JPS59218906A - Measuring method by electronic beam - Google Patents

Measuring method by electronic beam

Info

Publication number
JPS59218906A
JPS59218906A JP9366683A JP9366683A JPS59218906A JP S59218906 A JPS59218906 A JP S59218906A JP 9366683 A JP9366683 A JP 9366683A JP 9366683 A JP9366683 A JP 9366683A JP S59218906 A JPS59218906 A JP S59218906A
Authority
JP
Japan
Prior art keywords
pattern
length
scanning
electron beam
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9366683A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimada
宏 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nihon Denshi KK filed Critical Jeol Ltd
Priority to JP9366683A priority Critical patent/JPS59218906A/en
Publication of JPS59218906A publication Critical patent/JPS59218906A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To shorten the scanning time of an electronic beam and also to shorten measuring time by scanning the electronic beam selectively only at a position close to the end part of a pattern to be measured. CONSTITUTION:In the measurement of an wafer W which is a material 4 to be measured, the wafer W has many chips T1-Tn and the same kind of patterns are formed on respective chips. After completing the measurement of the width of a required pattern P on the chip T1, a stage 12 is moved, the chip T2 is arranged on the optical axis of an electronic beam and then width of the same pattern on the chip T2 is measured. Since the position to be measured of the pattern P and the position of the end part of the pattern P have been already shown by a computer 10 at the measurement of the chip T1, line-like scanning of the electronic beam is not continuously executed and only the position close to the end part of the band-like pattern P is selectively scanned like a line at the measurement of the width of the band-like pattern P on the chip T2 on which the same pattern as the chip T1 is formed.

Description

【発明の詳細な説明】 本発明は、電子ビームによる副長方法に関し、特に、測
定時間を短縮することができる測長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sub-length measurement method using an electron beam, and particularly to a length measurement method that can shorten measurement time.

近時、LSI等のデバイスの集積度は箸しく高くなって
おり、その製造過程においC、シリコノウ1ハ上の各チ
ップに形成されるパターンの粘度は、サブミクロンのオ
ーダーの極めて高いものとなっている。これらチップ内
のパターンが所望の精度で形成されているかどうかの検
査は、電子ビームを該パターン部分に照射することによ
って行うことができる。この電子ビームを使用した測長
方法においては、各デツプ内の測長リーベきパターンを
含む所定領域において直線状に電子ビームを走査し、該
走査に基づいて該ltA利から発生した、例えば、二次
電子を検出し、該検出信号から特定のパターンの幅等を
測定している。通常、被測長材料としてのシリコンウェ
ハは多数のチップに分けられ、各チップには同一のパタ
ーンが形成されているが、このようなウェハ上のパター
ンの副長においては、該ウェハが載せられている月利ス
r−ジを移動さぜ、各チップを順々に電子ビーム光軸上
に配置し、各チップ毎に、特定のパターンが形成場れて
いる部分で直線状に電子ビームの走査を行うようにして
いる。該電子ビームの走査は、検出信号のSN比を向上
させるために各チップ毎に同一部分で数4−回繰返し行
うようにしており、従って、ステージの移動と各チップ
毎の電子ビームの多数回の走査とで、1枚のウェハに含
まれる全てのチップ内の副長には、かなりの時間が貸さ
れている。
In recent years, the degree of integration of devices such as LSI has become extremely high, and the viscosity of the patterns formed on each chip on silicon chips during the manufacturing process has become extremely high, on the order of submicrons. ing. Whether the patterns within these chips are formed with desired accuracy can be inspected by irradiating the pattern portions with an electron beam. In this length measurement method using an electron beam, the electron beam is scanned linearly in a predetermined area including the length measurement liebe pattern in each depth, and based on the scan, the ltA gain, for example, The next electron is detected, and the width of a specific pattern is measured from the detected signal. Usually, a silicon wafer as a material to be measured is divided into a number of chips, and each chip has the same pattern formed on it. Move the monthly strip, place each chip in turn on the electron beam optical axis, and scan the electron beam linearly in the area where a specific pattern is formed for each chip. I try to do this. The scanning of the electron beam is repeated several times in the same part for each chip in order to improve the signal-to-noise ratio of the detection signal. With this scanning, a considerable amount of time is lent to the sub-directors in all the chips included in one wafer.

本発明は上述した点に鑑みてなされたもので、測定時間
を短<シ得る電子ビームによる副長方法を提供すること
を目的とする。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a sub-length method using an electron beam that can shorten measurement time.

本発明に基づく副長方法は、多数の基準区画を有し、夫
々の基準区画には同種のパターンが形成されている被副
長材料上の所望領域を電子ビームによって走査し、該走
査に基づいて該材料から得られlζ情報信号を検出し、
該検出信号に基づいて該材料上に形成されているパター
ンの特定部分の長さを測定するようにした副長方法にお
いて、特定の基準区画においては電子ビームによって被
副長パターンを含む所定の範囲を連続して走査して信号
を得、他の基準区画の測長時には、該特定の基準区画に
お【ノる測長結果に基づいて、副長パターンの両端部近
傍のみにおいて選択的に電子ビームを走査するようにし
た点に特徴を右している。
The sub-lengthening method based on the present invention scans a desired area on a material to be sub-lengthened with an electron beam, which has a large number of reference sections, each of which has the same type of pattern formed thereon, and determines the target area based on the scanning. detecting the lζ information signal obtained from the material;
In a sub-length method in which the length of a specific portion of a pattern formed on the material is measured based on the detection signal, in a specific reference section, a predetermined range including the pattern to be sub-length is continuously measured by an electron beam. When measuring the length of other reference sections, the electron beam is selectively scanned only in the vicinity of both ends of the sub-length pattern based on the length measurement results. The features are right on point.

以下、本発明の一実施例を添付図面に阜づき詳述する。Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明の方法を実施するための電子ビーム副長
装置の一例を示しており、図中1は゛電子銃である。該
電子銃1から発生した電子ビームは集束レンズ2.対物
レンズ3によって被副長材料4上に細く集束される。該
電子ビームは更に偏向コイル5に供給される走査信号に
応じて偏向され、該材料上の所望領域は該電子ビームに
よって走査されることになる。該材料への電子ビームの
照射に伴なって発生した例えば、二次電子は、二次電子
検出器6によって検出され、該検出信号は増幅器7を介
して輝瓜変調信号として陰極線管8に供給されると共に
、A−D変換器9を介してコンピュータ10にも供給さ
れる。該コンピュータ10は、011記偏向コイル5と
該陰極線管8の偏向コイルに供給される走査信号を発生
する走査信号発生回路11を制御すると共に、該材料が
載せられた材料ステージ12の駆動機構13を制御する
。尚、該走査信号発生回路11から発生する走査信号は
、該コンピュータ10によって制御される倍率調整回路
14を介して該偏向コイルに供給される。
FIG. 1 shows an example of an electron beam sub-head apparatus for carrying out the method of the present invention, and numeral 1 in the figure is an electron gun. The electron beam generated from the electron gun 1 is passed through a focusing lens 2. The objective lens 3 narrowly focuses the light onto the sub-length material 4 . The electron beam is further deflected according to a scanning signal supplied to the deflection coil 5, so that a desired area on the material is scanned by the electron beam. For example, secondary electrons generated when the material is irradiated with an electron beam are detected by a secondary electron detector 6, and the detection signal is supplied to a cathode ray tube 8 as a glow modulation signal via an amplifier 7. At the same time, it is also supplied to the computer 10 via the A-D converter 9. The computer 10 controls a scanning signal generation circuit 11 that generates a scanning signal to be supplied to the deflection coil 5 of 011 and the deflection coil of the cathode ray tube 8, and also controls a drive mechanism 13 for the material stage 12 on which the material is placed. control. The scanning signal generated from the scanning signal generation circuit 11 is supplied to the deflection coil via a magnification adjustment circuit 14 controlled by the computer 10.

上述した如き構成を用い、被副長材料4として第2図に
示すウェハWの副長を行う場合について説明する。該ウ
ェハWは多数のチップT1〜Tnを有しており、夫々の
チップには同種のパターンが形成されている。最初、チ
、ツブT+の所望領域が電子ビーム光軸上に配置される
ように該材料ステージ12が移動させられ、コンピュー
タ10からの指令により、走査信号発生回路11がら通
常の走査電子顕微鏡像を観察するための走査信号が発生
される。第3図(a)はこの走査電子顕微鏡像観察モー
ドにおける陰極線管8に表示された像を示すもので、図
中Pは幅が測定される帯状パターンである。該陰極線管
8の画面上にはカーソルCも表示されており、該カーソ
ルCを画面上で移動させることによって測定覆る位置の
指定を行うことができる。該カーソルCによる測定位置
の指定が終了後、該コンピュータ8からの指令により、
該走査信号発生回路11からの走査信号はライン走査の
モードに変えられる。第4図(a)はこのライン走査時
の階段状に変化するディジタル走査信号を示しており、
このような走査信号によっC該チップT+のカーソルの
位置に対応した所定の範囲が直線状に走査され、二次電
子検出器6からは第5図(a)に示す信号が得られる。
A case will be described in which sub-lengthening is performed on a wafer W shown in FIG. 2 as the material 4 to be sub-lengthened using the above-described configuration. The wafer W has a large number of chips T1 to Tn, and the same type of pattern is formed on each chip. First, the material stage 12 is moved so that the desired region of the tube T+ is placed on the electron beam optical axis, and a normal scanning electron microscope image is generated by the scanning signal generation circuit 11 according to instructions from the computer 10. A scanning signal is generated for viewing. FIG. 3(a) shows an image displayed on the cathode ray tube 8 in this scanning electron microscope image observation mode, and P in the figure is a strip pattern whose width is measured. A cursor C is also displayed on the screen of the cathode ray tube 8, and by moving the cursor C on the screen, the position to be measured can be designated. After the measurement position is specified by the cursor C, according to a command from the computer 8,
The scanning signal from the scanning signal generating circuit 11 is changed to a line scanning mode. FIG. 4(a) shows a digital scanning signal that changes stepwise during this line scanning.
With such a scanning signal, a predetermined range corresponding to the position of the cursor on the chip T+ is linearly scanned, and the signal shown in FIG. 5(a) is obtained from the secondary electron detector 6.

尚、該直線状のディジタル走査は、同一部分で多数回(
うわれ、得られた多数の信号を積算することによって、
第5図(a)に示ず信号のSN比を向上させるようにし
Cいる。該得られた信号は該」ンビコータ10に供給さ
れて積算され、所定のレベルIの信号が得られるまでの
ディジタル走査のステップ数S+ 、Szが求められ、
この走査ステップ数のZ(S2−8+ )によってパタ
ーンの幅が求められ 、る。このようにしてチップT1
にatプる所望パターンPの幅の副長が終了した後、該
スデージ12は移動させられ、チップT2が電子ビーム
光軸上に配置され、該チップ下2内の同一パターンPの
幅が測長される。ここで、チップT1の副長時に、パタ
ーンPの測長ずべき位置、パターンPの端部の位置が既
にコンピュータ10によって明らかとなっているため、
デツプT1と同一のパターンが形成されているチップ下
2内の帯状パターンPの幅を測定するに当っては、電子
ビームのライン状の走査は連続的に行われず、コンピュ
ータ10からの指令によっ゛(該帯状パターンPの端部
近傍のみ選択的にライン状に走査される。第3図(b)
は帯状パターンPと走査ラインL1,12とを示してお
り、第4図(b)はこの時のディジタル走査信号、第5
図(b)は二次電子検出信号を示し°Cいる。該第5図
(b)に示す信号は該コンピュータ10に供給されるが
、該コンピュータによって夫々の走査毎に、信号強度が
1の信号が得られるまでのステップ数33.34が求め
られる。更に、該コンピュータ10は、チップT1にお
けると同様の連続的なディジタル走査を行った場合の走
査の開始点から、走査ラインL+と走査ラインL2のス
タート地点までの仮想的なディジタル走査のステップ数
Ss 、Ssを求めており、これらのステップ数から該
コンピュータは次の演締(S6 +84 ) −(Ss
 +3a )を行い、この演算に基づいて該帯状パター
ンPの幅を求めている。このようにして該デツプT2に
お(ブる所定のパターンPの副長が終了するとステージ
12が移動させられ、チップT3〜Tnにお(プるパタ
ーンPの副長が該チップT2におりる測長と同様の方法
によって行われる。
Note that the linear digital scanning is performed multiple times (
By integrating the many obtained signals,
An attempt is made to improve the S/N ratio of the signal, which is not shown in FIG. 5(a). The obtained signal is supplied to the microcoater 10 and integrated, and the number of digital scanning steps S+ and Sz until a signal of a predetermined level I is obtained is determined.
The width of the pattern is determined by the number of scanning steps Z (S2-8+). In this way, chip T1
After the sub-length of the width of the desired pattern P is completed, the stage 12 is moved, the chip T2 is placed on the electron beam optical axis, and the width of the same pattern P in the lower chip 2 is measured. be done. Here, since the position at which the length of the pattern P should be measured and the position of the end of the pattern P have already been determined by the computer 10 at the time of sub-lengthening the chip T1,
When measuring the width of the strip pattern P in the lower chip 2 where the same pattern as the depth T1 is formed, the linear scanning of the electron beam is not performed continuously, but is performed according to instructions from the computer 10. (Only the vicinity of the end of the strip pattern P is selectively scanned in a line. FIG. 3(b)
shows the strip pattern P and the scanning lines L1, 12, and FIG. 4(b) shows the digital scanning signal at this time, the fifth line
Figure (b) shows the secondary electron detection signal at °C. The signal shown in FIG. 5(b) is supplied to the computer 10, and the computer determines the number of steps 33.34 until a signal with a signal strength of 1 is obtained for each scan. Furthermore, the computer 10 calculates the number of virtual digital scanning steps Ss from the scanning start point to the starting points of scanning line L+ and scanning line L2 when continuous digital scanning is performed in the same way as in chip T1. , Ss, and from these step numbers the computer calculates the next performance (S6 +84) - (Ss
+3a), and the width of the strip pattern P is determined based on this calculation. In this way, when the sub-length of the predetermined pattern P that reaches the depth T2 is completed, the stage 12 is moved, and the length of the sub-length of the pattern P that reaches the chips T3 to Tn is measured. This is done in a similar manner.

以上詳述した如く、本発明に基づく副長方法は。As described in detail above, the sub-chief method based on the present invention is as follows.

同種のパターンが設けられた多数の基準1メ画(チップ
)を有した被測長材料の副長を行うに当つCは、最初の
基準区画においては所定の範囲連続的に電子ビームを走
査し、他の基準区画の副長にJ5いては、該最初の基準
区画にお【プる測長結果にJ、lづいて、測長ずべきパ
ターンの端部近傍のみにJ5いて選択的に電子ビームを
走査J−るJ、うにしているため、電子ビームの走査時
間を極めて知くづることができ、測定時間を短縮するこ
とができる。
When measuring the length of a material to be measured that has a large number of reference chips with the same type of pattern, C continuously scans a predetermined range with an electron beam in the first reference section. , J5 is placed in the sub-length of the other reference section, and the electron beam is selectively applied to J5 only near the end of the pattern to be measured, based on the length measurement result applied to the first reference section. Since the electron beam is scanned in the same manner, the scanning time of the electron beam can be extremely controlled, and the measurement time can be shortened.

尚、本発明は上述した実施例に限定されることなく幾多
の変形が可能である。例えば、1番目の基準区画(チッ
プT+ )のみ連続的に電子ビームを走査したが、2番
目あるいは3番目までの基準区画は電子ビームを連続的
に走査し、複数回の測長結果に基づいて、選択的な走査
を行う場合の走査開始地点を決定するようにしても良く
、更には、この選択的な走査の開始地点を常に前回の測
定結果に基づいて決定乃至は修正するようにしても良い
。又、実施例では各基準区画内の1箇所の幅を求めるよ
うにしたが、各基準区画内で複数個所の長さを測定り゛
る場合にも本発明を適用することができる。
Note that the present invention is not limited to the embodiments described above, and can be modified in many ways. For example, only the first reference section (chip T+) was continuously scanned with the electron beam, but the second or third reference section was continuously scanned with the electron beam, and based on the results of multiple length measurements, , the starting point of the selective scanning may be determined, and furthermore, the starting point of the selective scanning may be always determined or modified based on the previous measurement results. good. Further, in the embodiment, the width at one point within each reference section is determined, but the present invention can also be applied to the case where the lengths at a plurality of points within each reference section are measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための電子ビーム副長装置の
一例を承り図、第2図は被副長材料であるつ1ハを示す
図、第3図は測長される帯状パターンと電子ビームの走
査ラインを示す図、第4図はディジタル走査信号を示す
図、第5図は電子ビームの走査に基づいて得られた二次
電子検出(5号を示す図である。 1・・・電子銃   2・・・収束レンズ3・・・対物
レンズ 4・・・被測長材料(ウー丁ハ) 5・・・偏向コイル 6・・・二次電子検出器 7・・・増幅器   8・・・陰極線管9・・・A−D
変換器 10・・・コンピュータ 11・・・走査信号発生回路 12・・・拐料スデージ 13・・・ステージ駆動11構 特許出願人 目本電子株式会社 代表者 伊藤 −夫 第3図(a) 第4図(a) 第5図(a) 第3図(、b) 第4図(b) 第5図(b)
Fig. 1 is a diagram showing an example of an electron beam sub-length device for carrying out the present invention, Fig. 2 is a diagram showing a material to be sub-lengthened, and Fig. 3 is a diagram showing a belt-like pattern whose length is to be measured and an electron beam. 4 is a diagram showing a digital scanning signal, and FIG. 5 is a diagram showing secondary electron detection (No. 5) obtained based on scanning of an electron beam. 1...Electron Gun 2...Converging lens 3...Objective lens 4...Length measurement material (Wu Ding Ha) 5...Deflection coil 6...Secondary electron detector 7...Amplifier 8... Cathode ray tube 9...A-D
Converter 10...Computer 11...Scanning signal generation circuit 12...Screening stage 13...Stage drive 11 structure Patent applicant: Mr. Ito, representative of Honda Electronics Co., Ltd. Figure 3 (a) 4 Figure (a) Figure 5 (a) Figure 3 (, b) Figure 4 (b) Figure 5 (b)

Claims (1)

【特許請求の範囲】[Claims] 多数の基準区画を有し、夫々の基準区画には同種のパタ
ーンが形成されている被測長材料上の所望領域を電子ビ
ームによって走査し、該走査に基づいて該月利から得ら
れた情報信号を検出し、該検出信号に基づい゛(該材料
上に形成されているパターンの特定部分の長さを測定す
るようにした副長方法において、特定の基準区画におい
ては電子ビームによって被副長パターンを含む所望の範
囲を連続して走査して信号を得、伯の基準区画の測長時
には、該特定の基準区画における測長結果に基づいて、
被副長パターンの両端部近傍のみにおいて選択的に電子
ビームを走査するようにした電子ビームによる副長方法
A desired area on the length-measuring material having a large number of reference sections, each of which has the same type of pattern, is scanned by an electron beam, and information obtained from the monthly profit based on the scanning. In a sub-length method in which a signal is detected and the length of a specific portion of a pattern formed on the material is measured based on the detected signal, the sub-length pattern is measured by an electron beam in a specific reference section. A signal is obtained by continuously scanning a desired range including the area, and when measuring the length of the reference section, based on the length measurement result in the specific reference section,
A sub-length method using an electron beam in which the electron beam is selectively scanned only near both ends of a sub-length pattern.
JP9366683A 1983-05-27 1983-05-27 Measuring method by electronic beam Pending JPS59218906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9366683A JPS59218906A (en) 1983-05-27 1983-05-27 Measuring method by electronic beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9366683A JPS59218906A (en) 1983-05-27 1983-05-27 Measuring method by electronic beam

Publications (1)

Publication Number Publication Date
JPS59218906A true JPS59218906A (en) 1984-12-10

Family

ID=14088718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9366683A Pending JPS59218906A (en) 1983-05-27 1983-05-27 Measuring method by electronic beam

Country Status (1)

Country Link
JP (1) JPS59218906A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210606A (en) * 1987-02-27 1988-09-01 Hitachi Ltd Method and apparatus for inspecting pattern
JPS6488306A (en) * 1987-09-30 1989-04-03 Toshiba Corp Method and device for measuring pattern width

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210606A (en) * 1987-02-27 1988-09-01 Hitachi Ltd Method and apparatus for inspecting pattern
JPS6488306A (en) * 1987-09-30 1989-04-03 Toshiba Corp Method and device for measuring pattern width

Similar Documents

Publication Publication Date Title
EP0110301B1 (en) Method and apparatus for measuring dimension of secondary electron emission object
JPH11108864A (en) Method and apparatus for inspecting pattern flaw
JP2000133567A (en) Electron beam exposing method and electron beam exposure system
US7288763B2 (en) Method of measurement accuracy improvement by control of pattern shrinkage
JP2000252203A (en) Alignment mark and alignment method
JP3184675B2 (en) Measuring device for fine patterns
JP2607652B2 (en) Irradiation condition determination method for measurement device using charged beam and evaluation pattern used for it
US6756590B2 (en) Shape measurement method and apparatus
JPS59218906A (en) Measuring method by electronic beam
JP3353051B2 (en) Line width measurement of integrated circuit structures
JP3420037B2 (en) Dimension measuring device and dimension measuring method
JP2000077019A (en) Electron microscope
US6941006B1 (en) Method and system for calibrating the scan amplitude of an electron beam lithography instrument
JP2006505093A (en) System and method for charged particle sensitive resists
JPS59218907A (en) Measuring method by electronic beam
JPH0982264A (en) Pattern inspection device and scanning electron microscope
JP3194986B2 (en) Mark detection method and device, and electron beam drawing method and device using the same
JPH07286842A (en) Method and device for inspecting dimension
JPH0445046B2 (en)
JP3450437B2 (en) Electron beam exposure method, developing method and apparatus
JP2006196767A (en) Electron beam exposure apparatus and method for determining scanning condition of electron beam
JPH09293473A (en) Apparatus and method for exposing charged particle beam
JPH03188616A (en) Electron beam exposure system
JP2004071954A (en) Method for inspecting hole
JPH07192667A (en) Beam control method for electron beam exposure device