JPS59219313A - Triallylsilane polymer - Google Patents

Triallylsilane polymer

Info

Publication number
JPS59219313A
JPS59219313A JP9357783A JP9357783A JPS59219313A JP S59219313 A JPS59219313 A JP S59219313A JP 9357783 A JP9357783 A JP 9357783A JP 9357783 A JP9357783 A JP 9357783A JP S59219313 A JPS59219313 A JP S59219313A
Authority
JP
Japan
Prior art keywords
polymer
triallylsilane
methanol
radical
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9357783A
Other languages
Japanese (ja)
Inventor
Kazuhide Saigo
斉郷 和秀
Shigeyoshi Suzuki
成嘉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9357783A priority Critical patent/JPS59219313A/en
Priority to US06/612,925 priority patent/US4564576A/en
Publication of JPS59219313A publication Critical patent/JPS59219313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:The titled polymer having excellent resistance to oxygen plasma, obtained by radical-polymerizing a triallylsilane monomer. CONSTITUTION:A triallylsilane monomer of formula I (wherein R is H, a lower alkyl such as methyl, ethyl or propyl, or phenyl) is radical-polymerized in the presence of a radical initiator, e.g., benzoyl peroxide. Before gelation, methanol is added to the system to stop the reaction and to precipitate a triallylsilane polymer having structural units of formulas II-IV. EFFECT:This polymer is soluble in organic solvents such as benzene, toluene, acetone, and chloroform, has a high transition point and can be readily formed into a film. USE:Resist material.

Description

【発明の詳細な説明】 本発明はシリコン原子を有する新規なトリアリルシラン
系重合体に関し、更に詳しくは酸素プラズマに対して耐
性が著しく優れた重合体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel triallylsilane polymer having a silicon atom, and more particularly to a polymer having extremely high resistance to oxygen plasma.

集積回路、バブルメモリ素子などの製造において近年パ
ターンの微細化に伴ないレジストパターンを精度よく基
板に転写するため従来のウェットエツチングに変わって
ガスプラズマ等を用いたドライエツチングが行なわれる
ようになった。このためドライエ、チングに対して耐性
の強いレジスト材料が求められている。又近年高解像度
を得る目的で三層構造レジスト(下層から順に第一層は
厚い有機膜、第二層目はシリコン膜、又は酸化シリコン
膜、又は窒化シリコン膜、第三層目は有機レジスト膜で
構成される)が提案されている。
In recent years, in the manufacture of integrated circuits, bubble memory devices, etc., as patterns have become finer, dry etching using gas plasma has replaced conventional wet etching in order to accurately transfer resist patterns onto substrates. . For this reason, there is a need for resist materials that are highly resistant to drying and etching. In addition, in recent years, for the purpose of obtaining high resolution, three-layer structure resists (from the bottom, the first layer is a thick organic film, the second layer is a silicon film, silicon oxide film, or silicon nitride film, and the third layer is an organic resist film) ) has been proposed.

(ジェー エム モラン、ジャーナル オフノ<キ、−
ムサイエンス アンド テクノロジー、16,1920
.1979)(J、 M、 Moran、 J、 Va
cuum  Sci、 and Tech、 、 16
゜1920.1979)L、かしこの方法の欠点は工程
が複雑で長くなることである。02プラズマによるドラ
イエ、チングに対して耐性を有するレジスト材料が存在
すれば第二層目と第三層目を兼ねそなえることが出来る
ため二層構造ですむことになり工程ははるかに簡略化さ
れる。そのため増々ドライエツチングに対して優れた耐
性を有するレジスト材料が求められている。
(J.M. Moran, Journal Ofno<ki,-
Science and Technology, 16, 1920
.. 1979) (J, M, Moran, J, Va
Cuum Sci, and Tech, , 16
However, the disadvantage of this method is that the process is complicated and long. If there is a resist material that is resistant to drying and etching caused by 02 plasma, it can serve as both the second and third layers, making it possible to use a two-layer structure, which greatly simplifies the process. . Therefore, there is an increasing demand for resist materials that have excellent resistance to dry etching.

現在までいくつかの有機レジスト材料すなわちポリクロ
ロメチルスチレン、ポリメチルメタクリレート、ポリジ
アリル二7タレート等が開発されてきたが、上記の目的
のためには明らかに不十分である。
To date, several organic resist materials have been developed, such as polychloromethylstyrene, polymethylmethacrylate, polydiallyl di7talate, etc., but they are clearly insufficient for the above purpose.

ポリジメチルシUキサンは0.プラズマに対して著しく
優れエラチングレーI・はほぼ零であることは公知であ
る(ジー エヌ テーラ−、ティー エムウォルフ ア
ンド ジェー エム モラン、ジャーナル オプ バキ
ューム リイエンス アンド デクノロジー、19(4
)、872.1981)’(G、N、Taylor。
Polydimethylsiloxane is 0. It is well known that it is extremely superior to plasma, and its eratin gray I is almost zero (G.N. Taylor, T.M. Wolff and J.M. Moran, Journal of Vacuum Reliance and Technology, 19 (4).
), 872.1981)' (G, N, Taylor.

T+M、 Wolf and J、 M、 Moran
、 J、 Vacuum Sci。
T+M, Wolf and J, M, Moran
, J. Vacuum Sci.

and Tech、 、 19(4)、 872.19
81)が、このポリマーは常温で液状であるのでほこり
が付着1〜やすい、流動性があるため高解像度が得にく
いなどの欠点がありレジスト材料としては適さない。
and Tech, 19(4), 872.19
81) However, since this polymer is liquid at room temperature, it is not suitable as a resist material because it has drawbacks such as easy dust adhesion and difficulty in obtaining high resolution due to its fluidity.

本発明の目的はこれらの欠点のないレジスト材料として
優れた特性を有する新規なトリアリルシラン系重合体を
提供するものである。
The object of the present invention is to provide a novel triallylsilane polymer that does not have these drawbacks and has excellent properties as a resist material.

本発明において重合体はトリアリルシラン系化合物に通
常採用されているラジカル開始剤例えば過酸化ベンゾイ
ル、α、α−アゾビストップチロニトリル等の過酸化物
、アジド化合物を用いて製造出来る。本製造において反
応が行き過ぎてしまうとゲル化してしまいそのためゲル
化前にメタノールに投入して重合体を析出させると同時
に反応を停止させる。又重合体のメチル エチル ケト
ン(MEK)溶液にメタノールを滴下し、白濁してから
さらに少量のメタノールを加えることによって重合体を
容易に分別精製出来る。本製造の反応式を下式に示す。
In the present invention, the polymer can be produced using a radical initiator commonly employed in triallysilane compounds, such as peroxides such as benzoyl peroxide, α,α-azobistoptyronitrile, and azide compounds. If the reaction goes too far in this production, gelation will occur, so before gelation, the polymer is poured into methanol to precipitate the polymer and at the same time stop the reaction. Furthermore, the polymer can be easily fractionated and purified by dropping methanol into a methyl ethyl ketone (MEK) solution of the polymer and adding a small amount of methanol after the solution becomes cloudy. The reaction formula for this production is shown below.

(1) 本発明の化合物は一般の有機溶剤例えばベンゼン、トル
エン、アセトン、クロロホルム等に可溶でガラス転移点
が高くフィルムが容易に形成出来、上記の様な欠点が解
消される。
(1) The compound of the present invention is soluble in common organic solvents such as benzene, toluene, acetone, chloroform, etc., has a high glass transition point, and can easily form a film, thereby eliminating the above-mentioned drawbacks.

本発明の化合物の酸素プラズマに対する耐性を普通よく
用いられているレジスト材料例えばノポラ、り樹脂(シ
ラプレー社から市販されている商品名AZ−1350J
なるレジストがその1例である)と比較してみるとノボ
ラック樹脂が1.5μmエツチングされる間に (功 は200x玉か工、チングされず、 は250ALか工、チングされず、 (4) は320xしか工、チングされないことが判かシ、本発
明の化合物はO,プラズマに対して強い耐性を有するこ
とが確認された。本発明の重合体の最も好ましい適用は
2層構造レジストの上層のバタン形成用レジストと(7
てであるが、2層構造レジストの場合第一層の有機膜は
普通2.0〜2.571mの厚さで塗布され、上層レジ
ストの厚さを約2000Xに塗布されるのが適当である
。本発明の重合体が上記の目的のための02プラズマに
対する耐性を十分に有することが判った。
The resistance of the compounds of the present invention to oxygen plasma can be compared with commonly used resist materials such as Nopola, resin (trade name AZ-1350J, commercially available from Silapray).
(4) When compared with 1.5 μm etching of novolak resin (1.5 μm etching of novolac resin, 200× etching is not etched, and 250 AL etching is not etched. It was confirmed that the compound of the present invention has strong resistance to O, plasma. resist for forming battens and (7
However, in the case of a two-layer resist, the first layer organic film is usually coated to a thickness of 2.0 to 2.571 m, and it is appropriate to coat the upper layer resist to a thickness of about 2000×. . It has been found that the polymers of the invention have sufficient resistance to 02 plasma for the above-mentioned purposes.

次に本発明の単量体の製造および重合体の製造を実施例
を用いて説明する。
Next, the production of monomers and polymers of the present invention will be explained using Examples.

実施例1 H−8i (OH2−OH=OH,)、  なる単量体
は次の様な方法で製造した〇 窒素吹込み管、還流冷却器および滴下ロー トを取シ付
けた1を三つ1」フラスコにグリニヤ・−ル用金属マグ
ネシウム36.5 jj (1,5アトム)及びエチル
エーテル100 mlを仕込み、室温にて臭化アリ#1
5111.2モル)(エチルエーテル200mtに溶解
)をはげしく還流しない程度の速度で滴下した。滴下終
了後、トリクロロシラ150g(0,37モル)(エチ
ルエーデ/I/300mtに溶解)をふたたびはげしく
還流しない程度の速度で滴下した。途中で全体が固化す
るが、滴下は継続させてメカニカルスタラーで均一にし
た。10時間室温で放置後水中に投入してエチルエーテ
ルで抽出を行なった。エーテル層を硫酸ソーダで乾燥後
エーテルを留出して残液を減圧蒸留した。収庵は3.3
p(58%)。生成物の沸点は49℃/10fl塊であ
る。
Example 1 The monomer H-8i (OH2-OH=OH,) was manufactured by the following method. 1" In a flask, charge 36.5 jj (1,5 atoms) of Grignard metal magnesium and 100 ml of ethyl ether, and add ant bromide #1 at room temperature.
5111.2 mol) (dissolved in 200 mt of ethyl ether) was added dropwise at a rate that did not cause severe reflux. After the addition was completed, 150 g (0.37 mol) of trichlorosilane (dissolved in ethyl ade/I/300 mt) was added dropwise at a rate that would not cause rapid reflux again. The entire mixture solidified during the process, but the dropping was continued and made uniform with a mechanical stirrer. After being left at room temperature for 10 hours, it was poured into water and extracted with ethyl ether. After drying the ether layer with sodium sulfate, the ether was distilled off, and the residual liquid was distilled under reduced pressure. Shuan is 3.3
p (58%). The boiling point of the product is 49°C/10 fl block.

生成物の分析値は次のようになる。The analytical values of the product are as follows.

赤外線吸収スペクトル(Iyn−”) : 2120 
(Si−H)、1630(OH,−CH−)、900(
St−H)。
Infrared absorption spectrum (Iyn-”): 2120
(Si-H), 1630 (OH, -CH-), 900 (
St-H).

860(Si−OH,) 核磁気共鳴吸収スペクトル(!J) ppm : 1.
70〜1.85 (6H,m、 OH,8i )、 3
.8〜4.0 (IH。
860 (Si-OH,) Nuclear magnetic resonance absorption spectrum (!J) ppm: 1.
70-1.85 (6H, m, OH, 8i), 3
.. 8-4.0 (IH.

H8i )、 4.8〜5.3 (6H,m、 0H2
=OH−) 。
H8i), 4.8~5.3 (6H,m, 0H2
=OH-).

5.7〜6.3 (3H,m、0H2=0旦−)元素分
析:計算値0;71.10.H;10.53゜Si;1
8.42o実測値0 ; 71.23. !(; 10
.10゜8重 ;18.28 実施例2 0H,−8i (OH,−0R=OH,)、なる単量体
は次の様な方法で製造した。
5.7-6.3 (3H, m, 0H2=0dan-) Elemental analysis: Calculated value 0; 71.10. H; 10.53°Si; 1
8.42o actual value 0; 71.23. ! (; 10
.. 10°8fold; 18.28 Example 2 The monomer 0H, -8i (OH, -0R=OH,) was produced by the following method.

窒素吹込み管、還流冷却器および滴下ローIf取り付け
たIL三つロフラスコにグリニヤール用金属マグネシウ
ム36.5 g (1,5アトム)およびエチルエーテ
ル100 mtを仕込み、室温にて臭化アリル151g
/エチルエーテル200 mAをはげしく還流しない程
度の速度で滴下した。滴下終了後トリクロロメチルシラ
ン50g(0,33モル)/エチルエーテル300 m
lを再び激しく還流しない程度の速度で滴下した。途中
で全体が固化してしまうが滴下は継続させてメカニカル
スタラーで均一にした。10時間室温で放置後水中に投
入してエチルエーテルで抽出を行なった。エーテル層を
硫酸ソーダで乾燥後エーテルを留出して残液を減圧蒸留
した。収率は23g(42%)。
36.5 g (1,5 atoms) of Grignard metal magnesium and 100 mt of ethyl ether were placed in an IL three-bottle flask equipped with a nitrogen blowing tube, reflux condenser, and dropping flow If, and 151 g of allyl bromide was added at room temperature.
/ethyl ether at 200 mA was added dropwise at a rate that did not cause severe reflux. After dropping, add 50 g (0.33 mol) of trichloromethylsilane/300 m of ethyl ether.
1 was added dropwise at a rate that did not cause violent reflux again. The entire mixture solidified during the process, but the dripping was continued and the mixture was made uniform with a mechanical stirrer. After being left at room temperature for 10 hours, it was poured into water and extracted with ethyl ether. After drying the ether layer with sodium sulfate, the ether was distilled off, and the residual liquid was distilled under reduced pressure. Yield: 23g (42%).

生成物の沸点は58℃/ 12 van Hgである。The boiling point of the product is 58°C/12 van Hg.

生成物の分析値は次のようになる。The analytical values of the product are as follows.

赤外線吸収スペクトル(cn7 ” ) : lG30
 (アクル基)、900. 860(Si−Cり核磁気
共鳴吸収スペクトル(δ) ppm : 0.2 (3
H。
Infrared absorption spectrum (cn7”): lG30
(Akyl group), 900. 860 (Si-C nuclear magnetic resonance absorption spectrum (δ) ppm: 0.2 (3
H.

8 、0H3) 、 1.8 (6H,−0f−1,、
−)、 4.9〜5.3(6H。
8,0H3), 1.8 (6H,-0f-1,,
-), 4.9-5.3 (6H.

m、 OH2=OH−)、  5.7〜6.3 (3n
、 m、 ci−i2=明−) ノ元素分析:計算値0 ; 72.29. H; 10
.84゜8i;16.87 実ホ1j値0 ; 71.
97 、 H; 10.77゜St;16.54 実施例3 Ph −8i (0H2−OH=OH,)sなる単量体
は次の様な方法で製造した。
m, OH2=OH-), 5.7-6.3 (3n
, m, ci-i2=light-) Elemental analysis: Calculated value 0; 72.29. H; 10
.. 84°8i; 16.87 Actual ho 1j value 0; 71.
97, H; 10.77°St; 16.54 Example 3 Ph-8i (0H2-OH=OH,)s monomer was produced by the following method.

窒素吹込み管、還流冷却器および滴下ロートを取り付け
た1を三つロフラスコにグリニヤール用金属マグネシウ
ム2911.2アトム)およびエチルエーテルl Q 
Q mtを仕込み、室温にて臭化アリル121g/エチ
ルエーテル20 (l ITI)2を激しく還流しない
程度の速度で滴下した0滴下終了後、ト+)クロロフェ
ニルシラン50g(0,24モル)/エチルエーテル3
 Q Q mlを再Q:激しく還流しない程度の速度で
滴下した。途中で全体が固化してしまうが滴ドは継続さ
せてメカニカルスタラーで均一にした。10時間室温で
放置抜水中に投入してエチルエーテルで抽出を行なった
0工−テル層を硫酸ソーダで乾燥後エーテルを留出して
残液を減圧蒸留した。収率は36.9(67%)。
Grignard metal magnesium 2911.2 atom) and ethyl ether l Q
Q mt was prepared, and 121 g of allyl bromide/20 (l ITI)2 of ethyl bromide was added dropwise at room temperature at a rate that would not cause violent reflux. After the completion of the dropwise addition, 50 g (0.24 mol) of t+)chlorophenylsilane/ethyl ether 3
Q Q ml was added dropwise at a rate that would not cause violent reflux. The entire mixture solidified during the process, but the dripping was continued and a mechanical stirrer was used to make it uniform. The ether layer was left to stand at room temperature for 10 hours and then extracted with ethyl ether. After drying with sodium sulfate, the ether was distilled off and the residual liquid was distilled under reduced pressure. Yield: 36.9 (67%).

生成物の沸点は80°G/ 0.4 mHgである。The boiling point of the product is 80°G/0.4 mHg.

生成物の分析値は次のようになる。The analytical values of the product are as follows.

赤外線吸収スペクトル(cm−’) : 1630 (
アリル基)、1430(ビニル基)、 11.10.9
00(5i−ph)、700()、ニル基)核磁気共鳴
吸収スペクトルψ) ppm:L85 (6i(、d 
、 −OH,−) 、 4.7−5.1 (6H,m、
 OH,=CH−) 、 5.4〜6.2 (3i−I
、 m、 0H2=(男と)。
Infrared absorption spectrum (cm-'): 1630 (
allyl group), 1430 (vinyl group), 11.10.9
00 (5i-ph), 700 (), nyl group) nuclear magnetic resonance absorption spectrum ψ) ppm: L85 (6i (, d
, -OH,-), 4.7-5.1 (6H,m,
OH,=CH-), 5.4-6.2 (3i-I
, m, 0H2=(with a man).

7.2〜7.5 (5H,m、 Ph )。7.2-7.5 (5H, m, Ph).

元素分析:計算値0 : 78.95.H; 877゜
S r ;12−78  実測値0; 78.88.H
; 8.53゜Si  ;  12.50 実施例4 11 Si ((M(、−(EH=CI(、) 、 ノ
重合体ハ次ノ様な方法で製造した。
Elemental analysis: Calculated value 0: 78.95. H; 877°S r ; 12-78 Actual value 0; 78.88. H
; 8.53°Si; 12.50 Example 4 11 Si ((M(,-(EH=CI(,),) Polymer was produced in the following manner.

重合管にトリアリルシラン7.6 g(0,05モル)
7.6 g (0.05 mol) of triallylsilane in the polymerization tube
.

ベンゼン7、5 mlを仕込み、コ、り付きゴム管に取
り付け、液体窒素を用いて溶液を凝固さす脱気を行なっ
た。この操作を5回繰り返して脱気を完全にした。この
溶液を窒素吹込み管、還流冷却器を取り付けた1 00
 ml三つ1」フラスコに仕込み還流するまで加熱した
。過酸化ベンゾイル(BPU)0.12.!i’(1,
oモルチ)を1時間おきに加え、6回加えた時はかなり
粘度が上がっておりさらに30分間反応を続けてからこ
の重合溶液をメタノール中に投入した。重合体1は下層
に沈み上ゎずみ溶液をデカンテーションした。重合体を
100 rnl、のベンゼンに溶解させ多量のメタノー
ル中に投入した。上記の操作を3回くりかえし、得られ
た粉体のポリマーを口過後減圧下で乾燥した。収率は生
成物の分析値は次の様になる。
7.5 ml of benzene was charged, the tube was attached to a rubber tube with a rubber tube, and the solution was degassed using liquid nitrogen to solidify it. This operation was repeated 5 times to complete degassing. This solution was poured into a 100 ml tube equipped with a nitrogen blowing tube and a reflux condenser.
Three ml of the mixture was added to a 1" flask and heated to reflux. Benzoyl peroxide (BPU) 0.12. ! i'(1,
Omolti) was added every hour, and when it was added six times, the viscosity had increased considerably, so the reaction was continued for an additional 30 minutes, and then the polymerization solution was poured into methanol. Polymer 1 sank to the bottom layer and the resulting solution was decanted. The polymer was dissolved in 100 rnl of benzene and poured into a large amount of methanol. The above operation was repeated three times, and the resulting powdered polymer was passed through the mouth and dried under reduced pressure. The yield and analytical values of the product are as follows.

赤外線吸収スペクトル(cm−” ) : 2]50(
Sj −H)、1630(アリA・基)、920(Si
t()。
Infrared absorption spectrum (cm-”): 2]50(
Sj -H), 1630 (A group), 920 (Si
t().

核磁気共鳴スペクトル(δ)ppm:05へ−2,3(
10H,brアルカン) 、 3.7〜4.3 (10
,br、 H−8i)。
Nuclear magnetic resonance spectrum (δ) ppm: to 05-2,3(
10H, br alkane), 3.7~4.3 (10
, br, H-8i).

4、3〜6.2 (3PI、 br、 CH2=OH−
)元素分析:計算値0 ; 71.10. H; 10
.53゜Si ; l 8.42.、実測値0 ; 7
1.40.J−I ; 10.20 。
4, 3-6.2 (3PI, br, CH2=OH-
) Elemental analysis: Calculated value 0; 71.10. H; 10
.. 53°Si; l 8.42. , actual value 0; 7
1.40. J-I; 10.20.

Si;1&07 実施例5 0H,−8i (OH2−OH=OH2)sの重合体は
次の様な方法で製造した。
Si;1&07 Example 5 A polymer of 0H, -8i (OH2-OH=OH2)s was produced by the following method.

重合管にトリアリルメチルシラン8=:l(0,05モ
ル)およびベンゼン8.3 mtを仕込み、コック付き
ゴム管に取り付は液体窒素を用いて溶液を凝固させ脱気
を行なった。この操作を5回繰り返して脱気を完全にし
frO,。この溶液を窒素吹込み管。
A polymerization tube was charged with 8=:l (0.05 mol) of triallylmethylsilane and 8.3 mt of benzene, which was attached to a rubber tube with a cock, and the solution was solidified using liquid nitrogen and degassed. Repeat this operation 5 times to completely degas frO. Blow this solution into a nitrogen tube.

還流冷却器を取り付けた100mt三つロフラスコに仕
込み還流するまで加熱した。BPOo、1.2g(1モ
ルチ)を1時間おきに加え10回目を加えた時は粘度は
かなり上がっておりさらに1時間加熱1〜てから重合溶
液をメタノール中に投入した。
The mixture was charged into a 100 mt three-necked flask equipped with a reflux condenser and heated until reflux. 1.2 g (1 molty) of BPOo was added every hour, and when the 10th addition was made, the viscosity had increased considerably, and after heating for an additional hour, the polymerization solution was poured into methanol.

重合体は下層に沈み上わずみ溶液をデカンテーションし
た。重合体を100tntのベンゼンに溶10させ多量
のメタノール中に投入した。上記の操作を3回、繰り返
し、得らtまた粉体のポリマーを四過後減圧下で乾燥し
た。収率は3.3g(40%)Mw = 130.00
(,1、Mn = 19,000 + MwlM、n 
=8 生成物の分析値は次の様になる。
The polymer settled to the bottom layer and the solution was decanted. The polymer was dissolved in 100 tons of benzene and poured into a large amount of methanol. The above operation was repeated three times, and the obtained powdered polymer was dried under reduced pressure after four filtration. Yield is 3.3g (40%) Mw = 130.00
(,1, Mn = 19,000 + MwlM, n
=8 The analytical value of the product is as follows.

赤外線吸収スペクトル(ffi’ ): 1630(ア
リル基)、1260.820(St−0)核磁気共鳴ス
ペクトル(δ)ppm:0.0〜2.3(13H,br
、アルカンおよびC!H,Si ) 、  4.0−6
.3(3H,br、0H2=OH) 元素分析:計算値0 ; 72.29 、 H; 10
.84 。
Infrared absorption spectrum (ffi'): 1630 (allyl group), 1260.820 (St-0) Nuclear magnetic resonance spectrum (δ) ppm: 0.0-2.3 (13H, br
, alkanes and C! H, Si), 4.0-6
.. 3 (3H, br, 0H2=OH) Elemental analysis: Calculated value 0; 72.29, H; 10
.. 84.

Si ; l 6.870実測値0 ; 72.02 
、 H; 10.55゜8i  ;  16.32゜ 実施例6 Ph −Si (0H2−014=OH2)の重合体は
次の様な方法で製造した。
Si; l 6.870 Actual value 0; 72.02
, H; 10.55°8i; 16.32°Example 6 A Ph-Si (0H2-014=OH2) polymer was produced in the following manner.

重合管にトリアリルフェニルシラン10g(0,044
モル)、ベンゼン10mt を仕込みコック付きゴム管
に取り付は液体窒素を用いて溶液を凝固させ脱気を行な
った○この操作を5回繰り返して脱気を完全にした。こ
の溶液を窒素吹込み管、還流冷却器を取り付けた1 0
0 ml三つロフラスコに仕込み還流するまで加熱した
○BPOO,1g(1モル係)を1時間おきに加え11
回目を加えたあたりから粘度が上昇しさらに1時間還流
してから重合液を多量のメタノールに投入した。
10g triallylphenylsilane (0,044
mol) and 10 mt of benzene were charged and attached to a rubber tube with a stopcock.The solution was solidified using liquid nitrogen and degassed.This operation was repeated 5 times to complete deaeration. This solution was poured into a 10
Add 1 g (1 mole) of ○BPOO, which was charged into a 0 ml three-necked flask and heated until reflux, every hour.
The viscosity increased after the second addition, and after refluxing for an additional hour, the polymerization solution was poured into a large amount of methanol.

重合体は下層に沈み上わずみ溶液をデカンテーラ1ンし
た0重合体を100 m、lのベンゼンに溶解させ多量
のメタノール中に投入した。上記の操作を3回繰り返し
得られた粉末のポリマーを口過後減圧下で乾燥した。収
率は4.2g(42%)であるo Mw=4.OO+0
00. M、1= 38,000. MW、7Mn=1
0.5.重合体3.5gをメチルエチルケトン350m
tに溶解させかくはん中メタノールを滴下させていった
。メタノール50mtを加えた時日?蜀しさらに2 Q
 mA加え一度ゆるやかに温め透明にさせた。−昼夜放
置後重合体はF底に沈んでおり上層液をデカンテーショ
ンさせ重合体と分離させた。
The polymer sank to the bottom layer and the solution was decanted. The polymer was dissolved in 100 ml of benzene and poured into a large amount of methanol. The above operation was repeated three times to obtain a powdered polymer, which was then passed through the mouth and dried under reduced pressure. Yield is 4.2g (42%) o Mw=4. OO+0
00. M, 1 = 38,000. MW, 7Mn=1
0.5. 3.5g of polymer to 350ml of methyl ethyl ketone
While stirring, methanol was added dropwise. When did you add 50mt of methanol? Shu Shisara 2 Q
mA was added and the mixture was gently warmed to become transparent. - After standing for days and nights, the polymer sank to the bottom of F, and the upper layer liquid was decanted to separate it from the polymer.

重合体を5 Q mAのベンゼンに溶解させ多量のメタ
ノール中に投入し第一フラクションの重合体を得た(@
合体収量0.8 g)o M−w=700,000 。
The polymer was dissolved in 5 Q mA of benzene and poured into a large amount of methanol to obtain the first fraction of polymer (@
Combined yield 0.8 g) o M-w=700,000.

Mn =540.000 、 Mw週n := 1゜3
.デカンデージ、ンした液にメタノール20mtを加え
同様に第二フラクションの重合体を得た(重合体収量0
.7g) 1Mw=340,000 、 Mn= 26
4,000 、 Mw/Mn=1.3  、さらに20
 mlのメタノールを加え第三フラクションの重合体e
iプ乙(重合体数1nO−9、!9 )o Mw=13
6,000 、 Mn =103,000 。
Mn =540.000, Mw week n := 1゜3
.. 20 mt of methanol was added to the decanded liquid to obtain a second fraction of polymer in the same manner (polymer yield: 0).
.. 7g) 1Mw=340,000, Mn=26
4,000, Mw/Mn=1.3, and further 20
ml of methanol was added to the third fraction of polymer e.
ipu ot (polymer number 1nO-9, !9) o Mw=13
6,000, Mn = 103,000.

MW/Mn= 1. a。MW/Mn=1. a.

分別精製前の分析値は次の様になる。The analytical values before fractional purification are as follows.

赤外線吸収スペクトル(、cm ’ ):1280゜8
90(8i−C3)、990. 700(ビニル基)。
Infrared absorption spectrum (, cm'): 1280°8
90(8i-C3), 990. 700 (vinyl group).

1620、 780(フェニル基) 核磁気共鳴スペクトルψ)ppm:0.2〜2.3(1
2H,br 、アルカン)、 4.5〜6.3 (3f
4゜br 、 0H2−OH−)、 7.0〜7.8 
(51(、br、 Ph)元素分析:計算値0 ; 7
8.95 、 I−I ; 8.77゜Si;12.7
1620, 780 (phenyl group) Nuclear magnetic resonance spectrum ψ) ppm: 0.2-2.3 (1
2H, br, alkane), 4.5-6.3 (3f
4゜br, 0H2-OH-), 7.0~7.8
(51 (, br, Ph) elemental analysis: calculated value 0; 7
8.95, I-I; 8.77°Si; 12.7
8

Claims (1)

【特許請求の範囲】 几  <;hi2−cu=ci−i2 (m)    (−OH,−OH→ 」 CH。 R−8i−OH2−OH=OH2 0H,〜−C!H=OH2 (Rは水素原子、メチル基、エチル基、プロピル基など
の低級アルキル基、〕、ニル基を表わす)
[Claims] 几<;hi2-cu=ci-i2 (m) (-OH, -OH→ "CH. R-8i-OH2-OH=OH2 0H, ~-C!H=OH2 (R is Represents a hydrogen atom, a lower alkyl group such as a methyl group, an ethyl group, a propyl group, ], a nyl group)
JP9357783A 1983-05-27 1983-05-27 Triallylsilane polymer Pending JPS59219313A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9357783A JPS59219313A (en) 1983-05-27 1983-05-27 Triallylsilane polymer
US06/612,925 US4564576A (en) 1983-05-27 1984-05-22 Resist material comprising polymer of allylsilyl compound and pattern forming method using the resist material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9357783A JPS59219313A (en) 1983-05-27 1983-05-27 Triallylsilane polymer

Publications (1)

Publication Number Publication Date
JPS59219313A true JPS59219313A (en) 1984-12-10

Family

ID=14086117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9357783A Pending JPS59219313A (en) 1983-05-27 1983-05-27 Triallylsilane polymer

Country Status (1)

Country Link
JP (1) JPS59219313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091351A (en) * 1983-10-26 1985-05-22 Nec Corp Resist material
JP2006063158A (en) * 2004-08-25 2006-03-09 Tokyo Univ Of Agriculture & Technology Olefinic copolymer having silicon-containing cycloalkane structure and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091351A (en) * 1983-10-26 1985-05-22 Nec Corp Resist material
JP2006063158A (en) * 2004-08-25 2006-03-09 Tokyo Univ Of Agriculture & Technology Olefinic copolymer having silicon-containing cycloalkane structure and method for producing the same

Similar Documents

Publication Publication Date Title
US4745169A (en) Alkali-soluble siloxane polymer, silmethylene polymer, and polyorganosilsesquioxane polymer
JP4828579B2 (en) Acid generator for chemically amplified resist composition
WO2006107029A1 (en) Silicone copolymer having condensed polycyclic hydrocarbon group
JP2619358B2 (en) Photosensitive resin composition
JPS59219313A (en) Triallylsilane polymer
JP5877507B2 (en) Curing composition having resistance to curing shrinkage, cured product obtained by curing said curable composition, and method
KR100230417B1 (en) Silicon-contained chemically amplified resist composition
JP4232276B2 (en) Hydrolyzable silane compound and method for producing the same
JPS60238827A (en) Photosensitive resin composition
EP0204963A2 (en) Use of Alkali-Soluble Polyorganosilsesquioxane Polymers in a resist for preparing electronics parts.
JP2606652B2 (en) Silicon-containing polymer compound and resist material using the same
US5847063A (en) Resins for use in chemically amplified resists and manufacturing methods thereof
JPH09183782A (en) Propenyl ether silicone-based releasing composition curable by ultraviolet ray and electron beam
JPS6084310A (en) Production of silicon-containing organic high-molecular compound
JP2509274B2 (en) Photocrosslinkable fluorine-containing styrene polymer
JPH0558446B2 (en)
JPH0535864B2 (en)
JP3155783B2 (en) Silicone-novolak block copolymer and method for producing the same
JP3794883B2 (en) Photoresist monomer and method for producing the same
JPH0734113B2 (en) Resist material
JP4039704B2 (en) Alkali-soluble siloxane polymer
JP3883453B2 (en) Photopolymerizable polysilane compound and method for producing the same
JP2606653B2 (en) Silicon-containing sulfonium salt and photoresist composition
JPH0320125B2 (en)
JPS60196750A (en) Styrene type polymer having silicon atoms