JPS59218844A - Infrared radiation coating - Google Patents

Infrared radiation coating

Info

Publication number
JPS59218844A
JPS59218844A JP58094304A JP9430483A JPS59218844A JP S59218844 A JPS59218844 A JP S59218844A JP 58094304 A JP58094304 A JP 58094304A JP 9430483 A JP9430483 A JP 9430483A JP S59218844 A JPS59218844 A JP S59218844A
Authority
JP
Japan
Prior art keywords
coating
infrared radiation
infrared
radiation coating
mica powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58094304A
Other languages
Japanese (ja)
Other versions
JPH0243552B2 (en
Inventor
正雄 牧
明雄 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58094304A priority Critical patent/JPS59218844A/en
Publication of JPS59218844A publication Critical patent/JPS59218844A/en
Publication of JPH0243552B2 publication Critical patent/JPH0243552B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、暖房、調理等の分野で加熱によシ特定波長の
遠赤外線を放射し、熱効率の良い加熱体として適用化す
るための赤外線輻射コーティングに関するもので、金属
、セラミックその他の加熱体表面に用いるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides an infrared radiation coating for application as a heating element with high thermal efficiency by emitting far infrared rays of a specific wavelength for heating in fields such as heating and cooking. It is used on the surface of metals, ceramics, and other heating bodies.

従来例の構成とその問題点 従来の赤外線輻射コーテイング材としては、アルミナ、
チタニア、ジルコニア等の化合物を溶射にて、直接基材
上に被覆形成したり、ガラスフリット等、のバインダー
中に分散させ、ホウロウ被覆を形成したりするものが知
られているが、被覆が100μm以上と厚いため、熱膨
張係数が合わず、基材との密着性が悪かったり、600
″G以上に加熱すると、被覆が溶解しまったシしてso
o’c以上の高温下では、適用できない等の欠点があっ
た。
Conventional structure and problems Conventional infrared radiation coating materials include alumina,
It is known that compounds such as titania and zirconia are thermally sprayed to form a coating directly on the base material, or dispersed in a binder such as glass frit to form an enamel coating, but the coating is 100 μm thick. Because it is thicker than 600 mm, the thermal expansion coefficient does not match and the adhesion to the base material is poor.
If heated above G, the coating may melt.
It has drawbacks such as being unable to be applied at high temperatures above o'c.

また、その被覆形成工程も、熱歪を残さないため、非常
に複雑なプロセスが必要であった。
Furthermore, the process of forming the coating required a very complicated process in order to avoid leaving thermal distortion.

発明の目的 本発明は、この様な従来の問題点を解消するもので、2
0〜50μmの薄膜の形成によシ、特定波長の遠赤外線
の放射特性を付与するもので、そのメツシュが30メツ
ンユと細かな金網等への複雑な形状への適用をも、可能
とするものである0また、900″Gの温度にて適用さ
れる高温の加熱面への適用をも目的とするものである。
Purpose of the Invention The present invention solves these conventional problems, and has two
By forming a thin film of 0 to 50 μm, it imparts far-infrared radiation characteristics of a specific wavelength, and the mesh can be applied to complex shapes such as fine wire mesh with a mesh size of 30 mm. It is also intended for application to high temperature heating surfaces applied at temperatures of 900''G.

−!、た、赤外線加熱放射体について、ある範囲内での
任意の着色をも同時に達成するものである。
-! Furthermore, it is possible to simultaneously achieve arbitrary coloring of the infrared heating radiator within a certain range.

発明の構成 この目的を達成するために、本発明は、ポリボロシロキ
サン樹脂を主成分とする有機ケイ素重合体を被覆のバイ
ンダーとして用いる。マイカ粉末および、Ti 、Ba
、Ni 、Sb、Cr、Fe、Zn、Co、Al、Cu
Structure of the Invention To achieve this object, the present invention uses an organosilicon polymer based on polyborosiloxane resin as the binder of the coating. Mica powder, Ti, Ba
, Ni, Sb, Cr, Fe, Zn, Co, Al, Cu
.

Mnの辞から選定した1種以上の酸化物もしくは複合酸
化物を前記バインダー中に分散させ、塗料化したものを
用いて、基材上に塗布焼成した結果の硬化体として、赤
外線輻射コーティングを得る。
One or more oxides or composite oxides selected from the group consisting of Mn are dispersed in the binder and made into a paint, which is then applied and baked on a substrate to obtain an infrared radiation coating as a cured product. .

マイカ粉末粒子が、ポリボロシーキサン樹脂を主成分と
する有機ケイ素重合体の硬化体中に分散していることに
より、遠赤外線を有効に多重散乱し、有効な遠赤外線選
択輻射能が得られる。Ti。
By dispersing mica powder particles in a cured organosilicon polymer whose main component is polyborosixane resin, far-infrared rays can be effectively multiple-scattering and effective far-infrared selective radiation ability can be obtained. . Ti.

Ba、Ni、Sb、Cr、Fe、Zn、Co、Al、C
u、Mnの群から選択した1種以上の酸化物もしくは、
複合酸化物はそれ自体は、赤外線域では、比較的透明で
ある0またその粒子径を細かく、選定すれば、遠赤外線
域での散乱の影響も少ない。したがって、これらの物質
は、主に可視光域での着色に関与し、着色化が可能とな
る。これ等の酸化物、複合酸化物は、耐熱性も優れ、高
温下でも安定である。
Ba, Ni, Sb, Cr, Fe, Zn, Co, Al, C
one or more oxides selected from the group of u, Mn, or
The composite oxide itself is relatively transparent in the infrared region, and if its particle size is selected to be small, the influence of scattering in the far infrared region is small. Therefore, these substances are mainly involved in coloring in the visible light range, making coloration possible. These oxides and composite oxides have excellent heat resistance and are stable even at high temperatures.

ポリボロシロキサン樹脂を主成分とする有機ケイ素重合
体は、室温状態ではセミ無機ポリマーの状態で塗料とし
て扱い易い。また、基材についての接着性が優れ、高温
焼成後は、セラミック化して強固な密着性の優れた被覆
を形成する。
Organosilicon polymers mainly composed of polyborosiloxane resins are semi-inorganic polymers at room temperature and can be easily handled as paints. Moreover, it has excellent adhesion to the base material, and after high-temperature firing, it becomes ceramic and forms a strong coating with excellent adhesion.

従来技術が被覆の遠赤外域での吸収に関して、被覆物自
体の固有の光吸収を必要としているため、100/im
以上の膜厚形成が必要であったのに対して、本発明では
被覆内の多重散乱を利用して、遠赤外線域の選択輻射を
実現しているため、被覆の膜厚が20〜50 pmと薄
くても、選択輻射能が付与できる点が大きな特長である
100/im because the prior art requires the coating itself to absorb light in the far infrared region.
In contrast, the present invention utilizes multiple scattering within the coating to achieve selective radiation in the far infrared region, so the coating thickness can be reduced to 20 to 50 pm. Its major feature is that it can provide selective radiation even though it is thin.

実施例の説明 第1図に本発明の概念図を示す。第1図において、1は
基材で金属、セラミック等から成る02が、本発明のコ
ーティングのバインダーで、ポリボロシロキサン樹脂を
主成分とする有機ケイ素重合体の硬化体である。3はマ
イカ粉末であり、4が、Ti 、Ba、Ni、Sb、C
r 、Fe、Zn、Co、Al、Cu、Mnの群から選
択した1種以上の酸化物もしくは複合酸化物である。マ
イカ粉末の粒径は0.5μm〜10μmの範囲のものを
用いるのが望ましい。また、Ti。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows a conceptual diagram of the present invention. In FIG. 1, 1 is a base material made of metal, ceramic, etc. 02 is a binder for the coating of the present invention, which is a cured body of an organosilicon polymer whose main component is a polyborosiloxane resin. 3 is mica powder, 4 is Ti, Ba, Ni, Sb, C
r, Fe, Zn, Co, Al, Cu, and one or more oxides or composite oxides selected from the group of Mn. It is desirable to use mica powder having a particle size in the range of 0.5 μm to 10 μm. Also, Ti.

Ba 、Ni 、Sb、Cr 、Fe、Zn、Co、A
I、Cu、Mnの群から選択した1種以上の酸化物もし
くは複合酸化物の粒径は、最大1.5μmまでのものを
用いる。
Ba, Ni, Sb, Cr, Fe, Zn, Co, A
The particle size of one or more oxides or composite oxides selected from the group of I, Cu, and Mn is up to 1.5 μm.

この被覆の光学的挙動は以下の通りである。The optical behavior of this coating is as follows.

先ず、可視光線に対しては、上記、遷移金属酸化物、複
合酸化物の吸収により、その組み合わせによって決定さ
れる波長の光を吸収し、着色する。
First, for visible light, the transition metal oxide and composite oxide described above absorb light with a wavelength determined by the combination thereof, and are colored.

次に、近赤外線の短波長の光は、この被覆層では、あま
り吸収されない。長波長の6μm以上の遠赤外線は、バ
インダーのポリボロシロキサン樹脂を主成分とする有機
ケイ素重合体の硬化体とマイカ粉末との屈折率の差によ
る散乱の影響を受け、強く吸収される。
Next, near-infrared short-wavelength light is not absorbed much by this coating layer. Far infrared rays with long wavelengths of 6 μm or more are strongly absorbed due to the influence of scattering due to the difference in refractive index between the mica powder and the hardened organosilicon polymer whose main component is polyborosiloxane resin as a binder.

以上のようにして、このコーティングは、赤外線域で近
赤外線域においては輻射率が小さく、6μm以」二の遠
赤外線域においては輻射率が大きいという遠赤外線選択
輻射性をもつ。
As described above, this coating has a far-infrared selective radiating property in which the emissivity is small in the near-infrared region and the emissivity is large in the far-infrared region of 6 μm or more.

Ti、Ba、Ni、Sb、Or、Fe、Zn、Go、A
l、Cu、Mn ty)群から選択した1種以上の酸化
物もしくは複合酸化物として、(TiO2・Ba0II
NiO)より成る黄色の化合物、また(TiO2・Sb
、1fflO3・Cr203)より成る黄土色の化合物
、(Fe2o3・ZnO−Cr203)より成る茶色の
化合物、(TiO2−ZnO−Coo−N:O)より成
る緑色の化合物、(C00−Cr203・A1203)
より成る緑色の化合物、(C00−A1203)より成
る青色の化合物、(CaO・Cr203)より成る黒色
の化合物、(Fe203・MnO2・Cub)より成る
黒色の化合物などいずれも適用可能である。
Ti, Ba, Ni, Sb, Or, Fe, Zn, Go, A
As one or more oxides or composite oxides selected from the group (TiO2, Cu, Mn ty),
A yellow compound consisting of (NiO) and (TiO2・Sb
, 1fflO3・Cr203), a brown compound consisting of (Fe2o3・ZnO-Cr203), a green compound consisting of (TiO2-ZnO-Coo-N:O), (C00-Cr203・A1203)
A green compound consisting of (C00-A1203), a black compound consisting of (CaO.Cr203), a black compound consisting of (Fe203.MnO2.Cub), etc. are all applicable.

以下実施例を記載する′。ポリボロシロキサン樹脂を主
成分とする有機ケイ素重合体として、昭和電線電纜(株
)の無機ポリマー「sMP−32jを用いた。SMP−
32’j5100重量部に対して粒径1〜5μmのマイ
カ粉末を50重量部採取し、更にCo O−A 120
3系の顔料として大日精化(株)の[ダイピロキサイド
カラー 9410j(商品名)を30重量部採取し、溶
剤としてキシレン2o○重量部を加えて、分散機として
「アトライタ」(商品名)を用いて20時間分散させ、
塗料化し、塗料を調整した。無機ポリマー「sMP−3
2Jは、加熱すると、溶剤が蒸発し、更には、有機物が
分解して、最終的に600″Cでセラミ、ンク化する。
Examples will be described below. As the organosilicon polymer containing polyborosiloxane resin as the main component, an inorganic polymer "sMP-32j" manufactured by Showa Denshin Co., Ltd. was used.SMP-
50 parts by weight of mica powder with a particle size of 1 to 5 μm was collected from 32'j5100 parts by weight, and Co O-A 120
30 parts by weight of Dipyroxide Color 9410j (trade name) from Dainichiseika Co., Ltd. was collected as a 3-series pigment, 200 parts by weight of xylene was added as a solvent, and "Attritor" (trade name) was used as a dispersing machine. Disperse for 20 hours using
I made it into paint and adjusted the paint. Inorganic polymer “sMP-3”
When 2J is heated, the solvent evaporates, the organic matter decomposes, and finally it becomes ceramic at 600''C.

その間に%の重量が失なわれ、600°Cの加熱残渣は
%の重量となる。したがって、この場合には、マイカ粉
末の有機ケイ素重合体の600°C加熱残渣に対する配
合比は%となる。
% weight is lost during this time, and the 600°C heating residue becomes % weight. Therefore, in this case, the blending ratio of the mica powder to the organosilicon polymer to the 600°C heating residue is %.

この様にして調整した塗料をステンレス板(1sCr−
3〜5%Al)上に約20μmの膜厚にて塗布して、6
00°Cにて5分焼成した後、表面温度500″Cにて
、日本分光(株)製分光輻射装置(黒体炉、試料加熱炉
性)を用いて、分光輻射特性を評価した0 第2図に赤外線波長域における分光輻射特性の評価結果
を示すO 第2図において、5は基材のステンレスのみの場合であ
り、6が上記コーティングの場合である。
The paint adjusted in this way was applied to a stainless steel plate (1sCr-
3-5% Al) with a film thickness of about 20 μm, and
After firing at 00°C for 5 minutes, the spectral radiation characteristics were evaluated at a surface temperature of 500''C using a spectral radiator (blackbody furnace, sample heating furnace) manufactured by JASCO Corporation. Figure 2 shows the evaluation results of the spectral radiation characteristics in the infrared wavelength region. In Figure 2, 5 is the case where only the base material is stainless steel, and 6 is the case where the above coating is used.

第2図に見られるように、2〜6.6μmiでは赤外線
輻射率は40襲以下であるのに対して、6.6μm以上
の長波長の遠赤外線域においては、95係程度の非常に
高い輻射率が得られている。
As can be seen in Figure 2, the infrared emissivity is less than 40 in the wavelength range of 2 to 6.6 μm, whereas in the far infrared region with long wavelengths of 6.6 μm or more, it is very high, around 95 coefficient. Emissivity has been obtained.

以上の被覆に関して、膜厚を増大させると、約5Qμm
までは、はぼ同様の分光輻射特性が得られ、5oμmを
越えると、全体的に輻射が向上する傾向が認められた。
Regarding the above coating, if the film thickness is increased, it will be approximately 5Qμm.
Up to this point, similar spectral radiation characteristics were obtained, and when the diameter exceeded 5 µm, there was a tendency for the radiation to improve overall.

次に、マイカの配合比を変化させた場合、マイカ量が有
機ケイ素重合体の600″C加熱残渣に対して重量比で
%以下となると、6の曲線は、8μm〜15μmの長波
長域で凹凸が激しくなり、赤外線輻射率がこの波長域で
平均0.8 付近となる。またマイカ量が多く、その比
が%を越えると塗膜の密着が悪くなり、被覆が摩耗で剥
離する傾向が見られた。また、マイカ粉の分散に関して
は、界面活性剤の添加が有効で、高分子量エンチル等の
添加が望ましい。
Next, when the blending ratio of mica is changed and the amount of mica becomes less than % by weight relative to the 600''C heating residue of the organosilicon polymer, the curve 6 will change in the long wavelength range of 8 μm to 15 μm. The unevenness becomes severe, and the average infrared emissivity in this wavelength range is around 0.8.Also, if the amount of mica is large and the ratio exceeds %, the adhesion of the coating will be poor and the coating will tend to peel off due to wear. Furthermore, for the dispersion of mica powder, it is effective to add a surfactant, and it is desirable to add a high molecular weight ethyl or the like.

以上形成したコーティングは、耐熱性が非常に良好で、
炉中で1000°Cに加熱した後、水中投入するヒート
ショック試験を1o回繰返したが、コーティングに非常
は発生しなかった。
The coating formed above has very good heat resistance,
A heat shock test was repeated 10 times in which the material was heated to 1000°C in a furnace and then immersed in water, but no damage occurred to the coating.

発明の効果 以上の様に本発明のコーティングは (1)  マイカ粉は白色であるため、任意の複合酸化
物顔料との組合せにより、各種の色に着色可能である。
Effects of the Invention As described above, the coating of the present invention has the following features: (1) Since mica powder is white, it can be colored in various colors by combining it with any composite oxide pigment.

(掲 2oμm〜6oμm と極めて薄膜にて、遠赤外
線の選択輻射能を付与することができる。
(It is possible to impart far-infrared selective radiation ability with an extremely thin film of 20 μm to 60 μm.

(′4 薄膜のため、ヒートショックに強く、1000
°Cレベルの高温下での使用に耐え得る。
('4 Thin film, resistant to heat shock, 1000
Can withstand use at high temperatures at the °C level.

(4スプレーにて塗布可能であり、金網状金属から、セ
ラミックハニカム等の多くの基材、複雑な形状物に適用
可能で、その形状をほとんど変化させない。
(Can be applied with 4 sprays, and can be applied to many base materials such as wire mesh metal to ceramic honeycomb, and complex shaped objects, and hardly changes the shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の赤外線輻射コーティングの
要部断面図、第2図は分光輻射特性図である。 1・・・・・・基材、2・・・・・・ポリボロシロキサ
ン樹脂を主成分とする有機ケイ素重合体の硬化体、3・
・・・・・1゜ マイカ粉末、4−=・Ti 、Ba 、Ni 、Sb、
Cr 、Fe 、Zn 。 Co 、AI 、 Cu 、Mnの群から選択し/ζ少
なくとも1種の酸化物もしくは複合酸化物。
FIG. 1 is a sectional view of a main part of an infrared radiation coating according to an embodiment of the present invention, and FIG. 2 is a spectral radiation characteristic diagram. 1... Base material, 2... Cured body of organosilicon polymer containing polyborosiloxane resin as main component, 3.
...1゜mica powder, 4-=・Ti, Ba, Ni, Sb,
Cr, Fe, Zn. At least one oxide or composite oxide selected from the group consisting of Co, AI, Cu, and Mn.

Claims (1)

【特許請求の範囲】[Claims] (1)  ポリボロシロキサン樹脂を主成分とする有機
ケイ素重合体およびマイカ粉末およびTi 、Ba 、
Ni 。 Sb、Cr、Fe、Zn、Co、Al、Cu、Mnの群
から選択した少なくとも1種の酸化物もしくは複合酸化
物の硬化体よυなる赤外線輻射コーティング。 (躊 マイカ粉末の配合比が有機ケイ素重合体のeoo
″C加熱残渣に対して、重量比にて3A〜3にて用いた
特許請求の範囲第1項記載の赤外線輻射コーティング。
(1) Organosilicon polymer and mica powder mainly composed of polyborosiloxane resin and Ti, Ba,
Ni. An infrared radiation coating made of a cured product of at least one oxide or composite oxide selected from the group of Sb, Cr, Fe, Zn, Co, Al, Cu, and Mn. (Hesitation) The blending ratio of mica powder is eoo of organosilicon polymer.
The infrared radiation coating according to claim 1, wherein the infrared radiation coating is used at a weight ratio of 3A to 3 with respect to the heating residue.
JP58094304A 1983-05-27 1983-05-27 Infrared radiation coating Granted JPS59218844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58094304A JPS59218844A (en) 1983-05-27 1983-05-27 Infrared radiation coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58094304A JPS59218844A (en) 1983-05-27 1983-05-27 Infrared radiation coating

Publications (2)

Publication Number Publication Date
JPS59218844A true JPS59218844A (en) 1984-12-10
JPH0243552B2 JPH0243552B2 (en) 1990-09-28

Family

ID=14106530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58094304A Granted JPS59218844A (en) 1983-05-27 1983-05-27 Infrared radiation coating

Country Status (1)

Country Link
JP (1) JPS59218844A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0260683A2 (en) * 1986-09-19 1988-03-23 Matsushita Electric Industrial Co., Ltd. Coating composition for ir radiation heating
JPS63258683A (en) * 1986-10-16 1988-10-26 Matsushita Electric Ind Co Ltd Preparation of film
JPS63270770A (en) * 1987-04-30 1988-11-08 Showa Electric Wire & Cable Co Ltd Heat radiating coating composition
JPS63270773A (en) * 1987-04-30 1988-11-08 Showa Electric Wire & Cable Co Ltd Heat-resistant anticorrosive coating composition
JPS6411168A (en) * 1987-07-03 1989-01-13 Chukoh Chem Ind Production of coating compound
JPH0269581A (en) * 1988-09-05 1990-03-08 Sanmitsuku Tsusho Kk Far infrared-radiating ink composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128753A (en) * 1981-02-03 1982-08-10 Toyonobu Mizutani Paint for forming infra-red radiation film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57128753A (en) * 1981-02-03 1982-08-10 Toyonobu Mizutani Paint for forming infra-red radiation film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0260683A2 (en) * 1986-09-19 1988-03-23 Matsushita Electric Industrial Co., Ltd. Coating composition for ir radiation heating
JPS63258683A (en) * 1986-10-16 1988-10-26 Matsushita Electric Ind Co Ltd Preparation of film
JPS63270770A (en) * 1987-04-30 1988-11-08 Showa Electric Wire & Cable Co Ltd Heat radiating coating composition
JPS63270773A (en) * 1987-04-30 1988-11-08 Showa Electric Wire & Cable Co Ltd Heat-resistant anticorrosive coating composition
JPS6411168A (en) * 1987-07-03 1989-01-13 Chukoh Chem Ind Production of coating compound
JPH0269581A (en) * 1988-09-05 1990-03-08 Sanmitsuku Tsusho Kk Far infrared-radiating ink composition

Also Published As

Publication number Publication date
JPH0243552B2 (en) 1990-09-28

Similar Documents

Publication Publication Date Title
JP5334812B2 (en) Scratch-resistant silicone coating for cooking surfaces made of glass or glass ceramic
JPS63274829A (en) Heating unit
JP6635610B2 (en) Painting material, ceramic products, manufacturing method of ceramic products
KR101401222B1 (en) A reversible changeable coating composition and a method thereof
JPS59218844A (en) Infrared radiation coating
EP3730841B1 (en) Top plate for cooking devices and method for manufacturing same
JPH0120663B2 (en)
DE102008040636A1 (en) Glass ceramic plate, whose operational base is provided with an annealed coating consisting of a sintered glass ceramic engobe, useful in the interior of the cooking appliance, heating devices and printed circuit boards
JPS6319542B2 (en)
JPH0684270B2 (en) Infrared radiation coating
JPH0155380B2 (en)
KR20120007989A (en) Manganese vanadium tantalum oxide and pigments having a black metallic effect coated with the same
CN109437978A (en) Low-temp ceramics base glaze directly prints glaze ink and its application and ceramic
JP4003402B2 (en) Glass flux, coloring composition and decorative glass substrate
JPS6062085A (en) Infrared radiation coating
JPH03247534A (en) Glaze and glazed article
KR102707933B1 (en) A cooking utensil having a thermochromic layer including a thermochromic pigment for a temperature sensor using bismuth vanadate, and a manufacturing method thereof
JPS60251322A (en) Radiant body
EP4455104A1 (en) Cooker top plate
JPS6027669A (en) Infrared ray radiation coating
KR20150053216A (en) A reversible changeable coating composition and a method thereof
JPH0456786B2 (en)
JP2561838B2 (en) Heat radiation paint
JPH0359141B2 (en)
JPH0726064B2 (en) Coating composition