JPH1084633A - Operation of solar power generation inverter - Google Patents

Operation of solar power generation inverter

Info

Publication number
JPH1084633A
JPH1084633A JP8257598A JP25759896A JPH1084633A JP H1084633 A JPH1084633 A JP H1084633A JP 8257598 A JP8257598 A JP 8257598A JP 25759896 A JP25759896 A JP 25759896A JP H1084633 A JPH1084633 A JP H1084633A
Authority
JP
Japan
Prior art keywords
phase
voltage
inverter
power generation
interconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8257598A
Other languages
Japanese (ja)
Inventor
Mitsuru Matsukawa
満 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP8257598A priority Critical patent/JPH1084633A/en
Publication of JPH1084633A publication Critical patent/JPH1084633A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To most effectively utilize the electrical power generated by the solar power generation by preventing excessive phase leading operation at the time of controlling a linkage voltage and also prevent fluctuation of the power factor of the operation by the phase leading operation control when a plurality units of the inverters are operated simultaneously. SOLUTION: A linkage voltage based on the linkage operation of the power distribution line 5 is detected, the amount of phase shift to the phase leading operation of the power factor depending on the detected voltage is repeatedly obtained when the detected voltage rises exceeding the preset phase leading operation start voltage, the operation phase of the solar power generation inverter 1 is led depending on the amount of phase shift and the solar power generation inverter 1 is controlled to the phase leading operation in the power factor depending on the detected voltage when the detected voltage is higher than the phase leading operation start voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、いわゆる分散電源
を形成する太陽光発電インバータの運転方法に関し、詳
しくは連系電圧(連系点電圧)の上昇抑制に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a photovoltaic power generation inverter that forms a so-called distributed power source, and more particularly, to a suppression of an increase in an interconnection voltage (interconnection point voltage).

【0002】[0002]

【従来の技術】従来、図3に示すこの種太陽光発電イン
バータ1は太陽電池2の発電電力(有効電力)を極力有
効に利用するため、太陽電池2にパワーコンディショナ
としての電流制御方式のインバータ部3を接続し、その
出力電流を太陽電池2の発電量に応じて制御するように
形成される。
2. Description of the Related Art Conventionally, this type of solar power inverter 1 shown in FIG. 3 uses a current control system as a power conditioner for a solar cell 2 in order to utilize the generated power (active power) of the solar cell 2 as effectively as possible. The inverter unit 3 is connected so that the output current is controlled according to the amount of power generated by the solar cell 2.

【0003】そして、インバータ部3の出力側は配線イ
ンピーダンス4で示された配電線5を介して配電系統の
系統電源6に接続され、太陽光発電インバータ1が系統
電源6に連系運転され、その出力が系統電源6とともに
負荷7に供給される。
[0003] The output side of the inverter unit 3 is connected to a system power supply 6 of a distribution system via a distribution line 5 indicated by a wiring impedance 4, and the solar power generation inverter 1 is connected to the system power supply 6 to operate. The output is supplied to the load 7 together with the system power supply 6.

【0004】つぎに、インバータ部3が電圧型電流制御
方式の場合、インバータ部3は制御部8により、従来、
つぎに説明するように制御されて運転される。
Next, when the inverter unit 3 is of a voltage-type current control system, the inverter unit 3 is
It is controlled and operated as described below.

【0005】すなわち、太陽電池2の発電量がインバー
タ部3の入力側の直流の電圧,電流から監視されて検出
され、電圧制御回路9から乗算器10に発電量に比例し
た振幅制御信号が供給される。
That is, the amount of power generated by the solar cell 2 is monitored and detected from the DC voltage and current on the input side of the inverter unit 3, and an amplitude control signal proportional to the amount of power generation is supplied from the voltage control circuit 9 to the multiplier 10. Is done.

【0006】また、変流器11によりインバータ部3の
出力電流が検出され、出力電流に応じた電圧の出力電流
検出信号が変流器11から出力される。
The output current of the inverter unit 3 is detected by the current transformer 11, and an output current detection signal having a voltage corresponding to the output current is output from the current transformer 11.

【0007】さらに、太陽光発電インバータ1と系統電
源6との連系運転に基づく配電線5の電圧,すなわち連
系電圧が変圧器12により検出され、この変圧器12の
連系電圧に応じた電圧検出信号が同期検出回路13,電
圧実効値演算回路14に供給される。
Further, the voltage of the distribution line 5 based on the interconnection operation between the photovoltaic power generation inverter 1 and the system power supply 6, ie, the interconnection voltage, is detected by the transformer 12, and the voltage corresponding to the interconnection voltage of the transformer 12 is detected. The voltage detection signal is supplied to the synchronization detection circuit 13 and the effective voltage value calculation circuit 14.

【0008】そして、同期検出回路13は連系電圧の例
えばゼロクロス点に同期した位相基準の同期パルスを形
成し、このパルスを進相運転用移相回路15に供給す
る。
[0008] Then, the synchronization detection circuit 13 forms a phase-based synchronization pulse synchronized with, for example, the zero-cross point of the interconnection voltage, and supplies this pulse to the phase shift circuit 15 for advanced phase operation.

【0009】また、電圧実効値演算回路14は電圧検出
信号から連系電圧の実効値を求め、この実効値の検出信
号を進相運転開始判定回路16に供給する。
Further, the effective voltage value calculation circuit 14 obtains the effective value of the interconnection voltage from the voltage detection signal, and supplies the detection signal of the effective value to the phase advance operation start determination circuit 16.

【0010】この判定回路16は電圧実効値演算回路1
4の検出信号から連系電圧の変化を監視して検出し、連
系電圧が所定の進相運転開始電圧V1 に上昇すると、進
相運転指令を発生し、この指令を進相運転用移相回路1
5に供給する。
The determination circuit 16 is a voltage effective value calculation circuit 1
The change in interconnection voltage from fourth detection signals detected by monitoring, the interconnection voltage increases to a predetermined fast operation start voltage V 1, and generates a phase advance operation command, moves a phase advance operation of this command Phase circuit 1
5

【0011】そして、進相運転指令が発生しない通常運
転時は、同期検出回路13の同期パルスに基づき、進相
運転用移相回路15が連系電圧の位相の正弦波信号を位
相制御信号として形成し、この信号を乗算器10に供給
する。
During normal operation in which no phase-advance operation command is generated, the phase-advance operation phase-shift circuit 15 uses the sine wave signal of the phase of the interconnection voltage as a phase control signal based on the synchronization pulse of the synchronization detection circuit 13. And supplies this signal to the multiplier 10.

【0012】このとき、乗算器10は電圧制御回路9の
振幅制御信号と進相運転用移相回路15の位相制御信号
とを乗算し、振幅制御信号の振幅の連系電圧に位相同期
した正弦波信号を形成して減算器17に供給する。
At this time, the multiplier 10 multiplies the amplitude control signal of the voltage control circuit 9 by the phase control signal of the phase-advancing phase shift circuit 15 and generates a sine wave that is phase-synchronized with the interconnection voltage of the amplitude of the amplitude control signal. A wave signal is formed and supplied to the subtractor 17.

【0013】この減算器17は、乗算器10の出力信号
と変流器11の出力電流検出信号との差を演算し、イン
バータ部3の出力電流を太陽電池2の発電量に応じて増
減補正した誤差信号を形成する。
The subtracter 17 calculates the difference between the output signal of the multiplier 10 and the output current detection signal of the current transformer 11 and corrects the output current of the inverter 3 according to the amount of power generated by the solar cell 2. An error signal is formed.

【0014】さらに、減算器10の誤差信号が電流制御
回路18に供給され、この制御回路18により誤差信号
に応じた出力電流制御の基準信号が形成され、この基準
信号と系統周波数より十分高い周波数の搬送波信号とに
基づき、PWMパルス作成部19が前記誤差信号に応じ
たPWM駆動パルスを作成する。
Further, the error signal of the subtracter 10 is supplied to a current control circuit 18, which forms a reference signal for output current control according to the error signal, and a frequency sufficiently higher than the reference signal and the system frequency. The PWM pulse creating unit 19 creates a PWM drive pulse according to the error signal based on the carrier signal.

【0015】そして、このPWM駆動パルスによりイン
バータ部3が運転され、進相運転指令が発生しない通常
運転時は、力率1の運転により発電量に応じた連系電圧
の位相の出力電流がインバータ部3から出力される。
When the inverter unit 3 is operated by the PWM drive pulse and the normal operation in which the phase advance operation command is not generated, the output current of the phase of the interconnection voltage corresponding to the power generation amount by the operation at the power factor of 1 is output by the inverter. Output from the unit 3.

【0016】ところで、図4の(a)に示すように、配
線インピーダンス4は一般にコイルLと抵抗Rとの直列
回路で等価できる。
By the way, as shown in FIG. 4A, the wiring impedance 4 can be generally equalized by a series circuit of a coil L and a resistor R.

【0017】そして、系統電圧,インバータ部3の出力
電圧(連系電圧)をVs,Vinvとし、配電線5を流
れるインバータ部3の出力電流をIaとすると、太陽電
池2の発電量が0のときは、出力電流Iaが0になるた
め、図4の(b)の電圧ベクトルに示すように出力電圧
Vinvが系統電圧Vsに等しくなり、連系電圧は系統
電圧Vsに一致する。
Assuming that the system voltage and the output voltage of the inverter unit 3 (interconnection voltage) are Vs and Vinv, and the output current of the inverter unit 3 flowing through the distribution line 5 is Ia, the power generation amount of the solar cell 2 is zero. At this time, since the output current Ia becomes 0, the output voltage Vinv becomes equal to the system voltage Vs as shown by the voltage vector in FIG. 4B, and the interconnection voltage matches the system voltage Vs.

【0018】つぎに、太陽電池2が発電し、力率1の運
転により系統電圧Vsと同相の出力電流Iaが発生する
と、図4の(c)の電圧ベクトルに示すように、出力電
圧Vinvは系統電圧Vsに抵抗Rの電圧降下VR (=
Ia・R)を加算した電圧に上昇し、発電量に応じたイ
ンバータ部3の出力が負荷7に給電され、太陽電池2の
発電電力が有効に利用される。
Next, when the solar cell 2 generates power and generates an output current Ia in the same phase as the system voltage Vs due to the operation at a power factor of 1, the output voltage Vinv becomes as shown in the voltage vector of FIG. The voltage drop V R (=
Ia · R), the output of the inverter unit 3 corresponding to the amount of power generation is supplied to the load 7, and the power generated by the solar cell 2 is effectively used.

【0019】しかし、系統電圧Vsと同相の出力電流を
形成するのみでは、とくに、系統電源6の短絡容量が連
系運転される太陽光発電インバータ1の容量に比してあ
まり大きくないような場合、太陽電池2の発電量の増大
に伴う連系電圧の上昇により、負荷7等が過電圧印加状
態になるおそれがある。
However, only when the output current having the same phase as the system voltage Vs is formed, particularly when the short-circuit capacity of the system power supply 6 is not so large as compared with the capacity of the photovoltaic power generation inverter 1 which is connected and operated. In addition, the load 7 and the like may be in an overvoltage applied state due to an increase in the interconnection voltage due to an increase in the amount of power generated by the solar cell 2.

【0020】この過電圧印加状態の発生を防止するた
め、連系電圧がある程度上昇したときに、インバータ部
3の出力電流を制限することが考えられるが、この場合
は、太陽電池2の発電電力の有効利用が図られない。
In order to prevent the occurrence of the overvoltage application state, it is conceivable to limit the output current of the inverter unit 3 when the interconnection voltage rises to some extent. Effective utilization cannot be achieved.

【0021】一方、出力電流を制限する代わりに、その
位相を進相に制御して連系電圧を抑制すれば、太陽電池
の発電電力を有効に利用して前記の過電圧印加状態の発
生を防止することができる。
On the other hand, if the interconnection voltage is suppressed by controlling the phase to be advanced instead of limiting the output current, the generation of the overvoltage is prevented by effectively utilizing the power generated by the solar cell. can do.

【0022】そこで、従来は連系電圧が前記の進相運転
開始電圧V1 に上昇すると、進相運転開始判定回路16
により進相運転指令を形成し、この指令を進相運転用移
相回路15に供給する。
[0022] Therefore, when the conventional interconnection voltage rises fast operation starting voltage V 1 of the said phase advance operation start determination circuit 16
, And supplies this command to the phase shift circuit 15 for phase advance operation.

【0023】そして、進相運転用移相回路15により、
位相制御信号を同期検出回路13の同期パルスの位相か
ら進相する。
The phase shift circuit 15 for advanced phase operation
The phase control signal is advanced from the phase of the synchronization pulse of the synchronization detection circuit 13.

【0024】このとき、乗算器10の出力信号は、進相
運転用移相回路15の位相制御信号にしたがって系統電
圧より進み位相になる。
At this time, the output signal of the multiplier 10 is advanced in phase from the system voltage in accordance with the phase control signal of the phase shift circuit 15 for advanced phase operation.

【0025】そのため、乗算器10の出力信号と変流器
11の出力電流検出信号との誤差信号に基づき、インバ
ータ部3が力率1の運転から逸脱した進相運転で駆動さ
れ、その出力電流が系統電圧より進み位相に制御され
る。
For this reason, based on the error signal between the output signal of the multiplier 10 and the output current detection signal of the current transformer 11, the inverter unit 3 is driven in the fast-phase operation deviating from the operation of the power factor 1, and the output current Is controlled to a phase advanced from the system voltage.

【0026】このとき、出力電流の進み位相をθとする
と、図4の(d)に示すように、配電線5を流れる出力
電流Iaは、系統電圧Vsとの同相の成分がIa・co
sθになり、系統電圧Vsより90°進んだ進相の成分
がIa・sinθになる。
At this time, assuming that the leading phase of the output current is θ, as shown in FIG. 4D, the output current Ia flowing through the distribution line 5 has a component in phase with the system voltage Vs, Ia · co.
sθ, and the component of the phase leading 90 ° from the system voltage Vs becomes Ia · sinθ.

【0027】したがって、出力電圧Vinvは系統電圧
Vsと,Ia・cosθに基づく抵抗Rの電圧降下VR
との加算電圧Vs+VR (=Vs+Ia・cosθ)よ
り、進相成分Ia・sinθに基づくコイルLの電圧降
下VL (=−ωL・Ia・sinθ)低くなり、連系電
圧が進相運転を行わない場合の電圧Vs+VR より抑制
される。
Therefore, the output voltage Vinv is determined by the system voltage Vs and the voltage drop V R of the resistor R based on Ia · cos θ.
Than added voltage Vs + V R (= Vs + Ia · cosθ) with phase advance component Ia · voltage drop of the coil L based on sinθ V L (= -ωL · Ia · sinθ) decreases, interconnection voltage perform phase advancing operation is suppressed than the voltage Vs + V R in the absence.

【0028】ところで、インバータ部3の進相運転への
逸脱量は、分散電源についての進相運転方式のガイドラ
インに示されているように、インバータ部3の過負荷防
止等の観点から力率0.85が限度とされる。
Incidentally, the deviation of the inverter unit 3 into the phase-advanced operation is determined by the power factor 0 from the viewpoint of preventing the inverter unit 3 from being overloaded, as shown in the guideline of the phase-advanced operation method for the distributed power source. .85 is the limit.

【0029】そして、従来は所定の進相運転開始電圧V
1 で進相運転を開始すると、連系電圧が進相運転開始電
圧V1 を下回らない限り、力率0.85の進相運転まで
連続的にインバータ部3の運転を進相制御する。
Conventionally, a predetermined leading phase operation start voltage V
When the phase-advance operation is started at 1 , the operation of the inverter unit 3 is continuously advanced until the phase-advance operation with a power factor of 0.85, unless the interconnection voltage falls below the phase-advance operation start voltage V1.

【0030】そして、この制御により、連系電圧が進相
運転開始電圧V1 より低下すると、インバータ部3の運
転を力率1.0に徐々に復帰する。
When the interconnection voltage falls below the phase-advance operation start voltage V 1 by this control, the operation of the inverter unit 3 is gradually returned to the power factor of 1.0.

【0031】[0031]

【発明が解決しようとする課題】前記従来のように進相
運転開始電圧V1 を設定し、連系電圧が進相運転開始電
圧V1 以上に上昇したときに、運転位相を連続的に進相
するため、運転開始電圧V1 に低下しない限り進相方向
に移相され続け、太陽電池2の発電電力を最も有効に利
用することができない問題点がある。
Set the phase advance operation start voltages V 1 as in the prior [0005], when the interconnection voltage rises to the phase advance operation start voltages V 1 or more, continuously advancing operation phase to phase, continues to be phase-shifted in the phase advance direction unless reduced to the operation starting voltage V 1, there is a problem that can not be the most effective use of power generated by the solar battery 2.

【0032】しかも、図5に示すように、#1,#2,
…,#nの複数台の太陽光発電インバータ1を配電線5
に接続して同時に運転する場合、回路特性のばらつき等
により進相運転開始電圧V1 がインバータ1毎に異な
り、連系電圧が上昇したときに、最も低い進相運転開始
電圧V1 のインバータ1,例えば#1のインバータ1が
最初に進相運転に移行する。
Further, as shown in FIG. 5, # 1, # 2,
.., #N solar power generation inverters 1
If connected to drive at the same time, unlike the phase advance operation start voltages V 1 due to variations in circuit characteristics or the like for each inverter 1, when the interconnection voltage rises, the lowest phase advance operation start voltages V 1 inverter 1 , For example, the inverter 1 of # 1 first shifts to the advanced phase operation.

【0033】そして、#1のインバータ1が進相運転制
御されると、この制御により電圧抑制効果が現われ、#
1のインバータ1のみが力率0.85で進相運転され、
それ以外の#2,…,#nのインバータ1は進相運転さ
れることなく力率1の通常運転で運転され続ける。
When the # 1 inverter 1 is controlled in the phase-advance operation, a voltage suppression effect appears by this control, and
Only the inverter 1 of 1 is operated in the leading phase at a power factor of 0.85,
The other inverters # 2,..., #N continue to be operated in the normal operation with a power factor of 1 without being operated in the leading phase.

【0034】すなわち、太陽光発電インバータ1を2を
複数台使用する場合、インバータ1によって進相運転さ
れ易いものとそうでないものとが生じ、インバータ1間
の運転力率のばらつきが生じて全てのインバータ1を同
じ力率条件で運転することができない問題点があり、例
えば、インバータ1を各戸に1台ずつ設けると、極端な
場合、特定の1戸のインバータ1のみが常に力率0.8
5で進相運転され、残りの各戸のインバータ1は力率1
で通常運転される事態を招く。
That is, when a plurality of the photovoltaic power generation inverters 2 are used, some of the inverters 1 are easily operated in the phase-advanced operation and others are not so, and the operating power factor among the inverters 1 varies, and all the inverters 1 are operated. There is a problem that the inverter 1 cannot be operated under the same power factor condition. For example, if one inverter 1 is provided in each house, in an extreme case, only one specific inverter 1 always has a power factor of 0.8.
5, the inverter 1 of each of the remaining doors has a power factor of 1.
In normal operation.

【0035】本発明は、連系電圧を抑制する際の過剰な
進相運転を防止して太陽光発電電力を最も有効に利用し
得るようにするとともに、複数台のインバータを同時に
運転したときの進相運転による運転力率のばらつきを抑
制することを課題とする。
The present invention prevents excessive phase advance operation when suppressing the interconnection voltage so as to make the most effective use of the photovoltaic power, and to reduce the power consumption when a plurality of inverters are operated simultaneously. It is an object of the present invention to suppress the variation of the driving power factor due to the early phase operation.

【0036】[0036]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の太陽光発電インバータの運転方法におい
ては、配電線の連系運転に基づく連系電圧を検出し、検
出電圧が設定された進相運転開始電圧以上に上昇したと
きに検出電圧に応じた力率の進相運転への移相量をくり
返し求め、移相量に応じて太陽光発電インバータの運転
位相を進相し、検出電圧が進相運転開始電圧以上のとき
に太陽光発電インバータを検出電圧に応じた力率の進相
運転に制御する。
In order to solve the above-mentioned problems, in a method for operating a photovoltaic power generation inverter according to the present invention, an interconnection voltage based on interconnection operation of a distribution line is detected, and the detected voltage is set. When the voltage rises above the phase-advanced operation start voltage, the phase shift amount of the power factor according to the detected voltage to the phase-advanced operation is repeatedly obtained, and the operation phase of the photovoltaic power generation inverter is advanced according to the phase shift amount. When the detected voltage is equal to or higher than the early phase operation start voltage, the photovoltaic power generation inverter is controlled to the early phase operation with a power factor corresponding to the detected voltage.

【0037】したがって、連系電圧が進相運転開始電圧
以上になると、太陽光発電インバータは、従来のように
連系電圧が設定された電圧に低下するまで運転位相が連
続的に進相方向に移相されるのでなく、検出した連系電
圧に相当する進相量の進相運転に制御される。
Therefore, when the interconnection voltage becomes equal to or higher than the phase start operation voltage, the photovoltaic power generation inverter continuously shifts the operation phase in the phase advance direction until the interconnection voltage decreases to the set voltage as in the related art. Rather than being phase-shifted, the operation is controlled to a phase-advance operation with a phase-advance amount corresponding to the detected interconnection voltage.

【0038】そのため、太陽光発電インバータの運転の
進相量が連系電圧に追従して変化し、過不足のない適切
な進相運転が行え、太陽電池の発電電力が最も有効に利
用される。
Therefore, the amount of phase advance of the operation of the photovoltaic power generation inverter changes following the interconnection voltage, so that appropriate phase advance operation without excess or deficiency can be performed, and the power generated by the solar cell is used most effectively. .

【0039】しかも、複数台の太陽光発電インバータを
同時に運転した場合、連系電圧が進相運転開始電圧以上
になると、各インバータがそれぞれ連系電圧に相当する
進相量の進相運転に制御され、このとき、インバータ間
に進相運転開始電圧の多少のばらつきがあっても、1台
のインバータのみが進相運転に制御されるような事態は
発生せず、各インバータがほぼ等しく進相運転され、運
転力率のばらつきが抑制される。
In addition, when a plurality of photovoltaic power generation inverters are operated at the same time, and when the interconnection voltage becomes equal to or higher than the phase operation start voltage, each of the inverters is controlled to the phase advance operation of the phase amount corresponding to the interconnection voltage. At this time, even if there is a slight variation in the phase start operation voltage between the inverters, a situation does not occur in which only one inverter is controlled to the phase advance operation, and the inverters are almost equally advanced. The vehicle is driven, and variations in the driving power factor are suppressed.

【0040】[0040]

【発明の実施の形態】本発明の実施の1形態につき、図
1及び図2を参照して説明する。図1は太陽光発電イン
バータ1の構成を示し、図3と同一符号は同一もしくは
相当するものを示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows the configuration of a photovoltaic power inverter 1, and the same reference numerals as those in FIG. 3 denote the same or corresponding components.

【0041】そして、図1のインバータ1が図3と異な
る点は、図3の進相運転開始判定回路16の代わりに進
相量設定用関数回路20を設け、この関数回路20の進
相量の出力信号に基づき、進相運転用移相回路15によ
り関数回路20の出力信号の進相量だけ同期検出回路1
3の同期パルスを進相方向に移相した移相制御信号を形
成し、この信号を乗算器10に供給した点である。
The inverter 1 of FIG. 1 is different from that of FIG. 3 in that a phase advance amount setting function circuit 20 is provided instead of the phase advance operation start determination circuit 16 of FIG. Of the output signal of the function circuit 20 based on the output signal of the synchronous detection circuit 1
The point is that a phase shift control signal in which the synchronization pulse No. 3 is shifted in the leading direction is formed, and this signal is supplied to the multiplier 10.

【0042】つぎに、進相量設定用関数回路20につい
て発明する。この関数回路20は電圧実効値演算回路1
4を介した変圧器12の検出電圧に基づき、配電線5の
連系電圧が進相運転開始電圧V1 以上のときに、連系電
圧が力率0.85の進相運転限界電圧V2 に上昇するま
でインバータ部3の進相運転量を連系電圧に応じて線形
可変するため、例えばダイオード特性を利用した図2の
連系電圧−進相量の線形特性の関数回路により形成され
る。
Next, the phase advance amount setting function circuit 20 will be invented. This function circuit 20 is a voltage effective value calculation circuit 1
4 based on the detection voltage of the transformer 12 via, when interconnection voltage distribution line 5 operation start voltages V 1 or more advanced phase, the phase advance operation limit voltage V 2 of the interconnection voltage power factor 0.85 In order to linearly vary the advanced operation amount of the inverter unit 3 in accordance with the interconnection voltage until it rises to, the circuit is formed, for example, by a function circuit of the linear characteristic of interconnection voltage-advance amount of FIG. .

【0043】そして、力率1の通常運転で連系電圧が進
相運転開始電圧V1 以上に上昇すると、進相量設定用関
数回路20は、検出した連系電圧に相当する運転力率へ
の進相量をくり返し求めて決定し、この進相量の出力信
号を進相運転用移相回路15に供給する。
[0043] When the interconnection voltage in normal operation of the power factor 1 is raised to the phase advance operation start voltages V 1 or more, phase advance amount setting function circuit 20, to the operating power factor corresponding to the detected interconnection voltage Is repeatedly determined and determined, and an output signal of the phase advance is supplied to the phase shift circuit 15 for phase advance operation.

【0044】なお、連系電圧が進相運転限界電圧V2
上に上昇するときは、運転力率を0.85より小さくし
ないため、進相量を力率0.85の一定量に保持する。
[0044] Incidentally, when the interconnection voltage rises phase advance operation limit voltage V 2 or more, because no driving power factor less than 0.85, to hold the phase advance amount constant amount of power factor 0.85 .

【0045】そして、進相運転用移相回路15が進相量
設定用関数回路20の出力信号の進相量に応じた移相制
御信号を乗算器10に供給し、インバータ部3の出力電
流が進相量設定用関数回路20の出力信号の進相量だけ
連系電圧より進相するようにインバータ部3を進相運転
する。
Then, the phase-advancing operation phase-shift circuit 15 supplies the multiplier 10 with a phase-shift control signal corresponding to the phase-advance amount of the output signal of the phase-advance-amount setting function circuit 20, and outputs the output current of the inverter unit 3. Operates the inverter unit 3 so that the phase of the inverter unit 3 is advanced from the interconnection voltage by the advance amount of the output signal of the function circuit 20 for setting the amount of advance.

【0046】この場合、従来のように連系電圧が進相運
転開始電圧V1 より低下するまでインバータ部3の運転
を連続的に進相するのではなく、現在の連系電圧に応じ
た進相量でインバータ部3を運転するため、過剰な進相
運転が発生せず、太陽電池2の発電電力を最大限有効に
利用することができる。
In this case, the operation of the inverter unit 3 is not continuously advanced until the interconnection voltage falls below the phase-advance operation start voltage V 1 as in the prior art, but is advanced according to the current interconnection voltage. Since the inverter unit 3 is operated with the phase amount, excessive phase advance operation does not occur, and the generated power of the solar cell 2 can be used most effectively.

【0047】また、図6のようにこの種太陽光発電イン
バータ1を複数台同時に運転する際に、各インバータ1
の進相運転開始電圧V1 に多少のばらつきがあっても、
連系電圧がそれぞれの開始電圧V1 以上になると、各イ
ンバータ1がそれぞれ連系電圧に応じたほぼ等しい進相
量の運転になる。
As shown in FIG. 6, when a plurality of such solar power generation inverters 1 are operated simultaneously,
Even if there is some variation in the phase advance operation start voltage V 1 of the,
When interconnection voltage is respective start voltages V 1 or more, the operation of substantially equal phase advancing amount each inverter 1 according to the interconnection voltages, respectively.

【0048】そのため、従来のように、例えば1台のイ
ンバータ1が力率0.85で進相運転されて残りのイン
バータ1が力率1で通常運転されるような運転の片寄り
が発生せず、各インバータ1がほぼ等しい力率で進相運
転され、運転力率のインバータ1間のばらつきが抑制さ
れる。
For this reason, as in the prior art, for example, one inverter 1 is operated in a phase-advanced manner at a power factor of 0.85, and the remaining inverters 1 are normally operated at a power factor of 1 so that a deviation occurs in the operation. Instead, each of the inverters 1 is operated in a phase-advanced manner with substantially the same power factor, and the variation in the operating power factor among the inverters 1 is suppressed.

【0049】ところで、進相量設定用関数回路20の関
数特性は図2のランプ特性に限られるものではなく、例
えば階段波形状,2次関数形状等であってもよい。
The function characteristics of the function circuit 20 for setting the phase advance amount are not limited to the ramp characteristics shown in FIG. 2, but may be, for example, a staircase wave shape, a quadratic function shape, or the like.

【0050】また、インバータ部3の制御信号が電流信
号であっても同様の効果が得られるのは勿論である。
The same effect can of course be obtained even if the control signal of the inverter section 3 is a current signal.

【0051】さらに、進相運転への逸脱量の制限が力率
0.85と異なる場合及び、進相量の制限のない場合に
も適用できるのは勿論である。
Further, it is needless to say that the present invention can be applied to the case where the limitation of the deviation amount to the phase advance operation is different from the power factor of 0.85 and the case where there is no limitation of the phase advance amount.

【0052】[0052]

【発明の効果】本発明は、以下に記載する効果を奏す
る。配電線5の連系電圧が進相運転開始電圧以上になる
と、太陽光発電インバータ1が、検出された連系電圧に
相当する進相量の進相運転に制御されるため、太陽光発
電インバータ1の運転の進相量が連系電圧に追従して変
化し、適切な進相運転が行え、太陽電池の発電電力を最
も有効に利用することができる。
The present invention has the following effects. When the interconnection voltage of the distribution line 5 becomes equal to or higher than the phase start operation voltage, the photovoltaic inverter 1 is controlled to the phase advance operation of the phase advance amount corresponding to the detected interconnection voltage. The phase advance amount of the first operation changes according to the interconnection voltage, so that an appropriate phase advance operation can be performed, and the power generated by the solar cell can be used most effectively.

【0053】しかも、複数台の太陽光発電インバータ1
を同時に運転した場合、連系電圧が進相運転開始電圧以
上になると、各インバータ1がそれぞれ連系電圧に相当
する進相量の進相運転に制御され、このとき、インバー
タ1間に進相運転開始電圧の多少のばらつきがあって
も、1台のインバータ1のみが進相運転に制御されるよ
うな事態は発生せず、各インバータ1がほぼ等しく進相
運転され、運転力率のばらつきを抑制することができ
る。
In addition, a plurality of solar power generation inverters 1
Are operated at the same time, when the interconnection voltage becomes equal to or higher than the phase-advance operation start voltage, each of the inverters 1 is controlled to the phase-advance operation of the phase-advance amount corresponding to the interconnection voltage. Even if there is some variation in the operation start voltage, a situation in which only one inverter 1 is controlled to the phase advance operation does not occur. Can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態のブロック結線図であ
る。
FIG. 1 is a block connection diagram of an embodiment of the present invention.

【図2】図1の連系電圧と進相量との関係の説明図であ
る。
FIG. 2 is an explanatory diagram of a relationship between an interconnection voltage and a phase advance amount in FIG. 1;

【図3】従来例のブロック結線図である。FIG. 3 is a block connection diagram of a conventional example.

【図4】(a)は図3の一部の等価回路図、(b)〜
(d)は図3の動作説明用のベクトル図である。
4A is an equivalent circuit diagram of a part of FIG. 3, and FIGS.
FIG. 4D is a vector diagram for explaining the operation in FIG. 3.

【図5】太陽光発電インバータを複数台同時使用すると
きのブロック結線図である。
FIG. 5 is a block connection diagram when a plurality of solar power generation inverters are used at the same time.

【符号の説明】[Explanation of symbols]

1 太陽光発電インバータ 2 太陽電池 3 インバータ部 5 配電線 6 系統電源 7 負荷 8 制御部 20 進相量設定用関数回路 DESCRIPTION OF SYMBOLS 1 Photovoltaic inverter 2 Solar cell 3 Inverter part 5 Distribution line 6 System power supply 7 Load 8 Control part 20 Function circuit for phase advance setting

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02P 7/63 302 H02P 7/63 302B ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location H02P 7/63 302 H02P 7/63 302B

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 配電線に接続されて系統電源と連系運転
され、発電量に応じた出力電流に制御される太陽光発電
インバータの運転方法において、 前記配電線の前記連系運転に基づく連系電圧を検出し、 検出電圧が設定された進相運転開始電圧以上に上昇した
ときに前記検出電圧に応じた力率の進相運転への移相量
をくり返し求め、 前記移相量に応じて前記太陽光発電インバータの運転位
相を進相し、 前記検出電圧が前記進相運転開始電圧以上のときに前記
太陽光発電インバータを前記検出電圧に応じた力率の進
相運転に制御することを特徴とする太陽光発電インバー
タの運転方法。
1. A method of operating a photovoltaic power generation inverter connected to a distribution line and connected to a system power supply and controlled to an output current according to a power generation amount, the method comprising: The system voltage is detected, and when the detected voltage rises above the set phase start operation start voltage, the phase shift amount to the phase advance operation of the power factor according to the detected voltage is repeatedly obtained, and according to the phase shift amount. Leading the operation phase of the photovoltaic power generation inverter to a phase leading operation with a power factor corresponding to the detection voltage when the detected voltage is equal to or higher than the phase start operation start voltage. A method of operating a photovoltaic power inverter, comprising the steps of:
JP8257598A 1996-09-06 1996-09-06 Operation of solar power generation inverter Pending JPH1084633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8257598A JPH1084633A (en) 1996-09-06 1996-09-06 Operation of solar power generation inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8257598A JPH1084633A (en) 1996-09-06 1996-09-06 Operation of solar power generation inverter

Publications (1)

Publication Number Publication Date
JPH1084633A true JPH1084633A (en) 1998-03-31

Family

ID=17308499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8257598A Pending JPH1084633A (en) 1996-09-06 1996-09-06 Operation of solar power generation inverter

Country Status (1)

Country Link
JP (1) JPH1084633A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035640A (en) * 2006-07-28 2008-02-14 Central Res Inst Of Electric Power Ind Device, method and program for suppressing rising of voltage
JP2010279133A (en) * 2009-05-27 2010-12-09 Ntt Facilities Inc Method and device for controlling power conditioner in solar light generating system
EP2544354A3 (en) * 2011-07-08 2015-07-29 Infineon Technologies AG Power converter circuit with AC output

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035640A (en) * 2006-07-28 2008-02-14 Central Res Inst Of Electric Power Ind Device, method and program for suppressing rising of voltage
JP2010279133A (en) * 2009-05-27 2010-12-09 Ntt Facilities Inc Method and device for controlling power conditioner in solar light generating system
EP2544354A3 (en) * 2011-07-08 2015-07-29 Infineon Technologies AG Power converter circuit with AC output

Similar Documents

Publication Publication Date Title
JP6555186B2 (en) AC motor control device
US7495410B2 (en) Systems and methods for improved motor drive power factor control
EP0951136B1 (en) Engine operated generator
US11711045B2 (en) Electric motor drive device
JPH1189096A (en) Operation control method of distributed power supply equipment
WO2019180763A1 (en) Power conversion device and rotary machine driving system
JP3259308B2 (en) Inverter device and uninterruptible power supply using the same
JPH1084633A (en) Operation of solar power generation inverter
JP3928798B2 (en) Power supply system
JP3762240B2 (en) Control device for self-excited inverter
JP7063020B2 (en) Power supply system and control method of power supply system
JPH1014112A (en) System-linked inverter device
JP3463197B2 (en) Automatic voltage regulator for synchronous generator
JP4400442B2 (en) Parallel operation control method for uninterruptible power supply
JP3367737B2 (en) Control device for grid-connected inverter
JP3309894B2 (en) Control method of self-excited var compensator
WO2020170983A1 (en) Electric motor drive device
JP3481885B2 (en) Inverter device
JPS62181674A (en) Pulse width modulation type inverter apparatus
JPH05199676A (en) Solar-battery power source
JP2592930B2 (en) Auxiliary power supply
KR900000765B1 (en) Controller of ac motor
JPH1132447A (en) Uninterruptible power system
JP2003098287A (en) Electric power system for internal pump
JP2641852B2 (en) Frequency converter