JPS59219522A - Magnetic bearing - Google Patents

Magnetic bearing

Info

Publication number
JPS59219522A
JPS59219522A JP9239483A JP9239483A JPS59219522A JP S59219522 A JPS59219522 A JP S59219522A JP 9239483 A JP9239483 A JP 9239483A JP 9239483 A JP9239483 A JP 9239483A JP S59219522 A JPS59219522 A JP S59219522A
Authority
JP
Japan
Prior art keywords
rotor
bearing
magnetic
magnetic bearing
mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9239483A
Other languages
Japanese (ja)
Other versions
JPH0587687B2 (en
Inventor
Kenichi Takahara
憲一 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9239483A priority Critical patent/JPS59219522A/en
Publication of JPS59219522A publication Critical patent/JPS59219522A/en
Publication of JPH0587687B2 publication Critical patent/JPH0587687B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/50Other types of ball or roller bearings
    • F16C19/507Other types of ball or roller bearings with rolling elements journaled in one of the moving parts, e.g. stationary rollers to support a rotating part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0442Active magnetic bearings with devices affected by abnormal, undesired or non-standard conditions such as shock-load, power outage, start-up or touchdown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/02Relieving load on bearings using mechanical means

Abstract

PURPOSE:To miniaturize an electromagnet coil, by installing a mechanical bearing holding a rotor except at a time when the rotor is afloat or in time of emergency as well as installing such a mechanism as shifting the said bearing, capable of securing the rotor to its stabilized position in time of its being afloat. CONSTITUTION:The rotor side of a magnetic bearing 1 is made up of ringlike permanent magnets 5a and 5b set up at the upper and lower insides of a case 2 and each of yokes 8a and 8b installed so as to surround electromagnet coils 9a and 9b being wound in ring form set up in the central part of a hollow fixed shaft 4 locked by the case 2. On the other hand, a rotor 3 set up inside the case 2 is made up of each permanent magnets 6a and 6b set up so as to be opposed to magnets 5a and 5b at its upper and lower parts and a permanent magnet 7 installed in space between these yokes 8a and 8b. And, each of bearing 10a and 10b holding the rotor 3 is locked to sleeves 11a and 11b being slidably installed at both ends of the fixed shaft 4, and these sleeves 11a and 11b are made shiftable by rotation of a screw shaft 12.

Description

【発明の詳細な説明】 〔発明の統する4支暫分野〕 本発明I″′+:、回転子金磁気力fl(よって支承し
て回転させる磁気軸受全般に141するっ 〔従来技術とその間;頂点〕 高速に回転する回転子全支承する方法として、従来使用
されていた機械的な軸受にかわり、磁気力(〆ζよって
回転子を支承する方法が知られているっこの磁気力によ
って回転子を支承する公知の磁気軸受においては、回転
子に磁気力が鋤かない場合に回転子を支持するための機
械的な軸受が装備されている。この機械的な軸受け、回
転子と固定子の密着全鍵け、永久磁石を用いた磁気軸受
の場合、回転子と[♂重子の永久磁石同士あるいけ永久
磁石と継鉄1111の吸着を防ぎ、さらに、非常時にお
ける回転子および固定子の破損を回避するものである。
[Detailed Description of the Invention] [Four branch areas covered by the invention] The present invention I'''+: The rotor metal magnetic force fl (therefore, general magnetic bearings that are supported and rotated) [Prior art and the ; Vertex] As a method of fully supporting a rotor rotating at high speed, instead of the conventionally used mechanical bearings, a method of supporting the rotor by magnetic force (〆ζ) is known. Known magnetic bearings for supporting rotors are equipped with mechanical bearings to support the rotor when no magnetic force is applied to the rotor. In the case of a magnetic bearing that uses a fully-adhesive lock and permanent magnets, the permanent magnets of the rotor and the ferrule are aligned with each other to prevent the permanent magnets from adhering to the yoke 1111, and to prevent damage to the rotor and stator in an emergency. This is to avoid.

イギリス国特許Gll 2056579A K記、1?
li!されているように、回転子と前記機織的な111
1受の空隙を小さくすれば、非常時の回転子と前記磯繊
的袖受の衝撃を低減できる。しかし回転子(は、非凄咄
に支承されて回転するため、f4j前記空隙は、製作上
の精度から制限があり、回転子の妨げとなる[T1′能
性が生じる。一方、従来前記機1ψ的な軸受に切してい
る回転子を磁気的に浮上させる場合、上述したように永
久磁石に近づいている101耘子を引き離すた供給源の
1つの構成要素である電力増幅agの容量が大きくなり
、装置全体の寸法も大型化せざるを得なかった。また、
イギリス国特許(出2048195Aに記載されている
ように機械的々軸受を回転子の一時的な固定機構の一部
として使用し、使用後は、移動して、通常の非常用軸受
として使用する例がある75:、この4p的な軸受の移
動機構は、回転子に磁気力が働かない時に単に回転子を
向7りしているにすぎず、浮上時は、従来と同様に濃磁
石コイルシて多大な電流を必要としていた。
British Patent Gll 2056579A K, 1?
li! As shown, the rotor and the mechanical 111
If the gap in the first bridge is made smaller, the impact between the rotor and the rock sleeve bridge in an emergency can be reduced. However, since the rotor rotates while being supported non-tightly, the above-mentioned air gap f4j is limited due to manufacturing precision, resulting in the [T1' function] which obstructs the rotor. When magnetically levitating a rotor cut into a 1ψ bearing, the capacity of the power amplification ag, which is one component of the supply source that separates the 101 rotor approaching the permanent magnet, as described above, is This meant that the size of the entire device had to increase as well.
An example of using a mechanical bearing as part of a temporary fixing mechanism for a rotor as described in British Patent No. 2048195A, and then moving it after use and using it as a normal emergency bearing. 75: This 4P-type bearing movement mechanism simply rotates the rotor in the direction when no magnetic force is applied to the rotor, and when levitating, it uses a dense magnet coil as in the past. It required a large amount of current.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の間′照点に対してなさnたもので、回
転子が浮上する時に電磁石コイルVこ生ずる量大電流に
よって決定されていた電力増1扁器の容量を小さく、か
つ、電磁石コイルの小形化ができる。機械的軸受による
回転子移動機構を有する磁気軸受を提供することを目的
とする。
The present invention was made for the above-mentioned point of view, and reduces the capacity of the power multiplier, which was determined by the amount of large current generated in the electromagnetic coil V when the rotor levitates, and The electromagnetic coil can be made smaller. An object of the present invention is to provide a magnetic bearing having a rotor movement mechanism using a mechanical bearing.

〔発明の唄要〕[Summary of the song of invention]

本発明は、回転子とこれを磁気的に支承するための磁気
力O1,給源を有する磁気軸受において、前記機械的軸
受を用いて、回転子を回転子の浮上安定位置に移動する
機構を有する磁気軸受を構成したことにある。
The present invention provides a magnetic bearing having a rotor and a source of magnetic force O1 for magnetically supporting the rotor, which has a mechanism for moving the rotor to a stable floating position of the rotor using the mechanical bearing. The reason lies in the structure of the magnetic bearing.

〔発明の効果〕〔Effect of the invention〕

前記電力増幅器の容量を小さく、かつ、電磁石コイルの
巻数をへらすことができ、装置全体の小型化が可能とな
る。
The capacity of the power amplifier can be reduced and the number of turns of the electromagnetic coil can be reduced, making it possible to downsize the entire device.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の代表的実施例を図面を用いて説明する。 
第1図は、本発明に係る磁気l1II受の実施例の一つ
で1軸制御形磁気軸受の断面図である。
Hereinafter, typical embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view of a single-axis controlled magnetic bearing, which is one of the embodiments of the magnetic I1II bearing according to the present invention.

継鉄を内外周に固着した半径方向着磁の永久磁石(5a
)(sb)と、ケース(2)に固着され、後に詳述する
機械的軸受(10a)(10b)の移動機構のための溝
を設けた中空の固定軸(4)と前記固定軸(4)の中央
部において内部にリング状に巻かれた電磁石コイル(9
a)(9b)をはさみ込むように設置された1組の継鉄
(8a)(8b)とによって構成されているう一方、前
記ケース(2)の内部の回転子(3)は、回転子(3)
の上下に前記半径方向着磁の永久磁石(5a、)(5b
)に対向するように自装置されたリング状の継鉄を内外
周に固着した半径方向着磁の永久磁石(6a)(6b)
と、前記1組の継鉄(sa’)(sb)に対向するよう
に配置されたリング状の継鉄を内外周に同着した半径方
向着磁の永久磁石(7)とによって構吸されている。回
転子(3)の軸方向の磁気的な制御は次のように行なう
A radially magnetized permanent magnet (5a
) (sb), a hollow fixed shaft (4) fixed to the case (2) and provided with grooves for a movement mechanism of mechanical bearings (10a) (10b), which will be described in detail later, and the fixed shaft (4). ) is an electromagnetic coil (9
On the other hand, the rotor (3) inside the case (2) is composed of a pair of yokes (8a) and (8b) installed so as to sandwich the parts a) and (9b). (3)
Above and below the radially magnetized permanent magnets (5a,) (5b
radially magnetized permanent magnets (6a) (6b) with ring-shaped yokes fixed to the inner and outer peripheries.
A ring-shaped yoke arranged to face the pair of yokes (sa') and (sb) is structured by radially magnetized permanent magnets (7) attached simultaneously to the inner and outer peripheries. ing. The axial magnetic control of the rotor (3) is performed as follows.

回転子(3)の軸方向変位を変位i!′t(15)によ
って検出し、この検出信号を図示しない制御装置によっ
て処理し、図示しない電力増幅器で増幅して電磁石コイ
ル(9a)(9b)に電流として印加し、永久磁石の力
と電磁石の力をつり合わせて回転子(3)を安定位置に
浮−卜させる。回転子(3)の半径方向の制御は、回転
子(3)の」二下VCA’ @された前記永久磁石(6
a)(6b)とケース(2の内(tlll上下に配置さ
れた前記永久磁石(5a)(5b)の吸引力により能動
的に制御される。
The axial displacement of the rotor (3) is defined as the displacement i! 't (15), this detection signal is processed by a control device (not shown), amplified by a power amplifier (not shown), and applied as a current to the electromagnetic coils (9a) (9b), thereby combining the force of the permanent magnet and the electromagnet. The rotor (3) is floated to a stable position by balancing the forces. The radial control of the rotor (3) is controlled by the permanent magnets (6)
a) It is actively controlled by the attractive force of the permanent magnets (5a) (5b) placed above and below the case (2).

前記回転子(3)は、回転子(3)に磁気力を与えない
場合上下のどちらか一方に吸引されるが完全に永久磁石
同士あるいけ永久磁石と継鉄を吸着させると電、磁石の
力で浮上させることが困難となるため、水久伯石同士あ
るいは永久磁石と継鉄の間に一定の空隙を設ける必要が
ある。この理由により、機械的軸受(1oa)(Job
)が回転子(3)の上下に配置されている。
The rotor (3) is attracted to either the top or bottom when no magnetic force is applied to the rotor (3), but if the permanent magnets are completely aligned with each other, then when the permanent magnets and the yoke are attracted, the electric and magnetic Since it is difficult to levitate the stones by force, it is necessary to provide a certain gap between the Mizukuhaku stones or between the permanent magnet and the yoke. For this reason, mechanical bearings (1 oa) (Job
) are arranged above and below the rotor (3).

前述した機械的軸受(10a)(10b)に固着され、
前記中空の固定軸(4)の軸方向に移動可能でかつ内側
にネジの切っである移動スリーブ(11a)(11b)
と前記固定軸(4)の内側で前記移動スリーブのネジ部
に対応した位置にネジを切ったネジ付軸u′4とによっ
て構成されている。さらに前記移動スリーブ(lla)
(llb)のネジは上工具なるネジ、すなわち移動スリ
ーブ(11a)が右ネジなら、移動スリーブ(11b)
は左ネジとなっており、前記ネジ付軸o21の上下のネ
ジは同一のネジである。
Fixed to the aforementioned mechanical bearings (10a) (10b),
movable sleeves (11a) (11b) movable in the axial direction of the hollow fixed shaft (4) and threaded on the inside;
and a threaded shaft u'4 which is threaded at a position corresponding to the threaded portion of the movable sleeve inside the fixed shaft (4). Furthermore, the moving sleeve (lla)
The screw (llb) is the upper tool screw, that is, if the movable sleeve (11a) is a right-hand thread, the movable sleeve (11b)
is a left-handed screw, and the upper and lower screws of the threaded shaft o21 are the same screw.

次に回転子(3)の浮上安定位置への移#@作について
説明する。
Next, the movement of the rotor (3) to the stable floating position will be explained.

前記ネジ付軸(1乃を矢印j13)のように回転させる
とネジの方向が異なる前記移動スリーブ(lla)(1
1b)は、それぞれ矢印(14a)(14b)の方向に
移動する。
When the threaded shaft (1) is rotated in the direction of arrow j13, the direction of the screw changes in the moving sleeve (lla) (1).
1b) move in the directions of arrows (14a) and (14b), respectively.

したがって前記機械的軸受(1oa)(Job)が回転
子(3)をはさむ方向に移動して、回転子(3)を浮上
安定位置に移動させる。なお、回転子(3)の浮上後は
、前記ネジ付晰(1カを逆に回転させ、上述と便の操作
を行うことにより前記機械的軸受(10a)(10b)
を回転子(3)の回転を妨げない位置まで移動させる。
Therefore, the mechanical bearing (1oa) (Job) moves in a direction to sandwich the rotor (3), thereby moving the rotor (3) to a stable floating position. After the rotor (3) has floated, the mechanical bearings (10a) and (10b) can be removed by rotating the screwed bearing (1) in the opposite direction and performing the same operations as described above.
to a position where it does not interfere with the rotation of the rotor (3).

このように機械的軸受(10a )(1ob)によって
回転子(3)を浮上安定位置に移動する機構を崩する磁
気1411受においては、回転子(3)の浮上始@h時
に生ずる電磁石コイルに流れるピーク電流を低くおさえ
ることができ、このピーク電流によって決定されていた
前記電力増1帖器の容惜全小さく、さらに前記電磁石コ
イルの巻数を鳩らすことが可能となも。
In this way, in the magnetic 1411 bearing that breaks the mechanism of moving the rotor (3) to a stable floating position by the mechanical bearings (10a) (1ob), the electromagnetic coil generated at the start of floating of the rotor (3) @h The peak current that flows can be suppressed to a low level, the power increaser which was determined by this peak current can be reduced, and the number of turns of the electromagnetic coil can be increased.

第2図は、永久磁石併用形磁気、・軸受の浮上始動時に
電磁石コイルに泄れる電流の時間凶変ずしである。浮上
始動時にd1電流値がIOAを越えているが、浮上安定
時にけ、電流がほとんど流れていない。第2図から明ら
かなように、上述した効頃は顕著であり、移動機構に機
械的IIIIll受を用いることにより、非常時の磁気
軸受の構成部品の破損も回避できる磁気軸受となる。
Figure 2 shows the time variation of the current flowing into the electromagnetic coil when the permanent magnet combination type magnetic bearing starts floating. At the start of levitation, the d1 current value exceeds IOA, but when levitation stabilizes, almost no current flows. As is clear from FIG. 2, the above-mentioned effectiveness is remarkable, and by using a mechanical IIIll bearing in the moving mechanism, the magnetic bearing can avoid damage to the components of the magnetic bearing in the event of an emergency.

上述した同転子の機械的軸受音用いた移動機構は、第1
図の構造に限定されるものではなく、他のいかなる方法
でも(回転子を浮上安定位置に移動させることができれ
ばよい。第3図1d、本発明の他の実施例を示す。第1
図の磁気軸受とは制御軸数が異なり、半径方向の2軸を
制御卸する2輔制御形磁気軸受である。第3図は、半径
方向の2軸のうち1軸のみを示した断面図であるが、磁
気軸受(:)(jは、リング状の叫1方向着磁の永久磁
石(′29のN極から出てケース(2υに固着された固
定子細lの継鉄(23a)を通り、回転子(2りの継鉄
(22a )から、内定子側の継鉄(23b )に45
9、永久磁石のS榛に戻る磁束を電磁石コイル(:?4
a)(24b)によって増減して回転子12Bヲ安定位
置に浮上させる。
The above-mentioned moving mechanism using the mechanical bearing sound of the trochanter is the first
The structure is not limited to the structure shown in the figure, and any other method may be used as long as the rotor can be moved to a stable floating position. Fig. 3 1d shows another embodiment of the present invention.
The number of control axes is different from the magnetic bearing shown in the figure, and it is a two-control type magnetic bearing that controls two axes in the radial direction. Figure 3 is a cross-sectional view showing only one of the two radial axes. It comes out from the case (2υ), passes through the stator thin yoke (23a) fixed to the rotor (2υ), and from the rotor (2υ) yoke (22a) to the inner stator side yoke (23b).
9. The magnetic flux returning to the S beam of the permanent magnet is transferred to the electromagnetic coil (:?4
a) (24b) increases and decreases to float the rotor 12B to a stable position.

回転子(2りの浮上安定位置への移動Fluは、ネジ付
軸(ト)とこのネジ部に対応した位置に配置され、前記
ネジ伺軸(至)の軸力向に移動0T卵な移動スjJ−プ
(26aX26b)と前記移動スリーブ(26a)(2
6b)にビン支持された支持棒(28a)(28b)、
(30a)(30b)と前記支持棒にビン支持され、機
械的軸受(32a )(32h)(34a)(34b)
の内輪を両端に固着(7た位置決め軸(27a)(27
c)と前記移動スリーブ(26a)(26b)の回転を
防11ニするような溝付軸(:3ηとで構成される。
The rotor (Flu) is placed in a position corresponding to the threaded shaft (G) and this threaded part, and is moved in the direction of the axial force of the screw shaft (T). SpjJ-sp (26aX26b) and the moving sleeve (26a) (2
6b) support rods (28a) (28b) supported by bottles;
(30a) (30b) and mechanical bearings (32a) (32h) (34a) (34b)
Fix the inner ring of the (7) positioning shaft (27a) to both ends (27
c) and a grooved shaft (:3η) that prevents rotation of the moving sleeves (26a) and (26b).

前記移動スリーブ(26a)(26b)のネジの方向け
、移動スリーブ(26a)が右ネジならば移動スリーブ
(26b)は左ネジというように相違なるネジが切って
あり、これに対するネジ付軸(36)は、一方向のネジ
で構成されている。第3図は、回転子(特を浮上安定位
置に移動するための機構として、前記機械的Ih1ll
受(32a)(32b)(34a)(34b)の内輪全
両端に固着(〜だ位置決め軸を便宜上2本描いているが
、実際は少なくとも3本必要である。
If the moving sleeve (26a) has a right-handed thread, the moving sleeve (26b) has a left-handed thread, so that the moving sleeves (26a) and (26b) have different threads. 36) is composed of a one-way screw. FIG. 3 shows the above-mentioned mechanical
Two positioning shafts are drawn for convenience, but in reality at least three are required.

回転子(2つの浮上安定位置への移動方法を第4図にて
説明する。第4図は、第3図のA断面を示したものであ
り、同一の部材は同一符号を用いて詳細な説明は省略す
る。
The method of moving the rotor (to two stable floating positions will be explained in Fig. 4). Fig. 4 shows the A section of Fig. 3, and the same members are designated by the same reference numerals for detailed explanation. Explanation will be omitted.

前記ネジ付+111+ (36)を矢印(41の方向に
回転させると前言1#動スリーブ(26a)(261)
)が第3図の矢印(39a)(39b)の方向に移動す
る。前記移動スリーブ(25a)(26b)の動作によ
り、前記ピン支持された支持棒(28a)(28b) 
、(29a)(29b)(30a)(30b)(31a
)(31b)に力が伝達され、その結果前記支持棒にピ
ン支持された前配位IW決め軸(27a)(27b) 
(27C) (27d)が矢印(38a )(38b)
(38c )(38d)の方向へ同一の距離だけ動き、
前記位置決めla、b (27a)27b) (27c
) (27d)に固着された機械的軸受(32a)(3
2b) 、 (33a)(33b)、 (34a)(3
4b)、 (35a)(35b)が回転子(22)を浮
上安定位置に移動させる。
When the screwed +111+ (36) is rotated in the direction of arrow (41), the aforementioned 1# moving sleeve (26a) (261)
) moves in the directions of arrows (39a) and (39b) in FIG. By the movement of the moving sleeves (25a) (26b), the pin-supported support rods (28a) (28b)
, (29a) (29b) (30a) (30b) (31a
) (31b), and as a result, the pre-alignment IW determining shafts (27a) (27b) supported by pins on the support rods
(27C) (27d) is the arrow (38a) (38b)
(38c) moves the same distance in the direction of (38d),
Said positioning la, b (27a) 27b) (27c
) (27d) mechanical bearing (32a) (3
2b), (33a)(33b), (34a)(3
4b), (35a) (35b) moves the rotor (22) to a stable floating position.

なお、上述した移動機構は、第3図、第4図の構造に限
定されるわけでなく、他のいかなる方法を用いても回転
子を浮上安定位置に移動できればよい。3軸以上の制御
軸金有する磁気軸受においても、第1図と第3図の機構
を組み合わせるととによって本発明を適用できる。
Note that the above-mentioned moving mechanism is not limited to the structure shown in FIGS. 3 and 4, and any other method may be used as long as the rotor can be moved to the stable floating position. The present invention can also be applied to a magnetic bearing having three or more control shafts by combining the mechanisms shown in FIGS. 1 and 3.

上述したように、機械的軸受によって回転子を浮上安定
位置に移動する機構を有する磁気軸受例おいては、第1
図と同様に、電力増幅器の容tを小さくでき、電磁石コ
イルの巻線を細く、巻数を低減できる。さらに、非常用
の軸受を併用した移動機構のために、磁気軸受の構成部
品の非常時の破損を回避で^、全体としてコンパクトで
信頼性の高い磁気軸受となる。
As mentioned above, in the example of a magnetic bearing having a mechanism for moving the rotor to a floating stable position using a mechanical bearing, the first
Similarly to the figure, the capacity t of the power amplifier can be made smaller, the winding of the electromagnetic coil can be made thinner, and the number of turns can be reduced. Furthermore, since the movement mechanism uses an emergency bearing, damage to the components of the magnetic bearing in an emergency can be avoided, resulting in a compact and highly reliable magnetic bearing as a whole.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る磁気軸受の断面図、第2図は、
従来の磁気軸受の回転子の浮上時に電磁石コイルに流れ
るM流の時間的変化を示す特性図、第3図は、本発明の
他の実施例を示す断面図、第4図は、第3図の別の断面
の詳細図である。 (1)磁気軸受(1軸制@j形) (2)  ケース%(3)  回転子、(4)固定軸(
5a)(5b) 。 (6a)(6b)、(7)−リング状永久磁石、(sa
)(8b) −継鉄、(9a)(9b)−電磁石コイル
、(10a)(10b)・・・機械的軸受、(Ha)(
Hb)・・・移動スリーブ、(IJ・・・ネジ付軸、(
2I磁気軸受(2軸制御形)、Cυ・・ケース、t23
−=回転子、(23a)(23b)・・継鉄、(24a
)(24b)・・・電磁石コイル、(2団・リング状永
久磁石、(26a)(26b)・・・移蜘スリーブ、(
27a)(27b)  位置決め軸、(28a)(28
b)(29a)(29b)(30a)(30b)(31
a)(31b) ・・・支持棒、(32a)(32b)
(33a)(33’))(34a)(34b )(35
a) (35b)機械的軸受、崎・・ネジ付軸、(37
1,、、溝付軸代理人 弁理士 則 近 憲 佑(ほか
1名)第  1 図 第8図 第4図 165−
FIG. 1 is a sectional view of a magnetic bearing according to the present invention, and FIG. 2 is a sectional view of a magnetic bearing according to the present invention.
A characteristic diagram showing temporal changes in the M flow flowing through the electromagnetic coil when the rotor of a conventional magnetic bearing is levitating; FIG. 3 is a sectional view showing another embodiment of the present invention; FIG. FIG. (1) Magnetic bearing (single shaft system @ J type) (2) Case% (3) Rotor, (4) Fixed shaft (
5a) (5b). (6a) (6b), (7) - Ring-shaped permanent magnet, (sa
)(8b) -Yoke, (9a)(9b)-Electromagnetic coil, (10a)(10b)...Mechanical bearing, (Ha)(
Hb)...Moving sleeve, (IJ...Threaded shaft, (
2I magnetic bearing (2-axis control type), Cυ... case, t23
-=Rotor, (23a) (23b)...Yoke, (24a
)(24b)...Electromagnetic coil, (2 groups of ring-shaped permanent magnets, (26a)(26b)...Transferable sleeve, (
27a) (27b) Positioning axis, (28a) (28
b) (29a) (29b) (30a) (30b) (31
a) (31b) ...Support rod, (32a) (32b)
(33a) (33')) (34a) (34b) (35
a) (35b) Mechanical bearing, Saki... threaded shaft, (37
1,, Grooved Axis Agent Patent Attorney Noriyuki Chika (and 1 other person) Figure 1 Figure 8 Figure 4 Figure 165-

Claims (1)

【特許請求の範囲】[Claims] 回転子し回転子を磁気的に支承する磁気力供給強とを有
する磁気軸受において、回転の磁気浮上時以外も1〜く
け非常時に回転子を保持する機械的なqI11j受?有
1〜、かつ回転子の磁気浮子時の安定位置に回転子分同
定できる、前記機械的な軸受を移動する機構を有するこ
とを特徴とする磁気軸受。
In a magnetic bearing that has a rotor and a strong magnetic force supply that magnetically supports the rotor, is there a mechanical bearing that holds the rotor in an emergency, not only during magnetic levitation of rotation? 1. A magnetic bearing, characterized in that it has a mechanism for moving the mechanical bearing, which can identify the rotor component to a stable position when the rotor has a magnetic float.
JP9239483A 1983-05-27 1983-05-27 Magnetic bearing Granted JPS59219522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9239483A JPS59219522A (en) 1983-05-27 1983-05-27 Magnetic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9239483A JPS59219522A (en) 1983-05-27 1983-05-27 Magnetic bearing

Publications (2)

Publication Number Publication Date
JPS59219522A true JPS59219522A (en) 1984-12-10
JPH0587687B2 JPH0587687B2 (en) 1993-12-17

Family

ID=14053196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9239483A Granted JPS59219522A (en) 1983-05-27 1983-05-27 Magnetic bearing

Country Status (1)

Country Link
JP (1) JPS59219522A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233382A (en) * 2004-02-23 2005-09-02 Koyo Seiko Co Ltd Magnetic bearing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132400A (en) * 1979-03-30 1980-10-15 Aerospatiale Temporary restricting device for inertia wheel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55132400A (en) * 1979-03-30 1980-10-15 Aerospatiale Temporary restricting device for inertia wheel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233382A (en) * 2004-02-23 2005-09-02 Koyo Seiko Co Ltd Magnetic bearing device

Also Published As

Publication number Publication date
JPH0587687B2 (en) 1993-12-17

Similar Documents

Publication Publication Date Title
US6304015B1 (en) Magneto-dynamic bearing
US6359357B1 (en) Combination radial and thrust magnetic bearing
US5767597A (en) Electromagnetically biased homopolar magnetic bearing
JP4938468B2 (en) Device for magnetically levitating a rotor
US6727617B2 (en) Method and apparatus for providing three axis magnetic bearing having permanent magnets mounted on radial pole stack
US3976339A (en) Magnetic suspension apparatus
JPS6014931B2 (en) Axial electromagnetic bearing for large diameter smooth shaft
US4090745A (en) Magnetic suspension with magnetic stiffness augmentation
US4597613A (en) Electromagnetic bearing
KR20060121355A (en) Bearingless step motor
JPS5943220A (en) Gimbal-controlled magnetic bearing
US8110955B2 (en) Magnetic bearing device of a rotor shaft against a stator with rotor disc elements, which engage inside one another, and stator disc elements
EP2275697A1 (en) A magnetic bearing, a rotary stage, and a reflective electron beam lithography apparatus
JP2886891B2 (en) Axial magnetic bearing assembly
JPH0441120B2 (en)
JPS59219522A (en) Magnetic bearing
CN109268391B (en) Multi-coil axial magnetic bearing for magnetic suspension stable platform
Lee et al. Multi-hybrid Active Magnetic Bearing Design for Milling Spindle Applications.
KR101064226B1 (en) Hybrid thrust magnetic bearing
JP2002161918A (en) Magnetic bearing unit
JPH0226310A (en) Magnetic thrust bearing
JP2004316756A (en) Five-axis control magnetic bearing
JPH0371569B2 (en)
JP2002257135A (en) Magnetic bearing device
JPS58137618A (en) Magnetic bearing