JPS59218993A - Bwr type reactor - Google Patents

Bwr type reactor

Info

Publication number
JPS59218993A
JPS59218993A JP58093438A JP9343883A JPS59218993A JP S59218993 A JPS59218993 A JP S59218993A JP 58093438 A JP58093438 A JP 58093438A JP 9343883 A JP9343883 A JP 9343883A JP S59218993 A JPS59218993 A JP S59218993A
Authority
JP
Japan
Prior art keywords
reactor
water
suppression chamber
pressure
pressure suppression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58093438A
Other languages
Japanese (ja)
Inventor
前田 克治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58093438A priority Critical patent/JPS59218993A/en
Publication of JPS59218993A publication Critical patent/JPS59218993A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 1発明の技術分野] 本発明は沸騰水形原子炉に係わり、特に圧力抑11す室
内に収容される圧力抑制室水を浄化りる浄化装置を備え
た沸Ilを水彩原子炉に関ηる。
[Detailed Description of the Invention] 1. Technical Field of the Invention] The present invention relates to a boiling water nuclear reactor, and particularly to a boiling water reactor equipped with a purification device for purifying water in a pressure suppression chamber housed in a pressure suppression chamber. About watercolor nuclear reactors.

し発明の技術的背打1とその問題貞] 一般に、沸騰水形原子炉では炉心を収容するIJij了
炉1r力容器からの蒸気を逃し安全弁を介して導入し、
この蒸気を凝縮8ゼる圧力抑B111至が配設されてい
る。
[Technical review of the invention 1 and its problems] In general, in a boiling water reactor, steam from the IJI reactor 1r power vessel that houses the reactor core is released and introduced through a safety valve.
A pressure suppressor B111 is provided to condense this steam.

’71なわち、この圧力抑制室は、沸騰水形原子炉の事
故時等に原子炉の圧力上昇を緩和するために逃し安全弁
を介して導入される蒸気を凝縮するとともに、蒸気中に
含まれる各種の核分裂生成物を圧力抑制室水に溶解させ
、放射性物質の拡散を防止する機能を有している。特に
、事故時にiJ3いて、圧力抑制室水に要求される機能
のうち核分裂生成物Cあるヨウ素の気液分配係数につい
では、各種事故等における安全評価上重要な意味をもら
、気相に分配するヨウ素の比率を気液分配係数と定義し
、次式ぐ表わすことができる。
'71 In other words, this pressure suppression chamber condenses the steam introduced through the relief safety valve in order to alleviate the pressure rise in the reactor in the event of an accident in a boiling water reactor, and also condenses the steam contained in the steam. It has the function of dissolving various nuclear fission products in the pressure suppression chamber water and preventing the spread of radioactive materials. In particular, the gas-liquid partition coefficient of iodine, which is a fission product C, among the functions required of the pressure suppression chamber water in iJ3 at the time of an accident, has important implications for safety evaluation in various accidents, etc. The ratio of iodine is defined as the gas-liquid partition coefficient, which can be expressed by the following equation.

気液分配係数一液相におけるヨウ素m/気相にあ°ける
ヨウ素量 一般に、ヨウ素の気液分配係数は液体の゛叶1により大
きく左右されることが知られており、第1図に示すよう
な特性を有している。
Gas-liquid partition coefficient - Iodine m in the liquid phase/Iodine amount in the gas phase It is generally known that the gas-liquid partition coefficient of iodine is greatly influenced by the characteristics of the liquid, and is shown in Figure 1. It has the characteristics shown below.

第1図におい(、横軸にはpl−1が、縦軸には気21
′I分配係数がとられており、図の直線aに示づように
、例えば図のL点より pHの高いM点ひはヨウ素の気
液分配係数は指数関数的に高くなることがわかる。
In Figure 1 (the horizontal axis is pl-1, the vertical axis is 21
As shown by straight line a in the figure, it can be seen that, for example, at point M, where the pH is higher than point L in the figure, the gas-liquid partition coefficient of iodine increases exponentially.

ずなわら、事故時において圧力抑制市内C゛のヨウ素の
気液分配係数を高く維持し、気相部へのヨウ素分離を極
力低く(ることは、環境放出ヨウ素の低減、環境被曝低
減上極め゛C重要なことてあり、そのためには常時Jf
力抑制室水のp]−1をアルカリ性または弱酸性に維持
η−ることが右列である。
In the event of an accident, it is important to maintain a high gas-liquid partition coefficient of iodine in the pressure suppression city C and keep the separation of iodine into the gas phase as low as possible. There are things that are extremely important, and for that purpose I must always use Jf.
The right column is to maintain the force suppression chamber water p]-1 alkaline or weakly acidic η-.

そしC従来の沸騰水形原子炉では、圧力抑制室水どしC
I]F2塩水が使用されているが、特に水質維持のため
の設備、装置等は配設され°Cおらず、水v4浄化は行
われCいない。
C In a conventional boiling water reactor, the suppression chamber water C
I] Although F2 salt water is used, there are no facilities or devices in place to maintain water quality, and no water purification is performed.

しかしながら、圧力抑制室水は定lft]的に実施され
る炉心冷1]系ボンゾのデスI〜運転あるいは気相から
の不純物の溶解等により徐々に水質が変化づることが知
られ(おり、このような圧力抑制室水をアルノノリ竹ま
たは弱酸性に維持することのできる沸騰水形原子炉が要
望されCいる。
However, it is known that the quality of the water in the pressure suppression chamber gradually changes due to the operation of the core cooling system Bonzo, which is carried out at a constant lft, or the dissolution of impurities from the gas phase. There is a need for a boiling water reactor that can maintain pressure suppression chamber water at a slightly acidic level.

[発明の目的1 本発明はかかる従来の事情に対処してなされたちのC1
圧力抑制室水をアルカリ性または弱酸性に帛峙維持り−
ることのCきる浄化装置を備えた沸騰水形原子炉を提供
しようとり−るものCある。
[Objective of the Invention 1 The present invention has been made in response to such conventional circumstances.
Keeps pressure suppression chamber water alkaline or weakly acidic.
There are efforts to provide a boiling water reactor equipped with a purification system capable of reducing the amount of water used.

[発明の概要1 ずなわら本ざト明は、炉心を収容りる原子炉圧力容器か
らの蒸気を逃し安全弁を介して導入し前記蒸気を凝縮さ
せる圧力抑制室と、この圧力抑制空水に収容される圧力
抑制室水をアルカリ性または弱酸性に維持する浄化装置
を備えたことを特徴とする沸騰水形原子炉C゛ある。
[Summary of the Invention 1 Zunawara Honzatomei has a pressure suppression chamber that releases steam from a reactor pressure vessel housing a reactor core, introduces it through a safety valve, and condenses the steam, and a pressure suppression chamber that condenses the steam. There is a boiling water nuclear reactor C which is characterized by being equipped with a purification device that maintains the contained pressure suppression chamber water to be alkaline or weakly acidic.

[発明の実施例] 以下本発明の訂細を図面に示す一実施例についC説明づ
る。
[Embodiment of the Invention] An embodiment of the present invention detailed in the drawings will be described below.

第2図は本発明の一実施例の沸騰水形原子炉を示?lb
ので、図にd5いC符号1は炉心2を収容づる原子炉圧
力容器を示している。この原子炉圧力容器1は原子炉格
納容器3内に収容されCおり、この原子炉格納容器3の
Thには連結管4により15ハ子炉格納容器3内に連通
ずる圧力抑制室5が配t9されている。原子炉圧力容器
1の上部には図示しないタービンに接続される主蒸気配
管6が配設されでおり、この主蒸気配管6には原子炉格
納容器3を挾んで主蒸気陥凹1弁7a、7bか配設され
Cいる。主蒸気隔離弁7aの上流には逃し安全弁8を備
えIC排気管9が分岐し−(おり、この1)1気管9は
圧力抑制室5の圧力抑制室水内に開口しCいる。原子炉
圧力容器1上部には圧力抑制穎5に接続される炉心冷却
系注入配管10が開口しCおり、この炉心冷fJI系注
入配管10には原子炉圧力容器1側から順に注入弁11
おにび炉心冷却系ポンプ12が介挿されCいる。そし−
C炉心冷1.11系注入配管10の注入弁11および炉
心冷yill系ポンプ12どの間から分岐しく圧力抑制
室5に聞ロタるテスト配管弁13を備えた炉心冷却系デ
スト配管14aが配設8れCいる。炉心冷ムIJ系注入
配?’t 10の炉心冷uI系ボンノ12出口側近1労
から分岐して脱j店、i J凸′14に接続される11
;1塩塔入口弁15を協えた11S(塩塔入[]配領1
6が配設されCおり、また脱塩j?’+ 1 /lには
炉心冷7i11系6−人配管10の炉心冷ノJ[系ボン
−)12の入口側に接続される1;1塩塔出口弁17を
1紬えlご脱JX、1堝出[I配管18が接続されてい
る。
Figure 2 shows a boiling water reactor according to an embodiment of the present invention. lb
Therefore, in the figure, the reference numeral 1 indicates the reactor pressure vessel that houses the reactor core 2. This reactor pressure vessel 1 is housed in a reactor containment vessel 3, and a pressure suppression chamber 5 is arranged in Th of this reactor containment vessel 3, which communicates with the inside of the reactor containment vessel 3 through a connecting pipe 4. It has been t9. A main steam pipe 6 connected to a turbine (not shown) is installed in the upper part of the reactor pressure vessel 1, and a main steam recess 1 valve 7a, a main steam recess 1 valve 7a, and a reactor containment vessel 3 are sandwiched between the main steam pipe 6 and a turbine (not shown). 7b or C is placed. A relief safety valve 8 is provided upstream of the main steam isolation valve 7a, and an IC exhaust pipe 9 is branched, and the trachea 9 opens into the pressure suppression chamber water of the pressure suppression chamber 5. A core cooling system injection pipe 10 connected to the pressure suppressor 5 opens at the top of the reactor pressure vessel 1, and an injection valve 11 is connected to the core cooling fJI system injection pipe 10 in order from the reactor pressure vessel 1 side.
A core cooling system pump 12 is inserted. Soshi-
A core cooling system dest pipe 14a is provided, which branches out between the injection valve 11 of the C core cooling 1.11 system injection pipe 10 and the core cooling yield system pump 12 and is equipped with a test pipe valve 13 that connects to the pressure suppression chamber 5. 8reC is there. Core cooling IJ system injection arrangement? 't 10's core cooling uI system bonno 12 branched from the exit aide 1 and connected to i J convex '14
11S with 1 salt tower inlet valve 15 (salt tower entry [] arrangement 1
6 is installed and desalination is performed. For '+1/l, connect the 1;1 salt tower outlet valve 17, which is connected to the inlet side of the core cooling 7i11 system 6-man piping 10, to the inlet side of the core cooling J [system Bon-] 12. , 1. [I piping 18 is connected.

1、ス1のように(111成された沸騰水形原子炉Cは
、事故時において主蒸気隔離弁7a、7bが全開し1京
r炉1」−力容器1の圧力が異常に上行した場合には、
原子炉格納容器3内に配設される逃し安全弁8が作動し
、原子炉圧力容器1内の蒸気は排気管9を通り圧力抑制
室5内に導かれ凝縮され、この結果、原子炉1.Lカ容
器1内の圧力が降下りるとともに、核分裂生成物である
放射性ヨウ素等が圧力抑制室水内に溶解される。
1. As shown in S1 (111), the main steam isolation valves 7a and 7b of the boiling water reactor C were fully opened at the time of the accident, and the pressure in the reactor 1 increased abnormally. in case of,
The relief safety valve 8 disposed inside the reactor containment vessel 3 is activated, and the steam inside the reactor pressure vessel 1 is guided into the pressure suppression chamber 5 through the exhaust pipe 9 and condensed, and as a result, the reactor 1. As the pressure inside the L-capacitor 1 decreases, nuclear fission products such as radioactive iodine are dissolved in the pressure suppression chamber water.

そしC,以上のように構成された沸騰水形原子炉Cは、
圧力抑制空水のアルカリ性または弱ifの維持は炉心冷
IJl系ポンプ12の定期的リーベイラ>)、(SUR
Vf: I 1−LANCfE)31転11うに次のよ
うにして行なわれる。
And C, the boiling water reactor C configured as above is
Maintaining the alkalinity or weak IF of the pressure suppression air water is carried out by the periodic reveiler of the core cooling IJl system pump 12>), (SUR
Vf: I1-LANCfE) 31 turn 11 is performed as follows.

すなわら、このようなザーペイランス運転時には、炉心
冷却系注入配管1oに配設される注入1711が全開と
され、またテスト配管弁13が全開とされ、炉心冷却系
テスト配FT 14 aを用いC炉心冷却系ポンプ12
により炉心?’4 fJI系江人配管10内に圧力抑制
空水を循環づることが行なわれる。
In other words, during such a thermal injection operation, the injection 1711 installed in the core cooling system injection pipe 1o is fully opened, the test pipe valve 13 is fully opened, and the core cooling system test pipe FT 14a is used to Core cooling system pump 12
By reactor core? '4 f Pressure suppressing air water is circulated within the JI system Ejin piping 10.

そしC1この場合にはfII2 j9 jバ入ロ弁15
およびDl、i1;l’A Jハ出11弁17か間とさ
れ、IBJ I品IQ入11配管16d5よび1111
!塙塔出1」配管18を使用しCII凭塙塔14内(ご
1F力抑制?r水を通水りることにより月力抑制“4・
水が1j11塙処理される。特)こIIf21品塔14
(こ陰イAン父換樹脂のみを装荷しI5゛状態で通水処
理された11力抑制′4g水はノフルカリ性になること
が241られて+13す、ぞ−の反応J(はド記の通り
となる。
Then C1 In this case, fII2 j9 j input valve 15
and Dl, i1; l'A J output 11 valves 17, IBJ I product IQ input 11 piping 16d5 and 1111
! Using the pipe 18 of "Hanawa Tower Outlet 1", the power of the CII Tower 14 (1F) can be suppressed by passing water through it.
Water is treated 1j11 times. Special) This IIf21 product tower 14
(The 11 force-inhibited 4g water loaded with only the anion A and the sulfuric resin and subjected to water flow treatment in the I5 state becomes noflukaline, and +13). It will be as follows.

づ−なわら、イAン交換樹脂の高分子暴体部分を1又ど
りるど、1tzイAン交換樹脂は一例としくR・N O
+−1で表わされ、圧力抑制室水中のイオン不純物を、
例えばNaCρどした場合には、R−N0II+Na 
C,g→RN −CI!、iNa 0f−1のイΔ°ン
交換反応が起こり、処J!1!水水質のmlがアルカリ
性となる。
As an example, if you go back and forth over the polymer part of the ion exchange resin, the 1tz ion exchange resin will be R・NO.
Ionic impurities in the pressure suppression chamber water are expressed as +-1,
For example, in the case of NaCρ, R-N0II+Na
C,g→RN-CI! , an ion exchange reaction of iNa 0f-1 occurs, and the process J! 1! ml of water becomes alkaline.

94L:わら、以上のJ、うに構成された沸騰水形原子
炉Cは、炉心冷却系ポンプ12出口側から圧力抑制室水
を一部分流し脱塩j?′J14によりDID塩処理して
いるから、圧力抑制室水のpHをアルカリ性あるいは弱
酸性に維持(ることが容易に可能となり、事故時等にお
【プる放13=J性ヨウ素の気液分配係数を十分高める
ことができる。また脱塩塔14に陽、陰イA>混合樹1
指を装荷し、I’fカ抑制抑制含水水処理することC′
汁力抑制軍水の脱塩処理が可能どなり、斥力抑制室水の
品!1糾持ができ腐食抑Null効宋を冑ることか(き
る。
94L: In the boiling water reactor C configured as described above, a portion of the suppression chamber water is desalinated from the outlet side of the core cooling system pump 12. 'J14 DID salt treatment makes it easy to maintain the pH of the pressure suppression chamber water at an alkaline or slightly acidic level. The distribution coefficient can be sufficiently increased.Also, in the desalination tower 14, positive and negative A > mixed tree 1
Load the finger and treat the I'f force suppression and hydrous water C'
It is now possible to desalinate water in the liquid suppression chamber, making it possible to use repulsion suppression chamber water! 1. Is it possible to maintain corrosion and suppress the corrosion in the Song Dynasty?

δらに11力抑制空水の/1り射性物質の除去もiiJ
能どなり、圧力抑制室5並びに炉心冷IJI系ポンプ1
2関係配管の放銅線線m率の低減効果も1!′7ること
がて゛きる。
δ et al. 11 force suppression air water/1 Removal of radioactive materials also iiJ
Noise, pressure suppression chamber 5 and core cooling IJI system pump 1
2. The effect of reducing the copper wire m rate of related piping is also 1! '7 is possible.

(発明の効果] 以」ニ述べたように本発明の沸1流水形原子炉ににれば
、圧力抑制室水の一部を例えば炉心冷に1系ボンゾの]
ノーペイランス運転時等に1j;(塩処理りることによ
り圧力抑制室水のl)Hをアルカリ性あるいは弱酸性に
眉1持づることができ、この結果、事故時にお(ブるヨ
ウ素の気液分配係数を十分安全側に維持することがij
)能となり、また同時に斥力抑制室水の品質維持および
放射能濃度の低減を図ることができる。
(Effects of the Invention) As described below, in the single-flow water reactor of the present invention, a portion of the pressure suppression chamber water can be used to cool the reactor core, for example.
During no-payance operation, it is possible to make the pressure suppression chamber water alkaline or weakly acidic by treating it with salt, and as a result, in the event of an accident, the iodine gas and liquid It is important to maintain the distribution coefficient sufficiently on the safe side.
), and at the same time, it is possible to maintain the quality of the water in the repulsion suppression chamber and reduce the radioactivity concentration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は11 +−1と気液分配係数との関係を示すグ
ラフ、第2図は本発明の一実hI!i例の沸11ヲ水形
原子炉を承り配管系統図Cある。 1・・・・・・・・・・・・原子炉圧力容器3・・・・
・・・・・・・・原子炉格納容器5・・・・・・・・・
・・・Ll−力抑制掌6・・・・・・・・・・・・主蒸
気配管8・・・・・・・・・・・・逃し安全弁10・・
・・・・・・・・・・炉心冷uI系注入配管12・・・
・・・・・・・・・炉心冷却系ポンプ14・・・・・・
・・・・・・脱塩塔 1/la・・・・・・・・・炉心冷2J]系デス]へ配
管16・・・・・・・・・・・・n;(虐塔人口配管1
B・・・・・・・・・・・・脱塩塔出口配管代理人弁理
士   須 山 イ11− 第1図 5.0    5.5    6.0    6.5 
   7.OI−1
Fig. 1 is a graph showing the relationship between 11 + - 1 and the gas-liquid partition coefficient, and Fig. 2 is a graph showing the relationship between 11 + - 1 and the gas-liquid partition coefficient, and Fig. 2 is one example of the present invention. There is a piping system diagram C for the boiling water reactor in Example I. 1......Reactor pressure vessel 3...
・・・・・・Reactor containment vessel 5・・・・・・・・・
...Ll-Force suppression palm 6...Main steam piping 8...Relief safety valve 10...
......Core cooling uI system injection pipe 12...
......Core cooling system pump 14...
・・・・・・Demineralization tower 1/la・・・・・・・・・Core cooling 2J] Piping to system 16・・・・・・・・・・・・n; (Tower artificial piping 1
B・・・・・・・・・Desalination tower outlet piping agent Patent attorney Suyama I11- Figure 1 5.0 5.5 6.0 6.5
7. OI-1

Claims (1)

【特許請求の範囲】[Claims] (1)炉心を収容Jる原子炉圧力容器からの蒸気を逃し
安全弁を介して導入し前記蒸気を凝縮さける圧力抑制室
と、この圧力抑制室内に収容される圧力抑制室水をアル
カリ性または弱酸性に維持する浄化装置とを髄えたこと
を特徴とη”る沸騰水形「1(子炉。
(1) A pressure suppression chamber that releases steam from the reactor pressure vessel that houses the reactor core and introduces it through a safety valve to avoid condensation, and the pressure suppression chamber water contained in this pressure suppression chamber is made alkaline or weakly acidic. A boiling water type 1 (child furnace) characterized by being equipped with a purification device to maintain the boiling water temperature.
JP58093438A 1983-05-27 1983-05-27 Bwr type reactor Pending JPS59218993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58093438A JPS59218993A (en) 1983-05-27 1983-05-27 Bwr type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58093438A JPS59218993A (en) 1983-05-27 1983-05-27 Bwr type reactor

Publications (1)

Publication Number Publication Date
JPS59218993A true JPS59218993A (en) 1984-12-10

Family

ID=14082318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58093438A Pending JPS59218993A (en) 1983-05-27 1983-05-27 Bwr type reactor

Country Status (1)

Country Link
JP (1) JPS59218993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128224A (en) * 2007-11-26 2009-06-11 Chugoku Electric Power Co Inc:The Device and method for purifying water in suppression chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009128224A (en) * 2007-11-26 2009-06-11 Chugoku Electric Power Co Inc:The Device and method for purifying water in suppression chamber

Similar Documents

Publication Publication Date Title
JPS61182596A (en) Boiling water type reactor and method of preventing oxygen corrosion in said reactor
JPS61110100A (en) Method of chemically removing contamination of nuclear reactor structural part
RU2297055C1 (en) Method for recovering still bottoms of liquid radioactive waste
CN204204438U (en) A kind of nuclear power plant radioactive wastewater ion-exchange treatment system
JPS59218993A (en) Bwr type reactor
CN110379532B (en) Method and device for treating radioactive waste liquid
JP4380875B2 (en) Liquid processing equipment
CN115497658A (en) Method and system for pretreating bath radioactive waste liquid
CA1237203A (en) Ultrafiltration circuit for the primary cooling fluid of a pressurized-water nuclear reactor
JPS60201296A (en) Reducer for radiation dose
TWI224024B (en) System and method for purifying and reutilizing boricacid solution of high concentration with reverse osmosis membrane
JP2815424B2 (en) Radioactive gas waste treatment equipment
JPS60218098A (en) Method and device for removing chlorine ion in radioactive waste liquor
JPS6222680B2 (en)
JPS59115997A (en) Method and apparatus for preventing corrosion of condenser in atomic power plant
RU2120673C1 (en) Nuclear steam-generating unit
JPS6238247A (en) Method for regenerating ion exchange resin
JPS59179187A (en) Chlorine ion remover in radioactive waste liquid
JPH0420156B2 (en)
CZ2014927A3 (en) Purification method of cooling water of light water atomic reactor primary circuit using combination of UV radiation, hydrogen peroxide, palladium-doped ion-exchange resin and mixed bed
JP2919900B2 (en) Suppression pool water purification system
JPH0631815B2 (en) Nuclear power plant water supply system
Apalkov et al. Development of a purification technology for treatment of medium-and low-activity radioactive waste of radiochemical production from C-60 and Cs-137
CN113782244A (en) Nuclear factor-containing wastewater treatment process based on ion exchange method
JP2005003597A (en) Method for evaluating performance of strongly acidic positive ion exchanging resin in mixed bed condensate polisher of primary cooling water system at pressurized-water nuclear power generating plant