JPS59219915A - Manufacture of resin molded coil - Google Patents

Manufacture of resin molded coil

Info

Publication number
JPS59219915A
JPS59219915A JP9371783A JP9371783A JPS59219915A JP S59219915 A JPS59219915 A JP S59219915A JP 9371783 A JP9371783 A JP 9371783A JP 9371783 A JP9371783 A JP 9371783A JP S59219915 A JPS59219915 A JP S59219915A
Authority
JP
Japan
Prior art keywords
coil
resin
insulator
foam
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9371783A
Other languages
Japanese (ja)
Inventor
Yoshihiro Ito
善博 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9371783A priority Critical patent/JPS59219915A/en
Publication of JPS59219915A publication Critical patent/JPS59219915A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/322Insulating of coils, windings, or parts thereof the insulation forming channels for circulation of the fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulating Of Coils (AREA)

Abstract

PURPOSE:To remove leakage of resin, and to stabilize the electric and the mechanical characteristics of a resin molded coil by a method wherein a foam sheet or tape is wound around the inlet/outlet parts of transition wires in cooling air paths between inside coils and outside coils to form foam layers. CONSTITUTION:Because foam sheets 17 are wound around transition wires 16 at a cooling air path part between the inside coil 11 and the outside coil 12 of a low voltage coil, transition wires 26 at a cooling air path part between a high voltage coil 23 and an outside coil 28, and the respective lead out parts of terminals 27 projecting from the outer peripheral side of the outermost layer coil, when the foam sheets 17 thereof are heated at the temperature of 120 deg.C or more at resin impregnating time, the sheets foam to 3-5 times. Accordingly, because gaps at the lead out parts of the transition wires 16, 26 to insulators 15a, 15b and 15e, 15f, and gaps at the terminal parts to the outermost periphery insulating layer 36 are blocked according to foaming action of the foam layers 17, leakage of resin from the parts thereof can be checked.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は乾式変圧器、リアクトル等の電磁誘導機器に使
用される冷却気道を有する樹脂モールドコイルの製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a resin molded coil having a cooling airway for use in electromagnetic induction equipment such as dry transformers and reactors.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

最近乾式変圧器として樹脂を含浸硬化させて一体にし絶
縁特性を向上させたモールド形乾式変圧器が出現してい
る。このモールド形乾式変圧器は一般には鉄心脚に樹脂
モールドした複数個のコイルを同心的に配置して構成さ
れる。
Recently, a mold type dry transformer has appeared as a dry transformer, which is made by impregnating and hardening resin into one piece to improve insulation properties. This molded dry type transformer is generally constructed by concentrically arranging a plurality of resin-molded coils around an iron core leg.

このモールド形乾式変圧器に用いられるコイルの製造方
法としては大別して金型を用いる方法と金型を用いない
方法とがあるが、近時では仕様の多様化、金型の保守等
の生産性、経済性の点で有利なことから、金型を使用し
ないで樹脂モールドコイルを製造する、いわゆる含浸り
イゾの製造方法が多く採用されている。
There are two main methods for manufacturing the coils used in molded dry type transformers: methods that use molds and methods that do not use molds, but in recent years, specifications have diversified, and productivity such as maintenance of molds has improved. Since it is economically advantageous, a so-called impregnated iso manufacturing method, in which a resin molded coil is manufactured without using a mold, is often adopted.

ところで、含浸タイプの製造方法の場合、コイルに余分
な樹脂が付着しないので、モールドコイル特有のクラッ
クの発生もなく、また小形軽量化を図ることができる。
By the way, in the case of the impregnation type manufacturing method, since excess resin does not adhere to the coil, there is no occurrence of cracks peculiar to molded coils, and the coil can be made smaller and lighter.

しかしながら低粘度の樹脂を使用し、金型を使用しない
ために、コイル内に含浸した樹脂が外に洩れるおそれが
あり、これをいかに防止するかがこの製法のポイントと
なる。
However, since a low viscosity resin is used and no mold is used, there is a risk that the resin impregnated into the coil may leak out, and the key to this manufacturing method is how to prevent this.

従来から実施さ扛ている含浸タイプの製法としては、 (1)  含浸槽からコイルを取り出した直後、コイル
を回転駆動装置に回転可能にセットして回転させながら
、加熱し樹脂ケ硬化させる方法、(2)  コイル内或
いはコイル絶縁層に予め硬化促進剤を付着させておき、
樹脂を含浸して硬化促進剤と樹脂が反応してケ゛ル化が
進み・ コイル内の樹脂が洩nなくなった時点でコイル
を取り出してそのまま加熱炉内で加熱し樹脂を硬化させ
る方法、 等が知られている。この内(1)の方法についてはコイ
ルを回転駆動装置にセットする作業が必要であり、また
回転駆動装置の設備的な制約のため、量産機種に不向で
ある欠点があることから、近年では上記(2)の、製法
等が注目されてきている。
Conventional impregnation type manufacturing methods include: (1) Immediately after taking out the coil from the impregnation tank, the coil is rotatably set in a rotary drive device and heated while being rotated to harden the resin; (2) A curing accelerator is attached in advance to the inside of the coil or to the coil insulating layer,
It is known that the coil is impregnated with resin and the curing accelerator reacts with the resin, resulting in celification.When the resin in the coil stops leaking, the coil is taken out and heated in a heating furnace to harden the resin. It is being Among these, method (1) requires work to set the coil in the rotary drive device, and has the disadvantage that it is not suitable for mass-produced models due to equipment limitations of the rotary drive device. The manufacturing method described in (2) above has been attracting attention.

ここで上記(2)の製法について図面に従って説明する
。第1図及び第2図は従来の製造方法による多重巻構成
による樹脂モールドコイルの一例を示したものである◎ この従来方法によって樹脂モールドコイルを製造するに
は絶縁筒等の巻枠1上に導体2&を巻回して低圧コイル
2を構成し、その口出し線2bを上方へ引出した後、そ
の外周に予め硬化促進剤を付着させたガラステープを巻
回して低圧コイル2の外周絶縁層3aを形成する。この
絶縁層3aの外側には冷却気道を確保するために、波形
状の間隔絶縁物4を配置する。その間隔絶縁物4の上に
予め硬化促進剤を付着したガラステープを巻回して内周
絶縁層3bを形成したのち・導体5aを巻回して高圧コ
イル5を構成し、その口出し線5bを上方に引き出す。
Here, the manufacturing method (2) above will be explained with reference to the drawings. Figures 1 and 2 show an example of a resin molded coil with a multiple winding configuration according to a conventional manufacturing method.◎ To manufacture a resin molded coil by this conventional method, a coil frame 1 such as an insulating tube is After winding the conductor 2& to form the low voltage coil 2 and pulling out the lead wire 2b upward, a glass tape to which a curing accelerator has been applied in advance is wound around the outer periphery to form the outer periphery insulating layer 3a of the low voltage coil 2. Form. A corrugated spacer insulator 4 is placed outside the insulating layer 3a to ensure a cooling airway. After winding a glass tape to which a curing accelerator has been applied in advance on the spacer insulator 4 to form the inner peripheral insulating layer 3b, the conductor 5a is wound to form the high voltage coil 5, and the lead wire 5b is directed upward. Pull it out.

高圧コイル5は段間絶縁物6を介して複数の巻回層で形
成されている。また各コイル2,5の上下端外方にはコ
イルの絶縁と機械的強度向上のために端部絶縁物7a 
、7bを挿入するが、その下端部絶縁物7bにも予め硬
化促進剤を処理しておく。更に高圧コイル5の最外周に
も硬化促進剤を処理したガラステープで外周絶縁層3C
を形成する。
The high voltage coil 5 is formed of a plurality of winding layers with an interstage insulator 6 interposed therebetween. In addition, end insulators 7a are provided outside the upper and lower ends of each coil 2 and 5 to insulate the coil and improve mechanical strength.
, 7b is inserted, and the lower end insulator 7b is also treated with a curing accelerator in advance. Furthermore, the outermost insulating layer 3C of the high voltage coil 5 is made of glass tape treated with a curing accelerator.
form.

このようにコイルの内外周、下端部は硬化促進剤で処理
した絶縁層3a〜3C及び下端部絶縁物7bで覆われる
ことになる。このようなコイルを図示していない樹脂槽
で樹脂を含浸し樹脂が硬化促進剤を処理した絶縁層3a
〜3C及び下端部゛絶縁物7bで硬化促進剤と反応して
グル化するまで樹脂槽内に放置する。硬化促進剤を処理
した絶縁層3a〜3C及び下端部絶縁物7b中の樹脂の
ダル化が進行し、コイル内に含浸した樹脂が外部に流出
しない時点でコイルを樹脂槽より引き上けて加熱炉内で
加熱して樹脂を硬化し、一体の樹脂モールドコイルを得
るようにしていた。
In this way, the inner and outer peripheries and the lower end of the coil are covered with the insulating layers 3a to 3C treated with a curing accelerator and the lower end insulator 7b. An insulating layer 3a in which such a coil is impregnated with resin in a resin bath (not shown) and the resin is treated with a curing accelerator.
~3C and the lower end portion ``insulator 7b'' are left in the resin bath until they react with the curing accelerator and form a glue. When the resin in the insulating layers 3a to 3C and the lower end insulator 7b treated with the curing accelerator has progressed to dullness and the resin impregnated inside the coil does not flow out, the coil is pulled up from the resin bath and heated. The resin was cured by heating in a furnace to obtain a one-piece resin molded coil.

しかしながら、この従来の樹脂モールドコイルの製造方
法では次のような欠点がある。
However, this conventional resin molded coil manufacturing method has the following drawbacks.

即ち、容量の大きな変圧器において、コイル内の発生熱
を小さくするには断面積の大きな導体を用いて電流密度
を小さくすればよいが、これではコイル自体が大きくな
るため、低圧コイル2、高圧コイル5内にも冷却気道を
設ける必要がある。しかし低圧コイル2及び高圧コイル
5内に冷却気道をそれぞれ設ける場合、低圧コイル2及
び高圧コイル5を内側コイルと外側コイルにそれぞれ分
けてそのコイル間に冷却気道を形成するとともにその内
側コイルと外側コイルとを冷却気道を介して渡り線で接
続しなければならない。このため、外側コイルの内周及
び内側コイルの外周に予め硬化促進剤を処理したガラス
テープを密に複数回巻いて内周絶縁層、外周絶縁層を形
成し、内周、外周及び渡り部からも樹脂が洩れないよう
にする必要があるが、−こ゛の作業はコイル導体の巻線
作業の途中で行なわなければならず、非常に煩雑な作業
となり、実際の製造方法としては適していない。
In other words, in a transformer with a large capacity, in order to reduce the heat generated in the coil, it is possible to reduce the current density by using a conductor with a large cross-sectional area, but this would make the coil itself large, so the low voltage coil 2, high voltage It is necessary to provide a cooling airway within the coil 5 as well. However, when providing cooling airways in the low-voltage coil 2 and high-voltage coil 5, the low-voltage coil 2 and the high-voltage coil 5 are divided into an inner coil and an outer coil, respectively, a cooling airway is formed between the coils, and the inner coil and outer coil are separated. shall be connected with a crossover wire via a cooling airway. For this purpose, a glass tape pre-treated with a curing accelerator is tightly wrapped multiple times around the inner circumference of the outer coil and the outer circumference of the inner coil to form an inner circumference insulating layer and an outer circumference insulating layer. However, it is necessary to prevent the resin from leaking, but this work must be done during the winding work of the coil conductor, which is a very complicated work and is not suitable as an actual manufacturing method.

また、冷却気道に面する外側コイルの内周と内側コイル
の外周に非含浸性の耐熱ボードで形成した絶縁物を設け
る方法もあるが、この場合は耐熱が−ドの重なり部及び
渡り線の出る部分、入る部分から樹脂が洩れないように
するにはこれらの部分に常温加硫ゴムや常温硬化樹脂を
塗ってシールしなければならない。しかし、このような
作業を巻線作業中に行なうことは作業が煩雑になるばか
りでなく、その後の作業で渡り部の導体が動いたシする
とこの部分から樹脂が洩れることもちル、不良率も高い
Another method is to provide insulation made of non-impregnated heat-resistant board on the inner periphery of the outer coil facing the cooling airway and on the outer periphery of the inner coil, but in this case, the heat-resistant To prevent resin from leaking from the exiting and entering parts, these parts must be sealed with room-temperature vulcanized rubber or room-temperature curing resin. However, performing such work during winding work not only complicates the work, but also causes resin to leak from this part if the conductor at the transition part moves during subsequent work, increasing the defect rate. expensive.

このようにコイル内に冷却気道を設けることは非常に煩
雑な作業を伴なうばかりか、冷却気道に面するコイル局
面及び渡り部からの樹脂洩れの防止が不安定なため、実
際の構造に適していなく、改善、改良が望まれていた。
Providing a cooling airway in the coil in this way not only involves extremely complicated work, but also prevents resin from leaking from the coil surfaces and transition parts facing the cooling airway, making it difficult to implement in the actual structure. It was not suitable and improvements and improvements were desired.

他方、一般の変圧器の多重巻構成の樹脂モールドコイル
では第3図に示す結線図の如く、巻き始め端Uから巻回
して複数層巻いた後、最外層で電圧切換用のタップ端子
T1.T2.T3゜T4 、T5 、T6を順次設ける
場合が多い。この場合、タップ端子T1〜T6をコイル
上部へ出す方法もあるが、コイル上に端子リードをはわ
して出さなければならないため、絶縁が複雑になる。そ
こでタップ端子のリード線をそのまま外周方向へ出して
そのリード線のみを絶縁したのち、端子台に取り付ける
か、或いは直接導体にタップ端子を取り付けてコイル外
周にそのまま端子を樹脂で固める方法が採られる。しか
しこの場合も冷却気道の渡り部と同様にリード線或いは
タップ端子がコイル表面から出る部分は隙間や模が生じ
るため、この部分を渡り部と同様に常温加硫ゴムや常温
硬化樹脂を塗ってシールし、樹脂洩れを防止していたが
、渡り部と同様に人為的作業によるシール方法を採らな
ければならず、またシール部分から樹脂が外部に洩れる
場合もあり、改善が望まれていた。
On the other hand, in the multi-wound resin molded coil of a general transformer, as shown in the wiring diagram shown in FIG. 3, after winding from the winding start end U and winding in multiple layers, the outermost layer is connected to a tap terminal T1 for voltage switching. T2. T3°T4, T5, and T6 are often provided in sequence. In this case, there is a method of bringing out the tap terminals T1 to T6 above the coil, but the insulation becomes complicated because the terminal leads must be passed over the coil and brought out. Therefore, a method is adopted in which the lead wire of the tap terminal is directly extended to the outer circumference and only that lead wire is insulated, and then attached to the terminal block, or alternatively, the tap terminal is attached directly to the conductor and the terminal is fixed with resin on the outer circumference of the coil. . However, in this case as well, similar to the transition section of the cooling airway, gaps and marks will occur where the lead wire or tap terminal exits from the coil surface, so this section should be coated with room-temperature vulcanized rubber or room-temperature curing resin in the same way as the transition section. Although sealing was used to prevent resin leakage, similar to the transition section, manual sealing methods had to be used, and there were cases where resin leaked outside from the sealed section, so improvements were desired.

〔発明の目的〕[Purpose of the invention]

本発明は上記のような要望に鑑みてなされたもので、そ
の目的は作業性が向上するとともにコイル内に形成され
る軸方向に抜ける冷却気道に面する内側コイルと外側コ
イルとの間の渡り部やコイル外周より導出される端子部
からの樹脂洩れを防止することができる電気的及び機械
的特性にも安定した樹脂モールドコイルの製造方法を提
供しようとするものである。
The present invention has been made in view of the above-mentioned demands, and its purpose is to improve workability and to improve the transition between the inner coil and the outer coil facing the cooling air passage formed in the coil that exits in the axial direction. It is an object of the present invention to provide a method for manufacturing a resin-molded coil that is stable in electrical and mechanical properties and can prevent resin leakage from the terminal portion led out from the outer periphery of the coil.

〔発明の概要〕[Summary of the invention]

本発明はかかる目的を達成するため、導体を巻回してな
る巻回層の上下端外方に端部絶縁物を設けるとともにそ
の内外周に樹脂含浸性の悪い絶縁物を設けて内側コイル
を構成し、またこの内側コイルの外周に軸方向に抜ける
冷却気道を形成する波形状の絶縁物を設けた後、その外
周に導体を巻回してなる巻回層の上下端外方に端部絶縁
物を設けるとともにその内外周に樹脂含浸性の悪い絶縁
物を設け、さらにその最外周の絶縁物の上に硬化促進剤
を処理した絶縁層を設か喚側コイルを構成し且つ前記内
側コイルと外側コイル間の冷却気道に面する渡り線の出
入口部分に加熱により発泡する発泡材を巻回した発泡層
を設けたコイルをその下端部の端部絶縁物に硬化促進剤
を付着させた後、樹脂槽内で樹脂を含浸し、前記最外周
の絶縁層及び端部絶縁物に含浸した樹脂が硬化促進剤と
反応してダル化した時点で前記コイルを前記樹脂槽から
取り出して加熱硬化することを特徴としている。
In order to achieve such an object, the present invention provides an inner coil by providing end insulators on the outside of the upper and lower ends of a wound layer formed by winding a conductor, and providing insulators with poor resin impregnation on the inner and outer peripheries. In addition, after providing a wave-shaped insulator on the outer periphery of this inner coil to form a cooling airway extending in the axial direction, end insulators are placed outwardly at the upper and lower ends of the wound layer formed by winding a conductor around the outer periphery. and an insulating material with poor resin impregnation on the inner and outer peripheries, and an insulating layer treated with a curing accelerator on the outermost insulating material to form a side coil, and the inner coil and the outer side After attaching a curing accelerator to the end insulator at the lower end of the coil, which has a foam layer wound with a foam material that foams when heated, at the entrance/exit part of the crossover wire facing the cooling airway between the coils, The coil is impregnated with resin in a tank, and when the resin impregnated into the outermost insulating layer and the end insulator reacts with a curing accelerator and becomes dull, the coil is taken out from the resin tank and heated to harden. It is a feature.

〔発明の実施例〕[Embodiments of the invention]

以下第4図及び第5図に従って本発明による樹脂モール
ドコイルの製造方法について説明する。第4図は本発明
の一実施例による樹脂モールドコイルの平面図、第5図
は第4図のA −Aに沿う縦断面図である。すなわち、
本実施例において樹脂モールドコイルを製造するには第
4図及び第5図に示すようにエポキシ絶縁筒等の非含浸
性の巻枠8の上に易含浸性の耐熱不織布(例えば日本バ
イリーン類の商品名: HC5408)、ガラスクロス
等の緩衝材からなる緩衝層9aを設け、その外周に導体
10を巻回して少なくとも1つの巻回層からなる低圧コ
イルの内側コイル1ノを形成(7、その口出し線11a
を上方へ引き出す。この内側コイル11の巻回層の上、
下端外方にはロックウール、厚手の不織布等の易含浸性
の材料からなる端部絶縁物14a。
The method for manufacturing a resin molded coil according to the present invention will be described below with reference to FIGS. 4 and 5. FIG. 4 is a plan view of a resin molded coil according to an embodiment of the present invention, and FIG. 5 is a longitudinal sectional view taken along line A--A in FIG. 4. That is,
In order to manufacture the resin molded coil in this example, as shown in FIGS. 4 and 5, a heat-resistant nonwoven fabric (for example, Nippon Vilene) that is easily impregnable is placed on a non-impregnable winding frame 8 such as an epoxy insulating tube. Product name: HC5408), a buffer layer 9a made of a buffer material such as glass cloth is provided, and a conductor 10 is wound around the outer periphery of the buffer layer 9a to form an inner coil 1 of a low-voltage coil consisting of at least one winding layer (7. Lead line 11a
pull it upwards. On the winding layer of this inner coil 11,
An end insulator 14a made of an easily impregnable material such as rock wool or thick non-woven fabric is disposed outwardly at the lower end.

14bを設ける。また内側コイル1)の外周に前述と同
じ材料からなる緩衝層9bを設け、さらにその上に非含
浸性材料(例えば日本アロマ製の商品名:GAボード、
GAHやデュポン類の商品名:ノーメックス410タイ
プ)を巻回して絶縁物15aを設ける。この場合、低圧
コイルの内側コイル11の巻き終り部の渡9線16及び
絶縁物15aの重なり部は第6図に示すように絶縁物1
5aの重なり部に相当する渡り線16の部分に第7図に
示すように加熱により発泡する発泡シート(例えば日東
電工製の発泡シート)を巻回して発泡/l117を設け
た後、緩衝f@ 9 bを設け、その上に非含浸材料か
らなる絶縁物15aが重ね合せて設けられる。
14b is provided. Further, a buffer layer 9b made of the same material as described above is provided on the outer periphery of the inner coil 1), and a non-impregnable material (for example, GA board manufactured by Nippon Aroma Co., Ltd.,
The insulator 15a is provided by winding GAH or DuPont (product name: Nomex 410 type). In this case, the overlapping part of the wire 16 and the insulator 15a at the end of the winding of the inner coil 11 of the low-voltage coil is as shown in FIG.
As shown in FIG. 7, a foam sheet that foams when heated (for example, a foam sheet manufactured by Nitto Denko) is wound around the portion of the connecting wire 16 corresponding to the overlapping portion of the wires 5a to provide a foam layer 117, and then the buffer f@ 9b is provided, and an insulator 15a made of a non-impregnated material is superimposed thereon.

また絶縁物15aの渡υ線16に相当する部分には切り
口18が設けられ、絶縁物15thの重なり部が完全に
接するようにしである。このようにして絶縁物15aを
設けた後、第8図に示す如く絶縁物15aの重なり部及
び切9018に至る切シ込み部を粘着テープ19で固定
する。次にこの絶縁物15aの外周に軸方向に抜ける冷
却気道を形成するための波形状絶縁物20を設け、その
上に前述と同様の非含浸性材料からなる絶縁物15bを
設ける。さらにこの絶縁物15bの外周に前述と同じ材
料からなる緩衝層9Cを設け、その上に導体1θを巻回
して低圧コイルの外側コイル12を形成し、その口出し
線12aを上方へ引き出すとともにその巻回層の上、下
端外方に端部絶縁物14g、14bを設ける。この場合
、内側コイル11から外側コイル12への渡り線16の
渡9部分は次のように形成される。すなわち、第9図は
内側コイル11から外側コイル12への渡シ部分を示し
たもので、波形状絶縁物20の外周に設けられる絶縁物
15bの重なシ部に相当する部分の渡シ線16に第7図
に示す如く発泡シートを巻回して発泡層17を設けたの
ち、緩衝層9cが設けられる。また絶縁物15bの渡り
線16に相当する部分には前述同様に切り口18が設け
られ、絶縁物15bの重なシ部が完全に接するようにし
である。そしてこのように絶縁物15bを設けた後、第
8図の場合と同様に絶縁物15bの重な9部及び99口
18に至る切シ込み部を粘着テープ19で固定する。第
10図は波形状絶縁物20によって形成される冷却気道
部における内側コイル11から外側コイル12への渡り
線16の渡シ部分の概要を断面して示したものである。
Further, a cut 18 is provided in a portion of the insulator 15a corresponding to the crossing wire 16, so that the overlapping portion of the insulator 15th is completely in contact with the insulator 15a. After the insulator 15a is provided in this manner, the overlapping portion of the insulator 15a and the cut portion leading to the cut 9018 are fixed with adhesive tape 19, as shown in FIG. Next, a corrugated insulator 20 is provided around the outer periphery of this insulator 15a to form a cooling airway passing through in the axial direction, and an insulator 15b made of the same non-impregnable material as described above is provided thereon. Furthermore, a buffer layer 9C made of the same material as described above is provided around the outer periphery of this insulator 15b, and a conductor 1θ is wound thereon to form the outer coil 12 of the low-voltage coil. Edge insulators 14g and 14b are provided above and outside the lower end of the circuit layer. In this case, the crossover portion 9 of the crossover wire 16 from the inner coil 11 to the outer coil 12 is formed as follows. That is, FIG. 9 shows the transition line from the inner coil 11 to the outer coil 12, and the transition line corresponds to the overlapped portion of the insulator 15b provided on the outer periphery of the corrugated insulator 20. After a foam layer 17 is provided by winding a foam sheet around 16 as shown in FIG. 7, a buffer layer 9c is provided. Further, a cut 18 is provided in a portion of the insulator 15b corresponding to the connecting wire 16, as described above, so that the overlapping portions of the insulator 15b are completely in contact with each other. After the insulator 15b is provided in this way, the overlapping 9 parts of the insulator 15b and the notch part reaching the 99 opening 18 are fixed with adhesive tape 19, as in the case of FIG. FIG. 10 is a cross-sectional view showing an outline of the transition portion of the crossover wire 16 from the inner coil 11 to the outer coil 12 in the cooling airway section formed by the corrugated insulator 20.

このようにして低圧コイルの内側コイル11および外側
コイル12を構成した後、外側コイル12の外周に前述
と同様の材料からなる緩衝層9dおよび絶縁物15cを
設け、この絶縁物15cの重なり部を粘着チー−j’1
9によυ固定する。この場合、低圧コイルの外周に形成
される絶縁層として従来と同じように硬化促進剤を処理
したガラスチーブを巻回したものであってもよい。次に
絶縁物15cの外周に軸方向に抜ける冷却気道を形成す
るための波形状の絶縁物22を配置し、その上に前述同
様の絶縁物15dを設けるとともにその重なシ部を粘着
チーf19で固定した後、緩衝材を巻回して緩衝層9e
を形成する。この緩衝層9eの外周にコイル口出し線(
巻き始め部)23aを上方−・引き出して導体29を巻
回するとともにその巻回層の上、下端外方に端部絶縁物
14m、14bを設ける。またこの巻回層の外周に樹脂
含浸性のよい層間絶縁物25(例えば日本バイリーン製
の商品名:HC5408)を設け、その上に導体29を
巻回するとともにその巻回層の上、下端外方に端部絶縁
物14m、14bを設けて2つの巻回層からなる高圧コ
イルの内側コイル23を構成する。この内側コイル23
の外周に前述同様の材料からなる緩衝層9fおよび絶縁
物15eを設け、その上に波形状の絶縁物30球 を配設し、しかる後、絶揺物30の外周に絶縁物15f
および緩衝層9gを順に設ける。この場合、内側コイル
23からの渡シ線16と絶縁物15e1波形状の絶縁物
30、絶縁物15fの構成は低圧コイルの場合と同様に
なっている。
After configuring the inner coil 11 and outer coil 12 of the low-voltage coil in this way, a buffer layer 9d and an insulator 15c made of the same material as described above are provided around the outer periphery of the outer coil 12, and the overlapping portion of the insulator 15c is Adhesive chi-j'1
Fix it at υ according to 9. In this case, the insulating layer formed around the outer periphery of the low-voltage coil may be a wound glass tube treated with a curing accelerator in the same manner as in the past. Next, a wave-shaped insulator 22 for forming a cooling airway passing through in the axial direction is placed around the outer circumference of the insulator 15c, and an insulator 15d similar to that described above is provided on top of the insulator 22, and the overlapping portion is attached to an adhesive chip f19. After fixing with
form. A coil lead wire (
The winding start portion 23a is pulled out upward and the conductor 29 is wound, and end insulators 14m and 14b are provided above and outside the lower end of the winding layer. Further, an interlayer insulator 25 with good resin impregnation property (for example, HC5408 manufactured by Nihon Vilene Co., Ltd.) is provided around the outer periphery of this wound layer, and a conductor 29 is wound thereon and outside the upper and lower ends of the wound layer. End insulators 14m and 14b are provided on both sides to constitute the inner coil 23 of the high-voltage coil consisting of two winding layers. This inner coil 23
A buffer layer 9f and an insulator 15e made of the same material as described above are provided on the outer periphery of the object 30, and a wave-shaped insulator 30 ball is placed thereon.
and a buffer layer 9g are provided in this order. In this case, the configurations of the wire 16 from the inner coil 23, the wave-shaped insulator 30 of the insulator 15e1, and the insulator 15f are the same as in the case of the low-voltage coil.

そして緩衝層9gの外周に導体29を層間絶縁物25を
介挿して2層にそれぞれ巻回してその口出し線28aを
上方へ引き出すとともに各巻回層の上下端外方に端部絶
縁物14a、14bを設は外側コイル28を構成する。
Then, the conductor 29 is wound around the outer periphery of the buffer layer 9g in two layers with interlayer insulating material 25 interposed therebetween, and the lead wire 28a thereof is pulled out upward, and end insulators 14a, 14b are placed outside the upper and lower ends of each wound layer. constitutes the outer coil 28.

この場合、外側コイルの最外層からは端子部27が引き
出されるが、この部分の詳細な構成を示すと第11図の
ようになっている。すなわち、第11図に示すように導
体29に端子27を接続し、この端子27を硬化促進剤
で処理したガラステープを巻回して絶縁層31を形成し
た後、その絶縁層31の上の導体29との接続部分に発
泡シートを巻回して発泡層17を設ける。その後導体2
9との接続部を含む端子27部に非含浸性の補強絶縁物
32を当てて導体29を巻回し、順次端子27を同様の
方法で取シ付けながら口出し線28hに至るまで巻回す
る。次いで導体29との接続部を含む端子27部の出り
張夛に和尚する厚さ分だけロックウール等の含浸性の良
い絶縁物33を導体29の外周に設けて表面がほぼ均一
になるようにした後、ガラステープ、不織布テープ等の
易含浸性材料を巻回して絶縁層34を形成する。そして
この絶縁層34の上に非含浸性の薄葉材料からなる絶縁
物35を設けた後、予め硬化促進剤で処理したガラステ
ープを外周を整えながら巻回して絶縁層36を形成し、
コイルを製造する。なお渡り線16゜26は導体に緩衝
層を設けるために、硬化促進剤で処理したガラステープ
、不織布テープ等を巻回して絶縁層を形成しておく。
In this case, the terminal portion 27 is drawn out from the outermost layer of the outer coil, and the detailed structure of this portion is shown in FIG. 11. That is, as shown in FIG. 11, a terminal 27 is connected to a conductor 29, a glass tape treated with a curing accelerator is wound around this terminal 27 to form an insulating layer 31, and then the conductor on the insulating layer 31 is connected. A foamed layer 17 is provided by winding a foamed sheet around the connecting portion with 29. Then conductor 2
A non-impregnable reinforcing insulator 32 is applied to a portion of the terminal 27 including the connection portion with the conductor 27, and the conductor 29 is wound thereon, and the terminal 27 is sequentially attached in the same manner until the lead wire 28h is reached. Next, an insulating material 33 with good impregnability, such as rock wool, is provided around the outer periphery of the conductor 29 to a thickness corresponding to the thickness of the protrusion of the terminal 27 including the connection part with the conductor 29, so that the surface is almost uniform. After that, an easily impregnable material such as a glass tape or a nonwoven tape is wound to form an insulating layer 34. After providing an insulator 35 made of a non-impregnable thin sheet material on this insulating layer 34, a glass tape previously treated with a curing accelerator is wound while adjusting the outer periphery to form an insulating layer 36.
Manufacture coils. In order to provide a buffer layer on the conductor, the crossover wire 16.degree. 26 is wound with glass tape, non-woven tape, etc. treated with a curing accelerator to form an insulating layer.

このように構成したコイルの下部の端部絶縁物14bに
硬化促進剤を溶剤に溶した溶液中に浸漬し、端部絶縁物
14bに硬化促進剤を付着させた後予備乾燥をし、溶剤
等を蒸発させる。
The end insulator 14b at the bottom of the coil configured in this way is immersed in a solution containing a curing accelerator in a solvent, and after the curing accelerator is attached to the end insulator 14b, it is pre-dried, and the solvent, etc. evaporate.

その後コイルを真空タンク内の樹脂槽内に収納して低粘
度の例えばエポキシ樹脂を含浸させ、予め硬化促進剤を
付着させておいた絶縁物部分が含浸樹脂と反応してダル
化した時点で樹脂槽よシコイルを取り出し、乾燥器等で
コイル内部まで完全に硬化させることにより一体の樹脂
モールドコイルが得られる。
After that, the coil is stored in a resin vat in a vacuum tank and impregnated with low viscosity, for example, epoxy resin, and when the insulator part to which a curing accelerator has been attached in advance reacts with the impregnated resin and becomes dull, the resin An integrated resin molded coil is obtained by taking out the coil from the tank and completely curing the inside of the coil in a dryer or the like.

このように本発明では低圧コイル及び高圧コイルを構成
する導体巻回層に而して易含浸性の絶縁材料からなる緩
衝層9a〜9gを設け、また高圧コイルを構成する内側
コイル23と外側コイル28の導体巻回層間には易含浸
性の絶縁材料からなる眉間絶縁物25を設け、さらには
低圧コイル及び高圧コイルをそれぞれ形成する内側コイ
ル11.23と外側コイル12.28の各導体巻回層の
上下端外方に含浸性の良い材料からなる端部絶縁物14
a、14bを設けるようにしているので、樹脂槽内にコ
イルを収納して樹脂を注入すれば、樹脂はコイルの軸方
向並びに上下端部から良好に含浸する。この場合、樹脂
の含浸度合は樹脂含浸時の真空度、加圧、時間によって
も変わるが、実験によれば、10o。
In this way, in the present invention, buffer layers 9a to 9g made of easily impregnable insulating material are provided in the conductor winding layers constituting the low-voltage coil and the high-voltage coil, and the inner coil 23 and the outer coil constituting the high-voltage coil are A glabellar insulator 25 made of an easily impregnable insulating material is provided between the 28 conductor winding layers, and each conductor winding of the inner coil 11.23 and outer coil 12.28 forming a low voltage coil and a high voltage coil, respectively. An end insulator 14 made of a material with good impregnability is provided outwardly at the upper and lower ends of the layer.
Since the coils 14a and 14b are provided, if the coil is housed in a resin tank and resin is injected, the resin will be satisfactorily impregnated from the axial direction and the upper and lower ends of the coil. In this case, the degree of resin impregnation varies depending on the degree of vacuum, pressure, and time during resin impregnation, but according to experiments, it is 10 degrees.

CPのエポキシ樹脂を]、 1111 I4gの真空タ
ンク内の樹脂槽内に注入した後、4.5 kg / c
aで30分加圧した場合、直径7001mのスタックで
も充分樹脂が含浸することか判った。
CP epoxy resin], 4.5 kg/c after injecting into the resin bath in the vacuum tank of 1111 I4g
It was found that even a stack with a diameter of 7001 m was sufficiently impregnated with resin when pressurized for 30 minutes at a.

一方、低圧コイル及び高圧コイルの内外側コイルの冷却
気道に面する側の周面には非含浸性の材料からなる絶縁
物15a〜15fを設けるとともにその重なり部を粘着
テープ(例えばパーマセル213、ガラス粘着テープ等
)で固定してこの部分をシールしであるので、コイル内
に含浸した樹脂が外部に洩れるようなことはない。また
最外層コイルの外周面には外方へ突出している端子27
にテープ状の絶縁材を巻回して絶縁層を形成するととも
に非含浸材料からなる絶縁層35と予め硬化促進剤で処
理したがラステーゾを巻回してなる絶縁層34.36を
設けているので、端子27の突出部分の隙間以外からは
樹脂が洩れることはない。すなわち、非含浸性材料から
なる絶縁層35はそのラップ部がその上に巻回された硬
化促進剤で処理されたガラステージからなる絶縁層36
で押えられるばかりでなく、樹脂槽内で樹脂と反応して
ダル化が進行し、非含浸性の絶縁層35とともにシール
層を形成するため、この部分からの樹脂洩れはない。さ
らに、コイル下端部については樹脂含浸後一定時間樹脂
槽で放置すると、この下端部に設けられている端部絶縁
物14bに付着している硬化促進剤が樹脂との反応を促
進し、コイル内部に含浸した樹脂よシも早くダル化して
シール層を形成するので、この部分からの樹脂洩れもな
くなる。
On the other hand, insulators 15a to 15f made of a non-impregnable material are provided on the circumferential surfaces of the inner and outer coils of the low-voltage coil and the high-voltage coil on the side facing the cooling airway, and the overlapping portions are covered with adhesive tape (for example, Permacell 213, glass Since this part is sealed with adhesive tape, etc., the resin impregnated inside the coil will not leak to the outside. In addition, a terminal 27 protrudes outward on the outer peripheral surface of the outermost layer coil.
An insulating layer is formed by winding an insulating material in the form of a tape, and an insulating layer 35 made of a non-impregnated material and an insulating layer 34 and 36 formed by winding Lastezo, which has been treated with a curing accelerator in advance, are provided. The resin will not leak from any place other than the gap between the protruding portions of the terminals 27. That is, the insulating layer 35 made of a non-impregnable material has its wrap portion wrapped around the insulating layer 36 made of a glass stage treated with a curing accelerator.
Not only is it held down by the resin, but it also reacts with the resin in the resin bath and dulls to form a sealing layer together with the non-impregnable insulating layer 35, so there is no resin leakage from this part. Furthermore, if the lower end of the coil is left in a resin bath for a certain period of time after being impregnated with resin, the curing accelerator attached to the end insulator 14b provided at the lower end will accelerate the reaction with the resin, and the inside of the coil will be The resin impregnated in the area quickly dulls and forms a sealing layer, eliminating resin leakage from this area.

また、低圧コイルの内側コイル11と外側コイル12間
の冷却気道部における渡シ線16および高圧コイル23
と外側コイル28間の冷却気道部における渡シ線26、
そして最外層コイルの外周面から突出する端子27の各
引き出し部分には発泡シート17(例えば日東電工製の
エポキシ樹脂系発泡接着シート)を巻回しであるので、
この発泡シート17が樹脂含浸時において、120℃以
上の温度で加熱されると3〜5倍に発泡する。したがっ
て絶縁物15a。
In addition, the crossing wire 16 and the high voltage coil 23 in the cooling airway section between the inner coil 11 and the outer coil 12 of the low voltage coil are
and a crossing wire 26 in the cooling airway section between the outer coil 28 and the outer coil 28;
Each lead-out portion of the terminal 27 protruding from the outer peripheral surface of the outermost coil is wrapped with a foam sheet 17 (for example, an epoxy resin foam adhesive sheet manufactured by Nitto Denko).
When this foamed sheet 17 is heated to a temperature of 120° C. or higher during resin impregnation, it will foam 3 to 5 times. Therefore, the insulator 15a.

15bと15e 、15fに対する渡り線16゜26の
引き出し部における隙間及び最外周絶縁層36に対する
端子部の隙間は発泡層17の発泡作用によって塞がるの
で、この部分からの樹脂洩れが防止できる。
The gaps at the lead-out portions of the crossover wires 16 and 26 for the connecting wires 15b, 15e, and 15f and the gaps at the terminal portions for the outermost insulating layer 36 are closed by the foaming action of the foam layer 17, so that resin leakage from these portions can be prevented.

ちなみに前述したような構成のモデルコイルを作シ、こ
れを100℃X15Hr予備乾燥後、エポキシ樹脂Ep
828(シェル社製)を酸無水物硬化剤HN−2200
(日立化成製)に溶かし。
By the way, I made a model coil with the above-mentioned configuration, and after pre-drying it at 100°C for 15 hours, I coated it with epoxy resin Ep.
828 (manufactured by Shell) as an acid anhydride curing agent HN-2200
(manufactured by Hitachi Chemical).

た樹脂を80℃で真空加圧含浸し、コイル上部まで樹脂
が漬ってから1〜2Hr樹脂槽内に放置しておき、しか
る後そのコイルを樹脂槽から取り出して120〜150
℃の乾燥炉に入れて硬化させたところ、樹脂の洩れもな
く、絶縁特性の良好な安定した樹脂モールドコイルを得
ることができた。
The coil was impregnated with vacuum pressure and pressure at 80°C, and after the resin was soaked up to the top of the coil, it was left in the resin bath for 1 to 2 hours.The coil was then taken out from the resin bath and impregnated with the resin for 120 to 150 hours.
When the coil was cured in a drying oven at ℃, a stable resin-molded coil with good insulation properties was obtained without resin leakage.

なお、前記実施例では円筒形の多重巻構成の場合につい
て述べたが、角筒形の多重巻構成についても前述同様に
して樹脂モールドコイルを製作できることは言うまでも
ない。また前記実施例では端子27を導体29に直接接
続してコイル外周に導出する場合について説明したが、
導体29を折り曲けてこれを端子リードとしてコイル外
の端子台に接続する場合においてもこの端子リードのコ
イルからの突出部に渡シ線と同様に発泡シートを巻回し
ておけばこの部分の隙間を前述同様にズ・5ぐことかで
きる。さらに低圧コイル等でコイル下端部から口出しが
出る場合があるが、この場合においても前述同様に口出
しが出る部分に発泡シートを巻回しておくことによシ、
この口出し部からの樹脂洩れを防止することができる。
In the above embodiment, a case of a cylindrical multi-wound structure has been described, but it goes without saying that a resin molded coil can also be manufactured in the same manner as described above for a prismatic multi-wound structure. Furthermore, in the embodiment described above, the case where the terminal 27 is directly connected to the conductor 29 and led out to the outer periphery of the coil is explained.
Even when the conductor 29 is bent and used as a terminal lead to be connected to a terminal block outside the coil, if a foam sheet is wrapped around the protruding part of the terminal lead from the coil in the same way as for the transfer wire, this part can be easily The gap can be marked as 5 in the same way as above. Furthermore, there are cases where a lead comes out from the lower end of the coil in low-voltage coils, etc., but even in this case, it can be fixed by wrapping a foam sheet around the part where the lead comes out, as described above.
Resin leakage from this outlet can be prevented.

〔発明、の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、4体を巻回してなる
巻回層の上下端外方に端部紹・1縁物を設けるとともに
その内、外周に樹脂含浸性の悪い絶縁物を設けて内側コ
イルを構成し、またこの内側コイルの外周に軸方向に抜
ける冷却気道を形成する波形状の絶縁物を設けた後、そ
の外周に導体を巻回してなる巻回層の上下端外方に端部
絶縁物を設けるとともにその内外周に樹脂含浸性の悪い
絶縁物を設けさらにその最外周の絶縁物の上に硬化促進
剤を処理した絶縁層を設は外側コイルを構成し且つ前記
内側コイルと外側コイル間の冷却気道に面する渡υ線の
出入口部分に加熱により発泡する発泡層を巻回して発泡
層を設けたコイルを、その下端部の端部絶縁物に硬化促
進剤を(す着させた後、樹脂槽内で樹脂を含浸し、前記
絶縁層及び端部絶縁物に含浸した樹脂が硬化促進剤と反
応してダル化した時点で前記コイルを前記樹脂槽から取
シ出して加熱硬化するようにしたものである。したがっ
て、内側コイル及び外側コイル間の冷却気道内における
渡9線の出入口部分には発泡シート又はテープを巻回し
て発泡層を形成しであるので、コイルの加熱硬化時にお
いて、この発泡層が発泡し渡9部の隙間を塞ぐので、樹
脂の含浸を損うことなく且つ樹脂洩れのない電気的、機
械的特性の安定した樹脂モールドコイルを得ることがで
きる。またコイル製造過程においても作業堵による不安
定さもなく、しかも精神的負担も脂減できる等、付帯的
な効果も得られる。
As described above, according to the present invention, edge parts are provided outside the upper and lower ends of the wound layer formed by winding four bodies, and an insulating material with poor resin impregnation properties is provided on the outer periphery of the wound layer. After providing a wave-shaped insulator on the outer circumference of the inner coil to form a cooling airway extending in the axial direction, a conductor is wound around the outer circumference of the inner coil to form an inner coil. An end insulator is provided on one side, and an insulator with poor resin impregnation is provided on the inner and outer peripheries of the insulator, and an insulating layer treated with a curing accelerator is provided on the outermost insulator. A coil is provided with a foam layer by winding a foam layer that foams when heated around the entrance/exit part of the crossing wire facing the cooling airway between the inner coil and the outer coil, and a hardening accelerator is applied to the end insulator at the lower end of the coil. (After the coil is attached, the coil is impregnated with resin in a resin tank, and when the resin impregnated into the insulating layer and the end insulator reacts with the curing accelerator and becomes dull, the coil is removed from the resin tank.) Therefore, a foam layer is formed by wrapping a foam sheet or tape around the entrance and exit portion of the crossing wire in the cooling airway between the inner coil and the outer coil. When the coil is heated and cured, this foam layer foams and closes the gap in the 9 parts, so that a resin molded coil with stable electrical and mechanical properties without impairing resin impregnation and without resin leakage can be obtained. In addition, there is no instability caused by work during the coil manufacturing process, and additional benefits such as a reduction in mental burden can also be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の製造方法による樹脂モールドコイルの平
面図、第2図は同コイルを部分的に縦断面して示す側面
図、第3図は一般の高圧コイルを示す結線図、第4図は
本発明の製造方法による樹脂モールドコイルの平面図、
第5図は第4図のA−A線に沿う縦断面図、第6図乃至
第9図は同実施例におけるコイル渡シ部を詳細に示す構
成説明図、第10図は同じく渡り部の構成を拡大して示
す断面図、第11図は同実施例における最外周コイルか
ら導出された端子部の構成を拡大して示す断面図である
。 8・・・巻枠、10.29・・・導体、9a〜9g・・
・緩衝層、1ノ・・・内側コイル、12・・・外側コイ
ル、14 a 、 14 b一端部絶縁物、15a〜1
5f・・・非含浸性の絶縁物、16.26・・・渡り線
、17・・・発泡層、20.22.30・・・波形状の
絶縁物、23・・・内(Ill コイル、28・・・外
側コイル、27・・・端子、3.1 、34 、35・
・・絶縁層、32・・・絶縁物。 出願人代理人  弁理士 鈴 江 武 愚弟 4 図 り7 第5図 第6図 第 10  図
Fig. 1 is a plan view of a resin molded coil manufactured by a conventional manufacturing method, Fig. 2 is a side view showing a partial longitudinal section of the same coil, Fig. 3 is a wiring diagram showing a general high voltage coil, and Fig. 4 is a plan view of a resin molded coil produced by the manufacturing method of the present invention,
FIG. 5 is a longitudinal sectional view taken along the line A-A in FIG. 4, FIGS. 6 to 9 are structural explanatory diagrams showing details of the coil transfer section in the same embodiment, and FIG. 10 is a similar diagram of the transfer section. FIG. 11 is an enlarged cross-sectional view showing the structure of a terminal portion led out from the outermost coil in the same embodiment. 8... Winding frame, 10.29... Conductor, 9a to 9g...
・Buffer layer, 1 No. Inner coil, 12 Outer coil, 14 a, 14 b One end insulator, 15 a to 1
5f...Non-impregnated insulator, 16.26...Cover wire, 17...Foamed layer, 20.22.30...Wave-shaped insulator, 23...Inside (Ill coil, 28...Outer coil, 27...Terminal, 3.1, 34, 35.
...Insulating layer, 32... Insulator. Applicant's agent Patent attorney Takeshi Suzue Guo 4 Diagram 7 Figure 5 Figure 6 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 導体を巻回してなる巻回層の上下端外方に端部絶縁物を
設けるとともにその内外周に樹脂含浸性の悪い絶縁物を
設けて内側コイルを構成し、次いでこの内側コイルの外
周に軸方向に抜ける冷却気道を形成する波形状の絶縁物
を設けた後、その外周に導体を巻回してなる巻回層の上
下端外方に端部絶縁物を設けるとともにその内外周に樹
脂含浸性の悪い絶縁物を設け、さらにその最、外周絶縁
物の上に硬化促進剤を処理した絶縁層を設けて外側コイ
ルを構成し、且つ前記内側コイル及び外側コイル間の冷
却気道に面する渡9線の出入口部分に加熱によシ発泡す
る発泡材を巻回して発泡層を設けたコイルを、その下端
部の端部絶縁物に硬化促進剤を付着させた後、樹脂槽内
で樹脂を含浸し、前記最外周絶縁層及び端部絶縁物に含
浸した樹脂が硬化促進剤と反応してダル化した時点で前
記コイルを樹脂槽内から取シ出して加熱硬化してなる樹
脂モールドコイルの製造方法。
End insulators are provided outside the upper and lower ends of a wound layer formed by winding a conductor, and insulators with poor resin impregnation are provided on the inner and outer peripheries to form an inner coil. After providing a wave-shaped insulator that forms a cooling airway that exits in the direction, a conductor is wound around the outer periphery of the wound layer, and end insulators are provided outside the upper and lower ends of the wound layer, and the inner and outer peripheries are impregnated with resin. an insulating material having a poor quality, and furthermore, an insulating layer treated with a curing accelerator is provided on the outer peripheral insulating material to form an outer coil, and a bridge 9 facing the cooling airway between the inner coil and the outer coil is provided. A coil is provided with a foam layer by winding a foam material that foams when heated around the entrance and exit portion of the wire, and after a curing accelerator is attached to the end insulation at the lower end of the coil, it is impregnated with resin in a resin bath. Then, when the resin impregnated into the outermost insulating layer and the end insulating material reacts with a curing accelerator and becomes dull, the coil is taken out from the resin bath and cured by heating to produce a resin molded coil. Method.
JP9371783A 1983-05-27 1983-05-27 Manufacture of resin molded coil Pending JPS59219915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9371783A JPS59219915A (en) 1983-05-27 1983-05-27 Manufacture of resin molded coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9371783A JPS59219915A (en) 1983-05-27 1983-05-27 Manufacture of resin molded coil

Publications (1)

Publication Number Publication Date
JPS59219915A true JPS59219915A (en) 1984-12-11

Family

ID=14090166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9371783A Pending JPS59219915A (en) 1983-05-27 1983-05-27 Manufacture of resin molded coil

Country Status (1)

Country Link
JP (1) JPS59219915A (en)

Similar Documents

Publication Publication Date Title
US4649640A (en) Method for manufacturing a molded transformer
JPS59219915A (en) Manufacture of resin molded coil
JPS58202506A (en) Resin-molded coil
JPH06217484A (en) Insulated coil
JPS58202507A (en) Resin-molded coil
JPS6158963B2 (en)
JPS59129412A (en) Manufacture of resin molded coil
JPS59129414A (en) Manufacture of resin molded coil
JPS6059724A (en) Method for producing resin mold coil
JPS60207326A (en) Manufacture of resin molded coil
JPS605206B2 (en) Electrical equipment coil and its manufacturing method
JPS59129416A (en) Manufacture of resin molded coil
JPH0650695B2 (en) Method for manufacturing resin mold coil
JPS6159645B2 (en)
JPS61160920A (en) Manufacture of resin mold coil
JPS59129415A (en) Manufacture of resin molded coil
JPS5897816A (en) Manufacture of dry transformer coil
JPH0217839A (en) Insulation resin impregnated coil for high voltage rotary electric machine
JPS58153315A (en) Manufacture of resin molded coil
JPS6151811A (en) Resin mold coil
JPS6062856A (en) Insulating method of dc machine field winding
JPS58202520A (en) Manufacture of resin molded coil
JPS59130413A (en) Manufacture of resin molded coil
JPS59129417A (en) Manufacture of mold type induction electrical apparatus
JPH0650696B2 (en) Method for manufacturing resin mold coil