JPS59219975A - Cleaving method of semiconductor laser - Google Patents

Cleaving method of semiconductor laser

Info

Publication number
JPS59219975A
JPS59219975A JP58094345A JP9434583A JPS59219975A JP S59219975 A JPS59219975 A JP S59219975A JP 58094345 A JP58094345 A JP 58094345A JP 9434583 A JP9434583 A JP 9434583A JP S59219975 A JPS59219975 A JP S59219975A
Authority
JP
Japan
Prior art keywords
wafer
substrate
resonator
grooves
interosseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58094345A
Other languages
Japanese (ja)
Inventor
Soichi Kimura
木村 壮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58094345A priority Critical patent/JPS59219975A/en
Publication of JPS59219975A publication Critical patent/JPS59219975A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • H01S5/0202Cleaving
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Dicing (AREA)

Abstract

PURPOSE:To cleave a wafer efficiently with high yield in a short time by forming a groove from the substrate side of the wafer and giving an ultrasonic vibration when shaping a Fabry-Perot resonator surface. CONSTITUTION:Epitaxial layers 3 of multilayers are grown on a crystalline substrate 2 in GaAs or InP, and metallic electrodes 1, 4 are evaporated. Grooves 5 are formed along a crystal axis from the substrate side of a wafer through chemical etching or ion etching or the like. The wafer is dipped in a beaker in which water is entered, water is given an ultrasonic vibration together with the beaker, and the whole wafer is cloven efficiently at a time along the grooves. An edge is applied to a slender cylindrical substrate 6 obtained and the substrate is cut out into several laser chip. Since there is no flaw in a resonator 9 in the laser chip 8, the surface of the resonator is changed into a fine mirror surface and the reflectivity of beams is improved, laser oscillation threshold currents are reduced, and yield can be enhanced remarkably.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、半導体レーザのファブリペロ−共振器面作
製のために用いる骨間方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an interosseous method used for fabricating a Fabry-Perot cavity surface of a semiconductor laser.

従来例の構成とその問題点 半導体レーザの共振器は、結晶の璧開面を用いるファプ
リペロー型共振器が従来からとられている。最近では、
回折格子により光帰還を行なわせる分布帰還を(通称D
FB )あるいは、分布反射型(通称DBR)といった
共振器によりレーザ発振を得ている報告もあるが、この
型による半導体レーザは未だ歩留りが悪く、生産性に欠
ける。
Conventional Structure and Problems The resonator of a semiconductor laser has conventionally been a Fapry-Perot type resonator using a cleavage plane of a crystal. recently,
Distributed feedback that performs optical feedback using a diffraction grating (commonly known as D
There are reports of obtaining laser oscillation using resonators such as FB) or distributed reflection type (commonly known as DBR), but semiconductor lasers of this type still have a low yield and lack productivity.

従って、現在なお襞間面を用いたファプリペロー型半導
体レーザがその製作方法の容易さから主流となっている
Therefore, Fabry-Perot semiconductor lasers using interfold surfaces are currently the mainstream because of their ease of manufacturing.

ノアプリペロー型半導体レーザを作製する方法を説明す
ると、結晶骨間性のある基板(たとえばGaAsあるい
はInP)に多層のエピタキシャル結晶を形成し、その
表面にオーミック性をもった金属電極(たとえばAu−
Zn等)を蒸着する。
To explain the method for manufacturing a Noah-Priperot type semiconductor laser, a multilayer epitaxial crystal is formed on a substrate with interosseous crystalline properties (e.g., GaAs or InP), and a metal electrode with ohmic properties (e.g., Au-
(Zn, etc.) is deposited.

次に基板側を研磨しウニ/・の厚みを100μm程度に
する。これは、次段の骨間工程において骨間を行ない易
くするために必要な工程である。ウェハを研磨した後、
基板側にオーミック性のある金属電極(たとえば、Au
−8n等)を蒸着する。しかる後、鋭利な刃を結晶にあ
てがうことにより骨間に幅0.2〜osmmの細長い棒
状に切り出す。この棒状の結晶基板の襞間面がレーザの
共振器面となり、従ってこの棒の幅が共振器の長さに相
当する0 この方法において、鋭利な刃をあてがって結晶ヲ襞間す
る場合、刃の方向と結晶軸を並行になるようにしなけれ
ばならないが、これが少しでもずれているとうまく骨間
されずきれいな鏡面が得られない。襞間面がきれいな鏡
面でなくきすなどが入った場合、これをレーザの共振器
面として使用したとき、光の反射率が低下し光利得が小
さくなってレーザ発振しきい値電流が大きくなり実用的
でなく歩留りを著しく低下させる。従って、刃の方向と
結晶軸を正確に合わせて骨間しなければならないが、こ
れは非常に困難なものである。
Next, the substrate side is polished to a thickness of about 100 μm. This is a necessary step to facilitate the interosseous interossification in the next interosseous process. After polishing the wafer,
An ohmic metal electrode (for example, Au
-8n, etc.) is deposited. Thereafter, by applying a sharp blade to the crystal, it is cut into a long and thin rod shape with a width of 0.2 to osmm between the bones. The inter-fold plane of this rod-shaped crystal substrate becomes the resonator plane of the laser, and therefore the width of this rod corresponds to the length of the resonator. In this method, when applying a sharp blade to interfold the crystal, The direction of the bone must be parallel to the crystal axis, but if this is even slightly off, the bones will not intersect properly and a clean mirror surface will not be obtained. If the interfold surface is not a clean mirror surface and has scratches, etc., when used as a laser cavity surface, the light reflectance will decrease, the optical gain will decrease, and the laser oscillation threshold current will increase, making it impractical. This results in a significant decrease in yield. Therefore, it is necessary to accurately align the direction of the blade and the crystal axis to intersect the bone, but this is extremely difficult.

というのは、結晶の襞間は、その結晶を構成している原
子単位で行なわれるものであるので、原子の格子定数の
精度即ち数人の精度で刃の方向と結晶軸を合わさなけれ
ばならないからである。従って、通常刃をあてがって襞
間する場合、刃の方向と結晶軸をある程度合わせた後、
刃を結晶に軽く当ててみる。刃の方向と結晶軸が正確に
合っていれば、結晶は音もなくいとも簡単に骨間されき
れいな鏡面が得られる。合っていない場合は、軽く当て
ただけでは骨間されず、無理に力を入れて襞間してやる
とその襞間面はきれいな鏡面にはならず、貝われ状のギ
ザギザなどが入る。従って、刃を軽く当てるということ
を刃を方向を少しずつずらしながら何回か行ってみて、
音もなく骨間されるまでこれをくり返さなければならな
い。この作業は非常に時間がかかり能率が悪いものであ
り、また音もなく骨間されるときの刃をもつ手の微妙な
感覚を会得するのにある程度の熟練を必要とするもので
あった。また音もなく骨間された場合、その襞間面はき
れいな鏡面となるが、刃が当った部分だけはどうしても
襞間面にキズが入り歩留りを低下さすものであった。
This is because the inter-folding of a crystal is done for each atom that makes up the crystal, so the direction of the blade and the crystal axis must be aligned with the precision of the atomic lattice constant, that is, the precision of several people. It is from. Therefore, when applying a blade to interfold, after aligning the direction of the blade and the crystal axis to a certain extent,
Try touching the blade lightly to the crystal. If the direction of the blade and the crystal axis are precisely aligned, the crystal can be easily and silently inserted between the bones and a beautiful mirror surface can be obtained. If they are not aligned, the bones will not be aligned by applying light pressure, and if you force the folds to move between the folds, the surface between the folds will not be a clean mirror surface and will have burr-like jagged edges. Therefore, try applying the blade lightly several times while changing the direction of the blade little by little.
This must be repeated until the bone is moved silently. This work was extremely time consuming and inefficient, and required a certain degree of skill to master the subtle sensation of the hand holding the blade as it silently intersected the bones. Furthermore, when the bone is interboned without making a sound, the interfold surface becomes a beautiful mirror surface, but the interfold surface inevitably gets scratched at the part where the blade touches, which reduces the yield.

このようにして得られた細長い棒状の結晶基板に、さら
に刃をあてがって個々のレーザチップに切り出し、1個
のレーザチップが完成する。1個のレーザチップの大き
さは0.2〜0.3πm角であるので、1枚のウェノ・
(約1QmM角)から数百個のレーザチップが得られる
。従って、骨間も数百回行なう必要があった。また、骨
間する寸法も0.2〜0.3ffff程度であるので当
然、これらの作業は顕微鏡の下で行なわなければならず
非常に作業性の悪いものであったO 以上述べたように従来の方法では、(す刃の方向と結晶
軸を並行に合わせて骨間するのに非常に時間を要する。
A blade is applied to the elongated rod-shaped crystal substrate obtained in this manner and cut into individual laser chips, thereby completing one laser chip. Since the size of one laser chip is 0.2 to 0.3 πm square, one
Several hundred laser chips can be obtained from (approximately 1QmM square). Therefore, it was necessary to perform the interosseous surgery several hundred times. Furthermore, since the distance between the bones is approximately 0.2 to 0.3 ffff, these operations must be carried out under a microscope, which is extremely inefficient. With this method, it takes a lot of time to align the direction of the blade and the crystal axis in parallel and align the bones.

(2)音もなく骨間されるときの刃をもつ手の微妙な感
覚を会得するのにある程度の熟練を必要とする。(3)
刃が当った部分の襞間面にはキズが入り歩留りを低下さ
せる。(4)レーザチップにするには数百回刃をあてが
って骨間し、なければならないので多大の時間を要する
。(暖顕微鏡下で骨間を行なわなければならないので作
業性が悪い、という問題点があった。
(2) A certain degree of skill is required to master the subtle sensation of the hand holding the blade when it is silently inserted between the bones. (3)
Scratches appear on the interfold surface where the blade hits, reducing yield. (4) To make a laser chip, a blade must be applied several hundred times to cut the bone, which takes a lot of time. (There was a problem in that the workability was poor because the interosseous examination had to be performed under a warm microscope.

発明の目的 この発明は、以上述べたような従来例の問題点に鑑みて
、全く熟練を必要とせず、能率良く短時間でかつ、歩留
り良く骨間を行なうことを目的としている。
Purpose of the Invention In view of the above-mentioned problems of the prior art, the object of the present invention is to perform interosseous surgery efficiently, in a short period of time, and with a high yield without requiring any skill at all.

発明の構成 この発明は、ウニ/・の基板側から溝を形成し、ウェハ
に超音波振動をあたえることによりウエノ・全体を一度
に骨間するものである。
Structure of the Invention In this invention, a groove is formed from the substrate side of the sea urchin, and the entire sea urchin is interosseous at once by applying ultrasonic vibration to the wafer.

実施例の説明 この発明の実施例を図面を用いて説明する。Description of examples Embodiments of the invention will be described with reference to the drawings.

第1図は、GaAsあるいはInPの結晶基板2に多層
のエピタキシャル層3を成長し、オーミック性のある金
属電極4を蒸着した後、基板側を研磨し100μm程度
の厚さにし、基板側にオーミック性のある金属電極1を
蒸着したウニ/%を示している。このウェノ・の基板側
から結晶軸に沿って溝を形成する。その様子を第2図に
示す。溝6は化学エツチングあるいはイオンエツチング
等で形成する。溝6の底から基板の反対側までの厚さは
、エツチング、洗浄工程で割れない程度に厚く、また超
音波振動で骨間される程度に薄くする必要があるが、こ
の厚さは2o〜30μmが適当である。
In Figure 1, a multilayer epitaxial layer 3 is grown on a GaAs or InP crystal substrate 2, an ohmic metal electrode 4 is deposited, the substrate side is polished to a thickness of about 100 μm, and an ohmic layer is formed on the substrate side. It shows the percentage of sea urchins deposited with a metal electrode 1 having a certain property. Grooves are formed along the crystal axis from the substrate side of this wafer. The situation is shown in Figure 2. The groove 6 is formed by chemical etching or ion etching. The thickness from the bottom of the groove 6 to the opposite side of the substrate needs to be thick enough not to break during the etching and cleaning process, and thin enough to be able to be penetrated by ultrasonic vibration. A suitable thickness is 30 μm.

こうすることにより、ウェハの溝の部分のみ機械的強度
が弱くなり超音波振動をあたえてやると溝が結晶軸に沿
って形成されているので、溝に沿ってウェハはたやすく
骨間される。
By doing this, the mechanical strength of only the groove portion of the wafer is weakened, and when ultrasonic vibration is applied, the groove is formed along the crystal axis, so the wafer is easily interosseous along the groove. .

ウェハに超音波振動をあたえる場合、ウェハを水を入れ
たビーカーに浸し、ビーカーごと超音波振動をあたえ超
音波振動の縦波が水を伝わって効率良くウェハに伝わる
ようにする。こうすることにより、ウェハのすべての部
分に烏−に振動が伝わりウェハ全体が溝に沿って効率良
く一度に骨間される。
When applying ultrasonic vibrations to a wafer, the wafer is immersed in a beaker filled with water, and the beaker itself is subjected to ultrasonic vibrations so that the longitudinal waves of the ultrasonic vibrations travel through the water and are efficiently transmitted to the wafer. By doing this, the vibrations are transmitted to all parts of the wafer, and the entire wafer is efficiently moved along the grooves at once.

このような方法によれば、一度にウェハ全体を骨間でき
るので非常に能率が良く、工程時間を短縮できる。また
、従来例で述べたように刃をあてかって骨間する場合の
ような熟練もこの方法によれば全く不要となる。
According to this method, the entire wafer can be processed at one time, so it is very efficient and the process time can be shortened. Further, as described in the conventional example, this method does not require any skill to apply the blade to the bone.

第3図の6はこのようにして得られた細長い棒状の基板
である。この方法によれば1、レーザの共振器を形成す
る襞間面7は、刃にょる骨間と違い、全面にわたってき
れいな鏡面となるので歩留9を著しく向上できる。
6 in FIG. 3 is the elongated rod-shaped substrate thus obtained. According to this method, 1. Unlike the inter-fold surfaces 7 forming the laser resonator, the entire surface becomes a clean mirror surface, unlike the inter-fold surfaces 7 formed by the blade, so that the yield 9 can be significantly improved.

また溝6をV型に形成して超音波振動をあたえてやると
Vの頂点に応力が集中するのでなお良い。
It is also better to form the groove 6 in a V shape and apply ultrasonic vibration because the stress will be concentrated at the apex of the V.

しかも、溝をV型にしてやればVの頂点で骨間されるの
で骨間された細長い棒状の基板の幅、即ちレーザの共振
器の長さが一定寸法となり、1個のレーザチップにした
時のレーザ共振器長のばらつきがなく、さらに歩留りを
向上させる。なお、V溝の形成は異方性エツチング液に
より行えばよい。
Moreover, if the groove is made into a V shape, the bones will be interposed at the apex of the V, so the width of the long thin bar-shaped substrate between the bones, that is, the length of the laser resonator, will be a constant dimension, and when it is made into one laser chip. There is no variation in laser cavity length, further improving yield. Note that the V-groove may be formed using an anisotropic etching solution.

このようにして得られた細長い棒状の基板6に刃をあて
がって個々のレーザテップに切り出す様子を第4図に示
す。このようにして切り出されたレーザチップ8の共振
器面9には全くきすが無くきれいな鏡面となり、光の反
射率が高くなるのでレーザ発振しきい値電流が小さくな
り、歩留りを著しく向上させる。
FIG. 4 shows how the elongated rod-shaped substrate 6 thus obtained is cut into individual laser tips by applying a blade to it. The resonator surface 9 of the laser chip 8 cut out in this way has no scratches and has a clean mirror surface, which increases the reflectance of light, reduces the laser oscillation threshold current, and significantly improves the yield.

さらに、第6図は、ファプリペロー共振器を形成する面
に対し、垂直な方向にも同様の溝を形成した様子を示し
ている。このような溝を形成した後、上記と同様の方法
でウェハに超音波振動をあたえることにより、骨間と同
時に個々のレーザチップの分離をも行なうことができる
。このようにすれば、第4図で示したような刃による切
り出しも不要になるので、さらに工程時間の短縮になり
、かつ歩留りも向上する。
Furthermore, FIG. 6 shows a state in which similar grooves are also formed in a direction perpendicular to the surface on which the Fabry-Perot resonator is formed. After forming such grooves, by applying ultrasonic vibration to the wafer in the same manner as described above, it is possible to separate the individual laser chips at the same time as separating the bones. This eliminates the need for cutting with a blade as shown in FIG. 4, further reducing process time and improving yield.

なお、骨間に際し、水を入れだビー力にウェハを入れ超
音波振動を与える以外に、空気中で音波の振動を与え、
空気を媒質として縦波をウェハに伝え骨間を行ってもよ
い。
In addition, in addition to applying ultrasonic vibration by placing a wafer in water and applying bee force between the bones, applying sonic vibration in the air,
A longitudinal wave may be transmitted to the wafer using air as a medium to perform the interosseous treatment.

発明の効果 以上の説明で述べたように、この発明を7アプリペロ一
型半導体レーザの襞間工程に用いた場合以下のような効
果がある。
Effects of the Invention As described above, when the present invention is used in the inter-fold process of a 7-apple Perot type semiconductor laser, the following effects can be obtained.

(1)ウェハ全体を超音波振動により一度に骨間できる
ので工程時間が短縮できる。〔2)刃を用いず超音波振
動により骨間を行なうので襞間面は全面にわたりきれい
な鏡面となり歩留りを向上させる。
(1) Process time can be shortened because the entire wafer can be interossified at once by ultrasonic vibration. [2) Since the inter-osseous treatment is performed using ultrasonic vibration without using a blade, the inter-fold surface becomes a clean mirror surface over the entire surface, improving the yield.

倒起音波振動により骨間を行なうの刀刃をあてがって骨
間する場合のような熟練も全く□必要とせず、また顕微
鏡下で行なうといった作業性の悪さもない。(4ン溝を
V型に形成すればレーザの共振器長を一定寸法にできる
ので、共振器長のばらつきがなくさらに歩留“りを向上
させる。
Performing interosseous surgery using inverted sonic vibrations does not require the same level of skill as when applying a sword blade to perform interosseous interossification, and does not require poor workability such as performing under a microscope. (If the four-channel groove is formed in a V-shape, the laser resonator length can be made constant, so there is no variation in the resonator length, which further improves the yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はGaAsあるいはInPの結晶基板に多層のエ
ピタキシャル層を成長し基板側にオーミック性のある金
属電極を蒸着しだ骨間前のウェハの斜視図、第2図は結
晶軸に沿って基板側から77プリベロー共振器の長さを
くり返しとする溝を形成したウェハの斜視図、第3図は
溝に沿って骨間された細長い棒状の基板の斜視図、第4
図は細長い棒状の基板に刃をあてがって個々のレーザチ
ップを切り出す様子を示す図、第6図はノアブリペロー
共振器面に対し垂直な方向にも溝を形成したウェハの斜
視歯である。 2・・・・・・Ga AsあるいはInPの結晶基板、
3・・・・・・多層のエピタキシャル層、5・・・・・
・化学エツチングあるいはイオノエツチング等で結晶軸
に沿って形成したファブリベロー共振器の長さをくり返
しとする溝、6・・・・・・溝に沿って骨間された細長
い棒状の結晶基板、7・・・・・・ファブリペロ−共振
器面となる骨間面、8・・・・・・細長い棒状の結晶基
板から切り出された1個のレーザテップ、9・・・・・
・レーザのファブリペロ−共振器面。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第5図
Figure 1 is a perspective view of a wafer in front of the rib cage, where multiple epitaxial layers are grown on a GaAs or InP crystal substrate and an ohmic metal electrode is deposited on the substrate side. FIG. 3 is a perspective view of a wafer in which grooves are formed repeating the length of the 77 Prebellow resonator from the side; FIG.
The figure shows how individual laser chips are cut out by applying a blade to an elongated rod-shaped substrate, and FIG. 6 shows a perspective view of a wafer in which grooves are also formed in a direction perpendicular to the Noabry-Perot resonator surface. 2...GaAs or InP crystal substrate,
3...Multilayer epitaxial layer, 5...
・A groove repeating the length of a Fabry-Bello resonator formed along the crystal axis by chemical etching or ionoetching, etc., 6... A long and thin rod-shaped crystal substrate interposed between bones along the groove, 7・・・・・・Fabry-Perot interosseous surface which becomes the resonator surface, 8・・・・・・One laser tip cut out from a long and thin rod-shaped crystal substrate, 9・・・・・・
・Laser Fabry-Perot cavity surface. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)基板結晶及びその上に成長せしめられたエピタキ
シャル層を含むウェハを襞間しファプリペロー共振器面
を形成するにあたり、前記ウェハの基板側から7アプリ
ペロー共振器の長さをくり返しとする溝を形成した後、
前記ウェハに超音波振動をあたえることにより前記溝に
沿って襞間せしめることを特徴とする半導体レーザの骨
間方法。
(1) When folding a wafer containing a substrate crystal and an epitaxial layer grown thereon to form a Fapley-Perot resonator surface, grooves are formed repeatedly the length of seven Aply-Perot resonators from the substrate side of the wafer. After forming the
1. A semiconductor laser interosseous method, characterized in that the wafer is subjected to ultrasonic vibration to create inter-folds along the grooves.
(2)  ファブリペロ−共振器面に対し垂直な方向に
も同様の溝を形成することを特徴とする特許請求の範囲
第1項に記載の半導体レーザの骨間方法。
(2) The interosseous method for a semiconductor laser according to claim 1, wherein a similar groove is also formed in a direction perpendicular to the Fabry-Perot cavity surface.
(3)溝をV型に形成することを特徴とする特許請求の
範囲第1項に記載の半導体レーザの骨間方法。
(3) The semiconductor laser interosseous method according to claim 1, wherein the groove is formed in a V-shape.
JP58094345A 1983-05-27 1983-05-27 Cleaving method of semiconductor laser Pending JPS59219975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58094345A JPS59219975A (en) 1983-05-27 1983-05-27 Cleaving method of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58094345A JPS59219975A (en) 1983-05-27 1983-05-27 Cleaving method of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS59219975A true JPS59219975A (en) 1984-12-11

Family

ID=14107691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58094345A Pending JPS59219975A (en) 1983-05-27 1983-05-27 Cleaving method of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59219975A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904617A (en) * 1987-09-17 1990-02-27 Siemens Aktiengesellschaft Method for separating monolithically produced laser diodes
EP0450902A2 (en) * 1990-04-02 1991-10-09 Sharp Kabushiki Kaisha A method for the production of a semiconductor laser device
US5272114A (en) * 1990-12-10 1993-12-21 Amoco Corporation Method for cleaving a semiconductor crystal body
JPH10125994A (en) * 1996-10-18 1998-05-15 Nec Corp Semiconductor laser device and manufacturing method thereof
DE10328876A1 (en) * 2003-06-26 2005-02-03 Infineon Technologies Ag Method for separation of semiconductor chips from semiconductor wafer using formation of separation lines by ion implantation and separation using ultrasonic bath

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904617A (en) * 1987-09-17 1990-02-27 Siemens Aktiengesellschaft Method for separating monolithically produced laser diodes
EP0450902A2 (en) * 1990-04-02 1991-10-09 Sharp Kabushiki Kaisha A method for the production of a semiconductor laser device
US5272114A (en) * 1990-12-10 1993-12-21 Amoco Corporation Method for cleaving a semiconductor crystal body
JPH10125994A (en) * 1996-10-18 1998-05-15 Nec Corp Semiconductor laser device and manufacturing method thereof
DE10328876A1 (en) * 2003-06-26 2005-02-03 Infineon Technologies Ag Method for separation of semiconductor chips from semiconductor wafer using formation of separation lines by ion implantation and separation using ultrasonic bath

Similar Documents

Publication Publication Date Title
US5629233A (en) Method of making III/V semiconductor lasers
JPH11224866A (en) Laser dividing and cutting method
JPS59219975A (en) Cleaving method of semiconductor laser
JP4334864B2 (en) Thin plate crystal wafer and method for manufacturing crystal resonator
US5095664A (en) Optical surface polishing method
JP2022529155A (en) Cam type clock parts
JPH02132844A (en) Division of compound semiconductor wafer
US4651042A (en) Piezoelectric vibrator and manufacturing method thereof
JPS5874600A (en) Cleaving method for single crystal substrate
JPH0983081A (en) Fabrication of semiconductor laser element
JPS6226183B2 (en)
JP2000021819A (en) Method for making diamond wafer into chip
JPS59200437A (en) Cutting method
JP6516891B2 (en) Piezoelectric vibrating reed and piezoelectric vibrator
JPH0136990B2 (en)
JP3351119B2 (en) Manufacturing method of piezoelectric resonator
JPS58132500A (en) Tool for machining of ultrasonic cutting machining device
JPS60231379A (en) Manufacture of semiconductor laser device
JPS63182904A (en) Energy confinement type piezoelectric vibrator component
JPH08125278A (en) Manufacture of semiconductor laser device
JPS6392026A (en) Semiconductor device
JPS62272582A (en) Separating method for semiconductor laser element
JPH0818370A (en) Manufacture of crystal vibrator
RU1335110C (en) Resonator manufacturing process
JPS6138895A (en) Method of cutting cutting tool conducting cutting by hand work