving a non-commutator motor, it is theoretically necessary to advance the set control advance angle in the high-speed region to around 180' in order to prevent overcurrent. I can't. The reason for this is that when the rotational energy of the motor is regenerated to the power supply side, the voltage on the power supply side does not rise to the voltage corresponding to the induced voltage of the motor, which prevents overcurrent from being induced. It is. For this reason, a method is usually adopted in which the rotational speed of the electric motor is detected and the set control advance angle is changed according to the speed range. Then, for example, the set control advance angle is set to i20' in the high speed range and approximately 180' in the low speed range, and the isolateral advance electromotive force seen from the power converter side of the motor increases excessively even in the high speed range. I was avoiding it.

しかしながら、かような電動機の回転速度を検知して設
定制御進み角を決定する従来方法においては、電動機の
回転速度、設定制御進み角および誘起電圧の相関関係を
明確にしておくことが要求されるが、これを一義的に求
めることは極めて難しい。その理由の一例として電動機
の製作面より生じる誘起電圧の発生係数の)<2ツキが
挙げられる。また、設定制御進み角を切り換える速度付
近では、設定制御進み含量が少なく設定された領域にお
いて設定制御進み角が充分に進められていないため、回
生トルク量が抑制され・で利用効率が低下する問題を有
するものとなっていた。力)くの如き従来方法lこよる
一般的な装置は第1図の如くである。
However, in the conventional method of determining the set control advance angle by detecting the rotation speed of the motor, it is required to clarify the correlation between the motor rotation speed, the set control advance angle, and the induced voltage. However, it is extremely difficult to determine this unambiguously. One example of the reason for this is that the generation coefficient of induced voltage caused by the manufacture of the motor is <2. In addition, near the speed at which the set control advance angle is switched, the set control advance angle is not sufficiently advanced in a region where the set control advance content is small, so the amount of regenerative torque is suppressed, resulting in a decrease in utilization efficiency. It was supposed to have a A typical device for this conventional method is shown in FIG.

第1図は従来例1こよる無整流子電動機制御装置の要部
構成を示すブロック図で、1は交流電源、2はサイクロ
コンバータ部、3は同期′!!動機、4は速度検出器、
5は速度設定器、6は速度制御回路、7は位相制御回路
、8はゲート制御回路、9はカ行回生判別回路、10は
設定制御進み角制御回路、11は速度領域判別回路であ
る。
FIG. 1 is a block diagram showing the configuration of the main parts of a non-commutator motor control device according to Conventional Example 1, in which 1 is an AC power supply, 2 is a cycloconverter section, and 3 is a synchronizer'! ! Motive, 4 is speed detector,
5 is a speed setting device, 6 is a speed control circuit, 7 is a phase control circuit, 8 is a gate control circuit, 9 is a regeneration discrimination circuit, 10 is a setting control advance angle control circuit, and 11 is a speed region discrimination circuit.

すなわち、かくの如き回路構成にあって、交流電源lの
入力力)ら同期電動機3を付勢するサイクロコンバータ
部2は、制御回路部の最終出力段のゲート制御回路8よ
りスイッチング動作を行う素子部分への制御指令を得る
ものである。これは、速度設定器5Iこよる速度帰還信
号と速度検出器4の速度帰還信号が速度制御回路6に与
えられ、速度制御回路6によるPID調整の演算例等か
ら位相制御角指令信号が発生され、位相制御回路7は電
源との同期作用を行ない位相制御角に対応したタイミン
グでゲート指令信号を与えるものとなる。
That is, in such a circuit configuration, the cycloconverter section 2 that energizes the synchronous motor 3 from the input power of the AC power source 1 is an element that performs a switching operation from the gate control circuit 8 at the final output stage of the control circuit section. It is used to obtain control commands for parts. This is because the speed feedback signal from the speed setter 5I and the speed feedback signal from the speed detector 4 are given to the speed control circuit 6, and the phase control angle command signal is generated from the calculation example of PID adjustment by the speed control circuit 6. The phase control circuit 7 synchronizes with the power supply and provides a gate command signal at a timing corresponding to the phase control angle.

ここに、ゲート制御回路8の詳細説明を割愛するが、分
配器や電機子逆起電力等の入力信号から演算によって得
る同期電動機3の回転子位置信号4こ基ツきサイクロコ
ンバータ部2のスイッチング素子の選択を行う論理回路
部分とスイッチング素子の駆動回路部分を有して、選択
されたスイッチング素子を駆動する制御指令をサイクロ
コンバータ部2に送出する。
A detailed explanation of the gate control circuit 8 will be omitted here, but the switching of the cycloconverter section 2 is based on the rotor position signal 4 of the synchronous motor 3, which is obtained by calculation from input signals such as a distributor and armature back electromotive force. It has a logic circuit section that selects an element and a switching element drive circuit section, and sends a control command to drive the selected switching element to the cycloconverter section 2.

さらに、設定制御進み角制御回路10はカ行回生判別回
路9より得られるカ行状態・回生状態を示す信号と速度
領域判別回路11より得られる速度領域を明らかにする
速度領域状態を示す信号から設定制御進み角を決定し、
その設定指令をゲート制御回路8へ与える。なお、カ行
回生の判別においては速度制御回路6の演算結果を判定
することにより、例えば指令信号と速度信号の大小関係
力)ら簡単に得ることができる。
Furthermore, the setting control advance angle control circuit 10 uses a signal indicating the power travel state/regeneration state obtained from the power travel regeneration determination circuit 9 and a signal representing the speed region state that reveals the speed region obtained from the speed region determination circuit 11. Determine the setting control advance angle,
The setting command is given to the gate control circuit 8. It should be noted that the determination of power regeneration can be easily obtained by determining the calculation result of the speed control circuit 6, for example, from the magnitude relationship between the command signal and the speed signal.

ここで、電動機端子に誘起される電圧をVM、内部誘起
電圧をBMとして内部抵抗による電圧降下を無視するに
、次式の関係となることが知られている。
Here, assuming that the voltage induced at the motor terminals is VM and the internal induced voltage is BM, and ignoring the voltage drop due to the internal resistance, it is known that the following relationship holds true.

VM QCEM @ Q)11 (βo −) 1tm
      −・−(1)2ま ただし、βOは設定制御進み角、μは重なり角である。
VM QCEM @Q)11 (βo −) 1tm
-・-(1)2 However, βO is the setting control advance angle, and μ is the overlap angle.

そして1回生領域においては設定制御進み角β0は18
0’〜90’の範囲で制御されるが、そのβ0の値が大
きいほど電圧vMの値が大きなものとなる。な。
In the first regeneration region, the setting control advance angle β0 is 18
Although it is controlled in the range of 0' to 90', the larger the value of β0, the larger the value of the voltage vM. Na.

お、重なり角μの値は負荷電流に依存するものになる。Note that the value of the overlap angle μ depends on the load current.

さらには、同期電動機3Iこ供給される電力においては
電源電圧V8+位相制御角αより、次式の関係が成立す
ることは会知である。
Furthermore, it is well known that the following relationship holds true for the power supplied to the synchronous motor 3I from the power supply voltage V8+phase control angle α.

VM CX: VB−■α    ・・・・・・・・・
(2)このようにして、設定制御進み角β0の増大に伴
い電圧vMが増加した際に(2)式より電源電圧Vsを
増加させるかあるいは位相制御角αを小さくする必要が
ある。しかし、電源電圧Vsは通常自由に変更6 できない。また、’(cosa)(こおいて位相制御角
aを進める場合(−1) より減少できない。したがっ
て、位相制御角αが180’付近まで進めば(2)式で
求められる電圧vMと一致させることが不可能となる。
VM CX: VB-■α ・・・・・・・・・
(2) In this way, when the voltage vM increases with an increase in the set control advance angle β0, it is necessary to increase the power supply voltage Vs or decrease the phase control angle α according to equation (2). However, the power supply voltage Vs usually cannot be changed freely6. In addition, '(cosa) (here, when the phase control angle a is advanced, it cannot be reduced by more than (-1). Therefore, if the phase control angle α advances to around 180', it will match the voltage vM found by equation (2). becomes impossible.

このことは、電動機の回転エネルギーを電源側へ還元す
る制御が不能となることであり、過大電流を誘発するこ
とを示している。なお、電動機の誘起電圧を抑制する一
般的な方法としては電動機の界磁電流を減少させる界磁
弱めが採られる。しかしながら、この方法によれば出力
トルクの低下をきたし、軽負荷時に電動機速度が上昇し
て誘起電圧が減少せず制御動作上安定性が欠けるものと
なるなどの不具合を生じる。
This means that control to return the rotational energy of the electric motor to the power source side becomes impossible, which indicates that excessive current is induced. Note that field weakening, which reduces the field current of the motor, is used as a general method for suppressing the induced voltage of the motor. However, this method causes problems such as a decrease in output torque, an increase in motor speed at light loads, a failure to reduce induced voltage, and a lack of stability in control operation.

本発明は上述したような点に着目しなされたもので、電
動機界磁を弱めることなく誘起電圧を降下させるために
(1)式の関係に示される如き設定制御進み角を回生領
域において小さな値に変化せしめるようにした格別な制
御方法を提供するものである。
The present invention has been made with attention to the above-mentioned points, and in order to reduce the induced voltage without weakening the motor field, the set control advance angle as shown in the relationship of equation (1) is set to a small value in the regeneration region. The present invention provides a special control method that allows for changes in

第2図は本発明の技術思想の理解を容易にするため示し
たものであり、これは第1図装置に類する装置の概要構
成を示すものであって、lO′は設定制御進み角制御回
路、12は位相角検知回路である。
FIG. 2 is shown to facilitate understanding of the technical idea of the present invention, and shows a general configuration of a device similar to the device shown in FIG. 1, where lO' is a setting control advance angle control circuit. , 12 is a phase angle detection circuit.

図中第1図と同符号のものは同じ機能を有する部分を示
す。
In the figure, the same reference numerals as in FIG. 1 indicate parts having the same function.

すなわち、かくの如く示されるものは、特に位相角検知
回路12および位相角検知回路12出力を得て設定制御
進み角を効果的に遅らせる如く作用する設定制御進み角
回路lO′を具備して構成されてなる。ここに、同期電
動機3の駆1方法は第1図で説明した通りであるのでこ
れを省略するが、位相角検知回路12は速度制御回路6
の出力信号を入力し、その位相制御角指令信号より位相
制御角αが限界まで達したことを検知して設定制御進み
角制御回路10’に信号発生する。よって、設定制御進
み角制御回路10′は位相角検知回路12が信号発生し
たとき、例えば位相制御角αが180°付近まで達した
際に設定制御進み角指令を変化させてtaO°付近より
遅れた進み角指令として信号送出する。したがって、(
1)式の関係より設定制御進み角β0が1800〜90
’の範囲で効果的に減少制御された小さな値となり、同
期電動機3の誘起電圧の上昇を抑制することができる。
That is, the device shown above is particularly equipped with a phase angle detection circuit 12 and a setting control advance angle circuit lO' which obtains the output of the phase angle detection circuit 12 and operates to effectively delay the setting control advance angle. It will be done. Here, the method of driving the synchronous motor 3 is as explained in FIG.
The phase control angle command signal detects that the phase control angle α has reached its limit and generates a signal to the setting control advance angle control circuit 10'. Therefore, when the phase angle detection circuit 12 generates a signal, for example, when the phase control angle α reaches around 180°, the setting control advance angle control circuit 10' changes the setting control advance angle command to lag behind around taO°. A signal is sent as a lead angle command. therefore,(
1) From the relationship of the formula, the setting control advance angle β0 is 1800 to 90
It becomes a small value that is effectively reduced within the range of ', and an increase in the induced voltage of the synchronous motor 3 can be suppressed.

なお、通常時すなわち位相角検知回路12が信号供給し
ない場合最大進み角としての180°付近の設定状態に
置かれるものとなることは勿論である。
It goes without saying that in normal times, that is, when the phase angle detection circuit 12 does not supply a signal, the maximum advance angle is set at around 180°.

さて、電動機のトルクは、界磁磁束ΦFと電機子起磁力
0人の積に両者の相差角の正弦を乗じたもので表わされ
るが、その相差角は(120’+βO)〜(60’十β
0)の間で変化し、重なり角μが影響を与えない軽負荷
時においては次式で示される。
Now, the torque of the electric motor is expressed as the product of the field magnetic flux ΦF and the armature magnetomotive force (zero) multiplied by the sine of the phase difference angle between the two, and the phase difference angle is (120'+βO) ~ (60' β
0), and at light loads where the overlap angle μ has no effect, it is expressed by the following equation.

’l’ocΦ人―Φ、(sin (120’ +β6)
−sjn(5Q’+βo ))   −−(3)ζこで
、(β0 +=180’)に設定した場合トルクTは(
−ΦA・ΦF)〜(−0,866Φ人・ΦF)の間で変
化するが、(βo = 120°)に設定した場合トル
クTは(−0,866ΦAllΦF)〜0の間で変化す
る。すなわち、(βo = 120’)に設定した際に
零トルクになるタイミングがあって脈動トルクが大きく
なることであり、設定制御進み角β0はできるだけ18
0′′付近に設定することが望ましい。
'l'ocΦ人-Φ, (sin (120' +β6)
-sjn(5Q'+βo)) --(3)ζHere, when set to (β0 +=180'), the torque T is (
The torque T varies between (-0,866ΦAllΦF) and 0 when set to (βo = 120°). In other words, when setting (βo = 120'), there is a timing when the torque becomes zero, and the pulsating torque becomes large, so the set control advance angle β0 is set to 18 as much as possible.
It is desirable to set it near 0''.

かようにして、電源側の位相制御角αを監視することに
より、電動機の誘起電圧が電源電圧に対して過大に上昇
する作用を抑制する如く4こ最適な設定制御進み角β0
が決定され、特に回生トルクを最大限に利用可能となり
さらには脈動トルクの少ない無整流子電動機運転を実現
することができる。
In this way, by monitoring the phase control angle α on the power supply side, the optimum set control advance angle β0 is set so as to suppress the effect that the induced voltage of the motor increases excessively with respect to the power supply voltage.
is determined, and in particular, it is possible to make maximum use of regenerative torque, and furthermore, it is possible to realize commutatorless motor operation with less pulsating torque.

かくの如く、かかる技術思想によるものは、誘起電圧や
界磁電流を検出する回路部分を設けることなく、簡単な
位相角検出回路を付加するのみで@動機の駆動機能を損
うことなく効用し得る装置を実現でき、さらには電源電
圧の低下や電動構製る。
As described above, the technology based on this technical idea does not require any circuitry for detecting induced voltage or field current, and is effective without impairing the drive function of the motor by simply adding a simple phase angle detection circuit. It is possible to realize a device that obtains the desired results, and even reduces the power supply voltage and has an electric structure.

以上説明したように本発明によれば、電源側位相制御角
を監視してこれが所定値に達するに、設定制御進み角を
小さく変化させるようにした簡便な装置を実現し得る制
御方法を提供できる。
As explained above, according to the present invention, it is possible to provide a control method that can realize a simple device that monitors the power supply side phase control angle and changes the set control advance angle by a small amount until it reaches a predetermined value. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例(こよる無整流子電動機制御装置の要部
構成を示すブロック図、第2図は本発明の技術思想の理
解を容易にするため示したプ四ツク図である。 2・・・・・・サイクロコンバータ部、3・・・・・・
同期電動機、6・・・・・・速度制御回路、7・・・・
・・位相制御回路、8・・・・・ゲート制御回路、9・
・・・・・力行回生判別回路、10.10’・・・・・
・設定制御進み角制御回路、12・曲位相角検知回路。 特許出願人 東洋電機製造株式会社 代表者 土 井   厚
FIG. 1 is a block diagram showing the main structure of a conventional non-commutator motor control device, and FIG. 2 is a four-dimensional diagram shown to facilitate understanding of the technical idea of the present invention. ...Cycloconverter section, 3...
Synchronous motor, 6... Speed control circuit, 7...
...Phase control circuit, 8...Gate control circuit, 9.
...Power running regeneration discrimination circuit, 10.10'...
・Setting control advance angle control circuit, 12. Song phase angle detection circuit. Patent applicant Toyo Denki Seizo Co., Ltd. Representative Atsushi Doi

Claims (1)

【特許請求の範囲】 Sl’1 同樟電動機の電機子巻線(こそれぞれ接続される複数個
のスイッチング素子を具備してなる電力変換器により該
同期電動機の電機子巻線を付勢する無整流子電動機の制
御方法において、電源側位相角が所定値に達した際に設
定制御進み角を変化させることにより、前記同期電動機
の回生トルク量を増大させるようにしたことを特徴とす
る無整流子電動機の設定制御進み角制御方法。
[Claims] Sl'1 An armature winding of the same camphor motor (a device for energizing the armature winding of the synchronous motor by a power converter comprising a plurality of switching elements connected to each other) A method for controlling a commutator motor, characterized in that the regenerative torque amount of the synchronous motor is increased by changing a set control lead angle when a power supply side phase angle reaches a predetermined value. Setting control lead angle control method for sub motor.
JP58090781A 1983-05-25 1983-05-25 Set control leading angle controlling method for commutatorless motor Granted JPS59220087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58090781A JPS59220087A (en) 1983-05-25 1983-05-25 Set control leading angle controlling method for commutatorless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58090781A JPS59220087A (en) 1983-05-25 1983-05-25 Set control leading angle controlling method for commutatorless motor

Publications (2)

Publication Number Publication Date
JPS59220087A true JPS59220087A (en) 1984-12-11
JPH0444516B2 JPH0444516B2 (en) 1992-07-21

Family

ID=14008138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58090781A Granted JPS59220087A (en) 1983-05-25 1983-05-25 Set control leading angle controlling method for commutatorless motor

Country Status (1)

Country Link
JP (1) JPS59220087A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904502A (en) * 2012-10-16 2013-01-30 南京航空航天大学 Position sensor-free control technology for four-phase doubly salient motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102904502A (en) * 2012-10-16 2013-01-30 南京航空航天大学 Position sensor-free control technology for four-phase doubly salient motor

Also Published As

Publication number Publication date
JPH0444516B2 (en) 1992-07-21

Similar Documents

Publication Publication Date Title
US10158317B2 (en) Control apparatus for AC motor
KR920011003B1 (en) Method and system for reconnecting inverter to rotating motors
US7116073B1 (en) Methods and apparatus for controlling a motor/generator
US4315203A (en) Control system for induction motor-driven car
JPS5920275B2 (en) Electric motor control device
JP2645655B2 (en) Control device for permanent magnet synchronous motor
Singh et al. Minimization of torque ripples in SRM drive using DITC for electrical vehicle application
US7135829B1 (en) Methods and apparatus for controlling a motor/generator
JPH0728559B2 (en) Operation method of variable speed power generation system
JPS62110499A (en) Operation control for variable speed pumping-up power generation system
JP3279457B2 (en) Control device for permanent magnet synchronous motor
JP4242679B2 (en) Apparatus and method for controlling brushless DC motor
WO2020059814A1 (en) Motor control device, motor system and inverter control method
JP2002369597A (en) Method for detecting rotational speed of induction motor in free rotation, and method for restarting induction motor
JPS59220087A (en) Set control leading angle controlling method for commutatorless motor
CN113285646B (en) Driver brake control method without using external brake unit
JPH04140093A (en) Motor driving circuit
JPH0522864A (en) Control circuit of inverter
JPH07250496A (en) Induction motor controller
JPH0751000B2 (en) Variable speed controller for induction motor
JPS6281990A (en) Controller for induction motor
JP2512414Y2 (en) Control device for main shaft drive generator
JPH1084633A (en) Operation of solar power generation inverter
JPH0154960B2 (en)
JPH0528958Y2 (en)